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Abstract. The randomness is well-understood in homogeneous environments
only. Brownian motion in a spatially constant temperature is an example. How-
ever, the randomness in heterogeneous environment is not well-understood and
its understanding may give us a key to open many mysteries of real world
phenomena. In this talk we will discuss how to model such heterogeneous ran-
domness mathematically and then how to apply it to dispersals of biological
organisms. Starvation driven dispersal will be introduced in the context.
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Derivation of a diffusion equation with a non-uniform randomness

Consider a random walk system with a walk length ∆x and a traveling time ∆t.
Let 0 < γ(xi) ≤ 1 be the probability for a particle to depart a grid point xi at
each jumping time. (For a usual random walk system every particle departs at
each jumping time and hence γ = 1.) Each particle moves to one of two adjacent
grid points, xi+1 or xi−1, randomly. Let U(xi) be the number of particles placed
at the grid point xi. Then, the particle density is u = U/∆x. Hence the net flux
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Notice that, if ∆x and ∆t are non-constant, one should stop at (1). The ap-
proximation (2) is valid only if ∆x and ∆t are constant.

Applications of non-uniform random dispersal

Non-uniform random dispersal is found in many places.

1. Homogeneous diffusion. Brownian motion in a spatially constant tempera-
ture is an example. In the case ∆x and ∆t can be assumed constant. For
the Brownian motions, γ = 1. Then, the corresponding diffusion equation
comes from the conservation law ut == ∇ · (J), i.e.,

ut = duxx, d :=
1

2

|∆x|2

∆t
. (3)

2. Heterogeneous diffusion. Brownian motion in a spatially non-constant tem-
perature is an example. Then, ∆x and ∆t cannot be assumed constant. The
corresponding diffusion equation is

ut =
|∆x|

2

( |∆x|

∆t
u
)

xx
. (4)

3. Is the movement of a gas particle random? Consider a room with gas par-
ticles of single kind where the room temperature is not constant. Color one
of them with red. Then the movement of the colored particle is chaotic and
brownian motion like. Then, is it a random movement? It seems that it
couldn’t. The probability density distribution does not satisfy (4) since the
probability density should follow the gas density, which is probably

ut =
( ∆x

2∆t
(∆xu)x

)

x
.

However, in this case, ∆x is the mean free path in algebraic mean. On
the other hand, the previous case is in root mean square sense. The thermal
diffusion seems between these two cases. Understanding the relation between
these two seems important in statistical physics.

4. Dispersal strategy of biological organisms. One may imagine several levels of
dispersal strategies of biological organisms.
(a) The species has no control of any kind and moves just randomly. Then,

the equation (3) is the corresponding model.
(b) The species may feel gradient of environment and move toward or against

the gradient. Then, the model is

ut = (dux + αumx)x. (5)

(c) The species does not know such a gradient, but has an ability to stay at
a favorable place and to leave a unfavorable one. In the case we may use
the model

ut = (γu)xx. (6)

This is the case of our interest and the detail of this case in the next
section.
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(d) The species do not know a gradient of environment. However, they may
remember good places and bad places and move along mostly good places
with possible erratic behavior. It seems human behavior is like this.

A more realistic case is not necessarily mathematically more meaningful.
The linear model (a) has been intensively studied mathematically and phys-
ically. The case (b) is actually confusing since we can model the advection
only phenomenologically. However, since the case (a) could not give any ad-
vection effect, (b) also has been studied a lot. The physical meaning of (c)
is relatively simple and realistic. Furthermore, it gives advection effect. The
case (d) or more detailed ones are can be useful in simulations. However,
their mathematically meaning is doubtful.

Derivation of a starvation driven diffusion

If ∆x and ∆t are constant, after a time rescaling, we obtain

ut = (γu)xx.

Notice that this derivation is valid since the probability γ depends only on the
point xi that the particle departs. For a more discussion including other cases,
see Okubo and Levin [1, §5.4].

It is reasonable to believe that biological organisms will increase the depart-
ing rate if they are starved. Individuals will be starved if there is no food or if
are are many organisms. Hence, if m is the amount of food available and u is
the population, it is reasonable to assume that γ = γ(m,u) and

γm ≤ 0 and γu ≥ 0.

The process with these properties can be called a starvation driven diffusion
since the diffusion is increased on starvation.

If we set s = m
u , then s is the amount of food that each individuals may

obtain on average. We may consider a case that γ is a decreasing function of s,
i.e., γ(m,u) = γ(mu ) with γ′(s) < 0. Then, clearly,

γm = γ′(s)
1

u
≤ 0 and γu = −γ′(s)

m

u2
≥ 0.

See [2] for a detailed discussion of the starvation driven diffusion. Also see [3–5]
for its applications and analyses.
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