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1 Introduction

In nature, many kinds of spatial and/or temporal patterns are observed, some of them

are simple and the others are complicated. To understand theoretically the dynamics of

such patterns, many model equations have been proposed and analyzed. Among them,

some sort of reaction-diffusion systems are one of the most familiar classes.

In this report, we consider general type of reaction-diffusion systems inR2 which possess

stable spot solutions. Spot patterns are one of the most typical and important patterns from

the phenomenological point of view. In fact, spot patterns correspond to localized patterns

of materials which are observed in many phenomena such as biology and chemistry. Also

in mathematical models, many model equations with spot solutions have been proposed as

in the Gierer-Meinhardt model, Gray-Scott model (e.g. [5], [4], [7], [8] ).

In this report, we assume the existence of a stable spot solution on R2 and the dynamics

of it on a curved surface in R3. A curved surface is imaged as a cell membrane and a spot

solution is a localized structure with high density of materials on the surface. In fact,

[1] reported the localization of the phosphatidylinositol lipids on the cell membrane of

Dictyostelium cells. As the consequence, we show that the motion of spot solution along

the surface is essentially described as the gradient flow of the Gaussian curvature.

2 Setting and results
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In this section, we will give the several assumptions in the general framework.

Let us consider general type of reaction-diffusion systems written by

ut = D∆u+ F (u), t > 0, x ∈ R2, u ∈ RN , (2.1)

where D is a diagonal matrix given by D := diag{d1, d2, · · · , dN} with dj > 0 and F is a

smooth map from RN to RN .

Let L(u) := D∆u+ F (u) and X := {L2(R2)}N . The assumptions are as follows:

1) There exist a radially symmetric stationary pulse solution S(r) of (2.1) such that

L(S(r)) ≡ 0, where r := |x|.

Let L be the linearized operator L′(S(r)) of (2.1) with respect to S(r), that is, L :=

D∆+ tF ′(S(r)).

2) The spectral set of L consists of two sets σ1 = {0} and σ2 ⊂ {λ ∈ C; Re(λ) < −γ} for

a positive constant γ.

Remark 2.1 0 is necessarily a spectrum of L because (2.1) has a translation invariance

and LSxj
= 0 (j = 1, 2) hold, where x = (x1, x2).

Let Q and R be projections corresponding to the spectral sets σ1 and σ2, respectively.

That is, Q := 1
2πi

∫
C

(λ − L)−1dλ and R := Id − Q, where C is a circle around 0 inside

{λ ∈ C; Re(λ) > −γ} and Id denotes the identity. Define E := QX, E⊥ := RX.

3) E = span{Sx1 , Sx2} holds.

Remark 2.2 The assumption 3) means the stability of S(x) except translation.

Let L∗ be the adjoint operator of L. Then L∗ also has eigenfunctions ϕ∗
j(x) (j = 1, 2)

such that L∗ϕ∗
j = 0 and ⟨ Sxj

, ϕ∗
j ⟩X = π. Then we note that ϕ∗

j is represented as ϕ∗ = ∂xj
Φ∗

by a radially symmetric function Φ∗ = Φ∗(r).



Under these three assumptions, we consider the reaction-diffusion systems (2.1) on a

smoothly curved surface M ⊂ R3:

ut = δ2∆Mu+ F (u), t > 0, x ∈ M, (2.2)

where δ > 0 is a sufficiently small constant and ∆M is the Laplace-Beltrami operator on

M.

For simplicity, we assume the surface M is expressed by the isothermal coodinate as

M = {Γ(u, v); (u, v) ∈ R2} with ds2 = E(u, v)(du2 + dv2). Let K(u, v) be the Gaussian

curvature of M and T := δ2t. Then we have:

Theorem 2.1 For H ∈ M, there exists a map Ψ = Ψ(w;H) ∈ R2 defined for |w| << 1

such that Ψ(0;H) = 0 and the solution u(t,x) of (2.2) is expressed as

u(t,x) = S(|Ψ(x−H(T );H(T ))|/δ) +O(δ)

and H(T ) satisfies

dH

dT
=

M0

E(h(T ))
{Ku(h(T ))Γu(h(T )) +Kv(h(T ))Γv(h(T ))}+O(δ), (2.3)

where H = Γ(h) ∈ M, h = (h1, h2) ∈ R2, M0 :=
1

4

∫ ∞

0

r3 ⟨ DSr,Φ
∗
r ⟩ dr.

(2.3) implies that the spot solution moves toward points with maximal Gaussian curva-

ture if M0 is positive and toward points with minimal Gaussian curvature if M0 is negative

while the sign is depending on each model. The proofs will be basically given by similar

manner to [2].

Finally, we give the explicit value of the constant M0 for the Gierer-Mienhardt model.

We consider the following Gierer-Meinhardt model for sufficiently small ε > 0, 0 ≤ τ << 1

and a > 0: 
ut = ε2∆u− u+

up1

(v + a)p2
,

τvt = d∆v − v +
up3

(v + a)p4
,

(2.4)

where pj are the positive constants satisfying p1 > 1 and 0 <
p1 − 1

p2
<

p3
p4 + 1

. (2.4) has a

stable radially symmetric spiky solution in the form of S(r) = (U(r/ε), V (r)) for r = |x|

and functions U(r), V (r) ([3], [5], [6]). In particular, when p3 = 2 and 1 < p1 < 3 or



p3 = p1 +1 and 1 < p1 < ∞, Φ∗(r) is given by Φ∗(r) = c(U(r/ε), 0)+ o(1) as ε ↓ 0 ([3]) for

a constant c. Then we have the following theorem on the value of the constant M0:

Theorem 2.2 If p3 = 2 and 1 < p1 < 3 or p3 = p1 + 1 and 1 < p1 < ∞ are satisfied for

(2.4), then the constant M0 is given by

M0 = ε3

∫ ∞

0

r3(U ′(r))2dr

4

∫ ∞

0

r(U ′(r))2dr

+ o(ε3) > 0.

The above theorem says that the spot solution moves toward points with maximal

Gaussian curvature.
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