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Abstract

We study the Riemann problem for the system of conservation laws of one dimen-
sional isentropic gas dynamics in Eulerian coordinates. We construct solutions of
the Riemann problem by the method of self-similar zero-viscosity limits, where the
self-similar viscosity only appears in the equation for the conservation of momen-
tum. No size restrictions on the data are imposed. The structure of the obtained
solutions is also analyzed.
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1 Introduction

We consider the equations describing one dimensional isentropic motions of
inviscid gases,

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ))x = 0,
x ∈ R, t > 0, (1.1)

in Eulerian coordinates. The functions ρ = ρ(x, t), u = u(x, t) and p = p(ρ)
represent density, velocity and pressure in that order. The density ρ takes
nonnegative values and the pressure function p(ρ) is smooth and defined for
ρ ≥ 0. We assume that the pressure function p(ρ) satisfies the hypothesis

p′(ρ) > 0 for ρ > 0. (H1)
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Then (1.1) forms a strictly hyperbolic system with characteristic speeds λ±(ρ, u) =

u±
√

p′(ρ) for ρ > 0. We do not assume strict hyperbolicity for ρ = 0 since it

does not include the usual γ-laws, p(ρ) = kργ, γ ≥ 1, k > 0. We see that
it causes significant difficulties in the analysis when vacuum is considered. We
also adopt a hypothesis

p(ρ) → ∞ as ρ → ∞ and p(ρ) → 0 as ρ → 0, (H2)

which is natural for the pressure functions of gas dynamics. We are interested
in the Riemann problem: finding a weak solution for (1.1) with initial data

(ρ(x, 0), u(x, 0)) =











(ρ−, u−) , x < 0

(ρ+, u+) , 0 < x
(1.2)

with ρ± > 0. Since homogeneous conservation laws and Riemann initial data
are invariant under the rescaling (x, t) → (αx, αt), α > 0, it is natural to ex-
pect that the solution of the Riemann problem should be a function of the scal-
ing invariance variable ξ = x/t which is called the self-similar variable of the
Riemann problem. A simple computation shows that (u, ρ)(x, t) = (u, ρ)(x/t)
is a solution of (1.1),(1.2) if (u, ρ)(ξ) is a solution of the boundary value prob-
lem (P) :

−ξρ′ + (ρ u)′ = 0

−ξ(ρu)′ + (ρu2+ p(ρ))′ = 0
(1.3)

ρ(±∞) = ρ±, u(±∞) = u±, (1.4)

where the ordinary differentiation is with respect to ξ.

It is well known that weak solutions are not unique and that the problem (1.3)
with (1.4) should be studied by introducing admissibility criteria attempting
to single out the physically admissible solution. We refer to [4], [5] for the
solution of the Riemann problem for general strictly hyperbolic systems and
to [2] for a discussion of the issue of admissibility for hyperbolic systems of
conservation laws.

In this article we study the solution of the Riemann problem (P) as ε → 0
limit of the solutions of the perturbed problem (Pε) :

−ξρ′ +(ρu)′ = 0

−ξ(ρu)′ + (ρu2 +p(ρ))′ = εu′′
(1.5)

ρ(±∞) = ρ±, u(±∞) = u±. (1.4)

The method of self-similar viscous limits is studied in [1], [3], [10], and the
approximation of (P) with full viscosity matrices is studied in [8]. Here, we are
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interested on the effect of singular diffusion matrices; in mechanical models
viscosity appears in the equation of balance of momentum, but not in the
equation of balance of mass.

This approach is followed by Tzavaras in [9] for the system of one-dimensional
isothermal elastic response in Lagrangian coordinates. Many of the ideas used
here are based on this work. In both cases the interplay of hyperbolic and
parabolic aspects of the problem must be analyzed. There are two differences
in the present work. While in [9] the singularity lies at a fixed point ξ = 0(in
Lagrangian coordinates), the singularity in (1.5) is located at moving points
ξ with u(ξ) = ξ thus depending on the solution. This leads to analyzing free
boundary problem, as can be easily seen by considering the systems

(u − ξ)ρ′ +ρu′ = 0

(u − ξ)ρu′ +p(ρ)′ = 0,
(1.6)

(u − ξ)ρ′ +ρu′ = 0

(u − ξ)ρu′ +p(ρ)′ = εu′′,
(1.7)

that are equivalent to (1,3),(1.5) for smooth solutions. The second difference
is associated with complications arising from the loss of strict hyperbolicity at
vacuum. A substantial amount of the analytical effort is directed to resolving
the complications associated with vacuum states.

The objectives of the article are (i) to show the existence of solutions to the
problem (Pε), (ii) to solve the Riemann problem (P) as the ε → 0 limit of so-
lutions to (Pε) and (iii) to study the structure of the emerging limit. We begin
in Section 2 with an analysis of regularity properties and a priori estimates for
weak solutions (ρ, u) of (Pε) with ρ > 0. It is shown that such solutions are
smooth except for a unique singular point, induced by the singular diffusion
matrix in (1.7), and located at u(ξ) = ξ. It turns out that at least one of ρ, u
is monotone, while the other has at most one critical point.

For the existence of solutions of (Pε) we consider a one-parameter family of
boundary value problems (Pµ

ε ):

(u − ξ)ρ′ + ρu′ = 0

(u − ξ)ρu′ + p(ρ)′ = εu′′,
−∞ < ξ < ∞, (1.8)

ρ(±∞) = ρµ
± := ρ− + µ(ρ± − ρ−)

u(±∞) = uµ
± := u− + µ(u± − u−),

0 ≤ µ ≤ 1, (1.9)

which connect the solutions of (Pε) to a trivial solution. In lemmas 2.4 and
2.5 we establish a priori estimates on u and ρ that are used in Section 3 to
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construct solutions of (Pε). In Lemma 6 an a priori estimate

0 < δε < ρ(ξ) (A)

is missing for the case that u is increasing on R (this is the case when vacuum
appears in the Riemann problem). We have not been able, under the sole
Hypotheses (H1) and (H2), to obtain the estimate (A) for general pressure
laws. Nevertheless, in Section 5 the missing estimate is established for either
special pressure functions or under restrictions on the Riemann data which
prevent vacuum. (We remark that throughout the article we study solutions
of (Pε) with ρ > 0. It is however conceivable that the problem (Pε) admits, for
special pressure laws and boundary data, solutions that vanish in density. This
would run counter to the well known fact that the solutions of the Cauchy
problem for the momentum-viscosity approximation of (1.1) have the property
that ρ > 0. On the other hand, the problem (Pε) is essentially a boundary
value problem, and the possibility that it has vanishing solutions in ρ cannot
be a priori excluded.)

In Section 3 we apply the Leray-Schauder degree theory to a construction
scheme suggested by the a priori estimates of Section 2. The obtained result
on existence of the viscous problem (Pε) is stated in Theorem 12.

In Section 4 we consider a family of solutions (ρε, uε) to (Pε) and study the
limit ε → 0. We show that the total variation of (ρε, uε) is uniformly bounded,
and hence, by virtue of Helly’s theorem, along a subsequence ρεn

→ ρ, uεn
→ u

for some function ρ ≥ 0 and u of bounded variation. The emerging limit
(ρ, u) turns out in Theorem 13 to be a solution of the Riemann problem (P)
constructed through the method of self-similar zero-viscosity limits.

Then we study the structure of (ρ, u). For the case of convex pressure laws

p′′(ρ) ≥ 0 for ρ > 0, (H3)

the structure of (ρ, u) is established in Theorem 19. The solution consists of
two waves separated by a constant state. The waves are either a rarefaction or
a shock. As an application, we consider the strictly hyperbolic case in Corollary
20 and show that vacuum can not appear in this case. Note that Hypothesis
(H3) includes both cases of genuine nonlinearity and linear degeneracy.

In the last section we complete the a priori estimates for the systems with
convex pressure laws. First, if the system is strictly hyperbolic, i.e. there exists
a constant c > 0 such that

p′(ρ) ≥ c2, ρ > 0, (1.10)

then we obtain a lower bound for ρ and have a complete theory:
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Theorem 1 (Strictly Hyperbolic Convex Laws) Suppose p(ρ) satisfies (H1),
(H2) and (H3). If the system (1.1) is strictly hyperbolic, then the boundary
value problem (P) has a solution (ρ, u) which is a ε → 0 of solutions of (Pε).
The function (ρ, u) has the structure stated in Theorem 19 and does not contain
vacuum.

Second, for convex pressure laws (not necessarily strictly convex), we exhibit a
sufficient condition on the data (ρ±, u±) that prevents the appearance of vac-
uum and completes the theory. The construction of solutions of the Riemann
problem (1.1) with (1.2) via self-similar viscous limits and the structure of the
emerging solution of these two cases are stated in Theorem 23.

2 Weak Solutions and Regularity Properties

We consider the nonlinear boundary value problem (Pε) :

−ξρ′ +(ρu)′ = 0

−ξ(ρu)′ + (ρ u2 + p(ρ))′ = εu′′
−∞ < ξ < ∞ (2.1)

ρ(±∞) = ρ±, u(±∞) = u±, (2.2)

with fixed boundary data ρ± > 0, u± and 0 < ε < 1. In this section we study
the regularity for solutions of this problem and establish a priori estimates
which are used to show the existence of solutions to the problem (Pε).

2.1 Regularity Properties

First, we give a definition of the solution of (Pε) in the weak sense.

Definition 2 A pair of functions ρ > 0 and u with p(ρ), ρ ∈ L∞
loc(R) and

u ∈ W 1
1 loc(R) is a solution of (Pε) if (ρ, u) satisfies

∫

(ζ − u)ρϕ′dζ +
∫

ρϕdζ = 0 (2.3)

∫

[(ζ − u)ρu − p(ρ) + εu′]ϕ′dζ +
∫

ρuϕdζ = 0 (2.4)

for all ϕ ∈ C1
c (R), continuously differentiable functions with compact support,

and the essential limits ρ(±∞) and u(±∞) exist and satisfy (2.2).

It is clear that the integrals in (2.3) and (2.4) are well defined. The equations
(2.3) and (2.4) imply that ρ ∈ L∞

loc(R) and ρu ∈ L1
loc(R) are the weak
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derivatives of (ξ − u)ρ and (ζ − u)ρu − p(ρ) + εu′ respectively. So (ξ − u)ρ,
(ζ − u)ρu − p(ρ) + εu′ are in W 1

1 loc(R), and hence absolutely continuous. So

−p(ρ) + εu′ is also continuous.

Lemma 3 Let (ρ, u) be a solution of (Pε). (i) For a, b ∈ R,

[

(ξ − u(ξ))ρ(ξ)
]b

a
−

b
∫

a

ρ(ζ)dζ = 0 (2.5)

[

(ξ − u(ξ))ρ(ξ)u(ξ) − p(ρ(ξ)) + εu′(ξ)
]b

a
−

b
∫

a

ρ(ζ)u(ζ)dζ = 0. (2.6)

(ii) u, (ξ−u)ρ and −p(ρ)+εu′ are continuous on R. If p ∈ Cn(R+) for n ≥ 0,
then ρ and u are Cn+1 for all ξ such that ξ 6= u(ξ).

PROOF. We already saw that u, (ξ−u)ρ,−p(ρ)+εu′ and (ξ−u)ρu−p(ρ)+εu′

are continuous on R. Fix a, b ∈ R with a < b and consider

ψn(ξ) =























































0, −∞ < ξ ≤ a − 1/n

n(ξ − a) + 1, a − 1/n ≤ ξ ≤ a

1, a ≤ ξ ≤ b

−n(ξ − b) + 1, b ≤ ξ ≤ b + 1/n

0, b + 1/n ≤ ξ < +∞ .

As ψn 6∈ C1
c (R), it cannot be directly used as a test function. However, since

ψn is Lipschitz continuous, it can be approximated by C1
c functions. Let the

sequence ψk
n ∈ C1

c (R) converge to ψn as k → ∞. If we put ψk
n in the place of

ϕ in (2.4), then we get

∫

[(ζ − u)ρu − p(ρ) + εu′](ψk
n)′dζ +

∫

ρuψk
ndζ = 0.

Taking the limit k → ∞, we obtain

n
∫ a
a−1/n[(ζ − u)ρu −p(ρ) + εu′]dζ − n

∫ b+1/n
b [(ζ − u)ρu − p(ρ) + εu′]dζ

+
∫ b+1/n
a−1/n ρuψndζ = 0.

Since (ζ−u)ρu−p(ρ)+εu′ is continuous and |ρuψn| ≤ |ρu| ∈ L1
loc, Lebesgue

Differentiation Theorem and Lebesgue Dominated Convergence Theorem im-
ply that (2.6) holds in the limit n → ∞. Similar statements show (2.5).
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Let us consider (ii). Since (ζ−u)ρ is continuous, ρ is continuous at ξ if ξ 6= u(ξ).
From (2.6),

εu′(ξ) =
∫ ξ
a ρ(ζ)u(ζ)dζ − (ξ − u(ξ)) ρ(ξ)u(ξ) + p(ρ(ξ))

+(a − u(a))ρ(a)u(a) − p(ρ(a)) + εu′(a).

(2.7)
If p is C0(R+), u is C1 at ξ 6= u(ξ). From (2.5),

(ξ − u(ξ))ρ(ξ) =

ξ
∫

a

ρ(ζ)dζ + (a − u(a))ρ(a), (2.8)

and ρ is C1 at those points. If p is Cn(R), we can consider (2.7) and (2.8) n
more times to get Cn+1 smoothness of ρ and u at ξ 6= u(ξ). 2

Lemma 3 indicates that singularities may arise at s when u(s) = s, i.e. at the
fixed points of u. Let s be a singular point. Since ρ ∈ L∞

loc(R), (2.8) yields

ξ
∫

s

ρ(ζ)dζ = ρ(ξ)(ξ − u(ξ)). (2.9)

Now we prove the uniqueness of the singularity. Note that the proof is closely
related with the fact that Definition 2 does not accept zero density.

Lemma 4 The singular point of a solution (ρ, u) of (Pε) is unique.

PROOF. Let s be a singular point and suppose there are no singular points
in the interval (s, s + τ) for some τ > 0 small. From (2.9), we have

ξ − u(ξ) =

ξ
∫

s

ρ(ζ)

ρ(ξ)
dζ > 0, ξ ∈ (s, s + τ). (2.10)

So u(ξ) < ξ on (s, s + τ). Let us suppose there are no singular points in the
interval (s − τ, s) for some τ > 0 small. Then

ξ − u(ξ) =

ξ
∫

s

ρ(ζ)

ρ(ξ)
dζ < 0, ξ ∈ (s − τ, s).

So ξ < u(ξ) on (s − τ, s). From these facts, it is impossible that the graph of
y = u(ξ) meets the diagonal y = ξ twice. Therefore, either the singular point
is unique or the set of all singular points is a closed interval.
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If the set of the singular points is a closed interval [a, b] with a 6= b, then (2.5)
implies

∫ d
c ρ(ζ)dζ = 0 for any [c, d] ⊂ [a, b], and thus ρ vanishes on [a, b]. This

contradicts Definition 3. 2

2.2 Monotonicity Properties

The monotonicity of solutions plays a key role in our problem. It can be easily
verified that, at a point of smoothness, the solution (ρ, u) of (Pε) satisfies

(u − ξ)ρ′ +ρu′ = 0

(u − ξ)ρu′ +p(ρ)′ = εu′′.
(2.11)

Next we analyze the behavior of (ρ, u) in a neighborhood of the singular point
ξ = s and ξ = ±∞. From (2.11) we obtain

ρ′ =
ρu′

(ξ − u)
(2.12)

εu′′ +
{(ξ − u)2 − p′(ρ)}ρ

ξ − u
u′ = 0. (2.13)

(2.13) can be written in a differential form

d

dξ

[

u′(ξ) exp
{1

ε

ξ
∫ {(ζ − u)2 − p′(ρ)}ρ

ζ − u
dζ

}]

= 0, (2.14)

and upon integrating (2.14) we get

u′(ξ) =











u′(α+) exp
{

− 1
ε

∫ ξ
α+

{(ζ−u)2−p′(ρ)}ρ
ζ−u

dζ
}

, s < ξ

u′(α−) exp
{

− 1
ε

∫ ξ
α−

{(ζ−u)2−p′(ρ)}ρ
ζ−u

dζ
}

, ξ < s
(2.15)

for any α± such that s < α+ and α− < s, where s is the unique singular point.

Since exp
{

− 1

ε

ξ
∫

α±

{(ζ − u)2 − p′(ρ)}ρ
ζ − u

dζ
}

is positive, (2.15) implies that ei-

ther u is strictly monotone on (s,∞) and (−∞, s) or identically constant on
the intervals. It is clear from (2.12) that ρ has the same monotonicity as u on
(s,∞) and the opposite one on (−∞, s).

The monotonicity of the positive solution ρ ∈ L∞ implies that

0 < k ≤ ρ(ξ) ≤ K < ∞, ξ ∈ R, (2.16)
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where k and K depend only on ρ± and ρ(s±) = lim
ξ→s±

ρ(ξ). Under Hypothesis

(H1), p′(ρ) is bounded by

0 < a0 ≤ p′(ρ(ξ)) ≤ A0, ξ ∈ R, (2.17)

where a0 and A0 may depend on k and K of (2.16).

Lemma 5 Let (ρ, u) be a solution of (Pε) with a unique singular point s ∈ R.
(i) There exist two constants α− < s, α+ > s, depending on a0, and a constant
α > 0, depending on a0 and k, such that

|u′(ξ)| ≤ |u′(α+)|
∣

∣

∣

ξ−s
α+−s

∣

∣

∣

α
ε , s < ξ < α+,

|u′(ξ)| ≤ |u′(α−)|
∣

∣

∣

ξ−s
α−−s

∣

∣

∣

α
ε , α− < ξ < s.

(2.18)

(ii) There exist two constants β− < s, β+ > s, depending on A0, and a constant
β > 0, depending on A0 and k, such that

|u′(ξ)| ≤ |u′(β+)| exp
{

− β
ε

((

ξ−s
β+−s

)2 − 1
)}

, β+ < ξ,

|u′(ξ)| ≤ |u′(β−)| exp
{

− β
ε

((

ξ−s
β−−s

)2 − 1
)}

, ξ < β−.
(2.19)

(iii) u′(s) = 0 and, for the pressure p ∈ Cn(R+), n ≥ 1, the solution (ρ, u) has
the regularity

ρ ∈ C(R) ∩ Cn+1(R − {s}) ; u ∈ C1(R) ∩ Cn+1(R − {s}). (2.20)

PROOF. u(ξ) → u+ as ξ → ∞ and u′(s+) is finite from (2.7). We have
u(ξ) < ξ on (s,∞). Thus there is a positive constant b such that −b(ξ −
s) + s < u(ξ) < ξ on (s,∞) (see Figure 1). Let α+ be a constant such that
s < α+ < s + θ

b+1
with θ =

√
a0. Then for all ζ ∈ (s, α+),

{(ζ − u)2 − p′(ρ)}ρ
ζ − u

≤ {(1 + b)(α+ − s)2 − θ2

(1 + b)
} ρ

ζ − s
≤ −α

1

ζ − s
< 0

with

α =
(θ2 − (1 + b)2(α+ − s)2)k

(1 + b)
. (2.21)

Then α is positive and, from (2.14),

|u′(ξ)| ≤ |u′(α+)| exp
{α

ε

ξ
∫

α+

1

ζ − s
dζ

}

= |u′(α+)|
( ξ − s

α+ − s

)
α
ε

for all ξ ∈ (s, α+). The second statement of (i) can be proved similarly.
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Now we prove (ii). Fix β+ > s + max{2(u+ − u−), 2
√

2Θ} with Θ =
√

A0.
Then, for any ξ ∈ (β+,∞), ξ − u(ξ) ≥ 1

2
(ξ − s) and

{(ζ − u)2 − p′(ρ)}ρ
ζ − u

≥ {1

2
− 2Θ2

(ζ − s)2
}ρ(ζ − s) ≥ k

4
(ζ − s) > 0.

Set

β =
(β+ − s)2

2

k

4
.

Then β is positive and

|u′(ξ)| ≤ |u′(β+)| exp
{

− 2β
ε(β+−s)2

∫ ξ
β+

ζ − sdζ
}

= |u′(β+)| exp
{

− β
ε

(

( ξ−s
β+−s

)2 − 1
)}

.

The proof of the second statement of (ii) is similar. Part (i) implies regularity
for u′ near the singular point ξ = s and especially that u′(s) = 0. Since
−p(ρ)+εu′ is continuous, ρ is also continuous (due to (H1)). So the regularity
of Lemma 3 is improved to (2.20). 2

The regularity of solution u will be given by the constant α in Lemma 5. If
α can be chosen independently from ε, u can be assumed as smooth as we
want by taking ε small enough. Note that α depends on the choice of α+. For
example, if we take α+ = s + θ√

2(b+1)
, we get α = θ2

2(1+b)
. Since u′(s) = 0, we

get b → 0 as α+ → s and we also get α → p′(ρ(s))ρ(s). So u has C2 regularity
if p′(ρ(s))ρ(s) > ε.

�
y (s; s) y = u(�)y = � y = a(� � s) + s

y = �b(� � s) + s?
Figure 1
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2.3 A priori Estimates

Throughout this section we consider a solution (ρ, u) of the family of boundary
value problems (Pµ

ε )

(u − ξ)ρ′ + ρu′ = 0

(u − ξ)ρu′ + p(ρ)′ = εu′′
−∞ < ξ < ∞, (2.22)

ρ(±∞) = ρµ
± := ρ− + µ(ρ± − ρ−)

u(±∞) = uµ
± := u− + µ(u± − u−)

0 ≤ µ ≤ 1, (2.23)

which connect the solutions of (Pε) to the trivial solution associated with
µ = 0.

Since ρ± > 0, the boundary values ρµ
± in (2.23) are positive and the solutions of

(Pµ
ε ) have the regularity derived from the previous sections. In this section we

derive a priori estimates of solutions (ρ, u) of (Pµ
ε ), which are used to establish

the existence of solutions to (Pε) in the next section. The a priori estimates
are:

0 < δ < ρ(ξ) < M, ξ ∈ (−∞,∞) (2.24)

|u(ξ)| < M, ξ ∈ (−∞,∞) (2.25)

−b(ξ − s) + s < u(ξ) < a(ξ − s) + s, ξ ∈ (s,∞)

a(ξ − s) + s < u(ξ) < −b(ξ − s) + s, ξ ∈ (−∞, s),
(2.26)

where positive constants δ and M are independent of µ, and constants a, b
satisfy 0 < a < 1 and 0 < b and depend only on δ,M, ρ± and u±. The point s
in (2.26) is the singular point of the solution, and hence it should be bounded
by (2.25) and it may depend on µ.

The main difference from the Lagrangian case is the estimate (2.26). It implies
that the graph of the velocity u(ξ) lies between two straight lines which have
slopes less than 1 and pass through the point (s, s)(see Figure 1). We can
easily check that (2.26) is equivalent to

A|ξ − s| < |u(ξ) − ξ| < B|ξ − s|, ξ 6= s, (2.27)

with 0 < A < 1 < B.

The proof of these a priori estimates strongly depends on the shape of solutions
(ρ, u). From the monotonicity property of the previous section, we can classify
solutions into 4 categories:

C1: ρ is increasing on (−∞,∞), u is decreasing on (−∞, s) and increasing on
(s,∞).
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C2: ρ is decreasing on (−∞,∞), u is increasing on (−∞, s) and decreasing
on (s,∞).

C3: ρ is increasing on (−∞, s) and decreasing on (s,∞), u is decreasing on
(−∞,∞).

C4: ρ is decreasing on (−∞, s) and increasing on (s,∞), u is increasing on
(−∞,∞).

Furthermore, we may assume that the monotonicities are all strict. If not, the
solution is constant on (−∞, s) or (s,∞) and the above estimates are trivial.

To establish those a priori estimates we accept the second hypothesis on the
pressure function:

p(ρ) → ∞ as ρ → ∞ and p(ρ) → 0 as ρ → 0. (H2)

Lemma 6 Let (ρ, u) be a solution of (Pµ
ε ). If (ρ, u) belongs to the classes

C1, C2 or C3, there exist positive constants M and δ which are independent of
µ and ε so that (ρ, u) satisfies (2.24) and (2.25). If (ρ, u) belongs to the class
of C4, there exists a constant M which is independent of µ and ε so that (ρ, u)
satisfies (2.24) and (2.25).

PROOF. We consider (2.24) first. If (ρ, u) is of class C1 or C2, we can take
δ = min{ρ−, ρ+} and M = max{ρ−, ρ+} for the estimations in (2.24). We can
also take δ = min{ρ−, ρ+} for the case of C3 and M = max{ρ−, ρ+} for the
case of C4. So (2.24) is completed, if we prove the existence of an upper bound
of ρ for class C3.

Let ξ > s. Then,

ρ(ξ) = ρµ
+ − ∫ ∞

ξ ρ′dζ ≤ ρµ
+ − 1

ξ−s

∫ ∞
ξ (ζ − s)ρ′dζ = ρµ

+ − 1
ξ−s

∫ ∞
ξ (ρu)′ − sρ′dζ

= ρµ
+ + 1

ξ−s
(ρξuξ − ρ+u+ + sρ+ − sρξ) ≤ max{ρ−, ρ+} + 1

ξ−s
ρ+(u− − u+).

So ρ(ξ) is bounded by a constant which is independent of µ and ε for any fixed
ξ 6= 0. Let τ ∈ [s + 1, s + 2] satisfy u′(τ) = u(s + 2) − u(s + 1) > u+ − u−. If
we integrate (2.1)2 from ξ > s to τ , we get

ρ( ξ)u2(ξ) + p(ρ(ξ)) − εu′(ξ) − ρ(τ)u2(τ) − p(ρ(τ)) + εu′(τ) = − ∫ τ
ξ ζ(ρu)′dζ

=
∫ τ
ξ ζ(ρ(s − u))′dζ − s

∫ τ
ξ ζρ′dζ =

[

ζρ(s − u)
]τ

ξ
− ∫ τ

ξ ρ(s − u)dζ − s
∫ τ
ξ (ρu)′dζ

= τ(ρ(τ)(s − u(τ)) − ξ(ρ(ξ)(s − u(ξ)) − ∫ τ
ξ ρ(s − u)dζ − sρ(τ)u(τ) + sρ(ξ)u(ξ)

≤ τ(ρ(τ)(s − u(τ)) − sρ(τ)u(τ) + sρ(ξ)u(ξ)

12



If we take the limit ξ → s, then

p(ρ(s)) ≤ max
ρ+<q<ρ(s+1)

{3qū2 + p(q)} + (u− − u+) =: A,

where ū = max{|u−|, |u+|}. A is independent of µ and ε and, from (H2),
p(ρ) → ∞ as ρ → ∞. Hence ρ(s) is bounded by a constant which depends
only on ρ±, u± and function p.

Now we consider (2.25). If the solution (ρ, u) is of class C3 or C4, we can take
M = max{u−, u+} for the estimation (2.25). The proof of (2.25) for solutions
of class C1 and C2 are similar. We prove (2.25) only for the case C2. Because
of the shape of the solution we know that |u(ξ)| ≤ max{|u±|, |u(s)|}. So it is
enough to prove that the singular point s = u(s) is bounded by a constant
M which is independent of µ and ε. If s ≤ 0, we take M = max{|u−|, |u+|}.
Assume that s > 0. Since (ξ − u)′ = 1 − u′ > 1 on (s,∞) and s − u(s) = 0,
there is a constant α ∈ (s, s + 1) such that α − u(α) = 1. Because of the
monotonicity of (ξ − u), we can say (ξ − u) < 1 on (s, α) and (ξ − u) > 1 on
(α,∞).

ρ+u(α) = ρ+u+ − ∫ ∞
α ρ+u′dζ ≤ ρ+u+ − ∫ ∞

α ρu′dζ ≤ ρ+u+ − ∫ ∞
α (ζ − u)ρu′dζ

≤ ρ+u+ − ∫ ∞
s (ζ − u)ρu′dζ = ρ+u+ − ∫ ∞

s p(ρ)′dζ +
∫ ∞
s εu′′dζ

= ρ+u+ − p(ρ+) + p(ρ(s)) ≤ ρ+u+ − p(ρ+) + p(ρ−).

(Note that the last inequality is from (H1).) Hence u(α) ≤ u+ − 1
ρ+
{p(ρ+) −

p(ρ−)}. Thus u(α) is bounded by a constant which is independent of ε and µ.

ρ+u(s) = ρ+u(α) − ∫ α
s ρ+u′dζ ≤ ρ+u(α) − ∫ α

s ρu′dζ

= ρ+u(α) − ∫ α
s (ζ − u)ρ′dζ ≤ ρ+u(α) − ∫ α

s ρ′dζ

= ρ+u(α) − ρ(α) + ρ(s) ≤ ρ+u(α) − {ρ+ − ρ−},

and u(s) ≤ u(α) + ρ−
ρ+

− 1. This means u(s) = s is bounded by a constant
which is independent of ε and µ. 2

The a priori estimates (2.24) and (2.25), established in Lemma 6, are all inde-
pendent of both of µ and ε. It is well known that if the boundary conditions
(ρ−, u−) and (ρ+, u+) are not close enough, the solution of the Riemann prob-
lem may have a vacuum state. Therefore the missing estimate, the lower bound
δ of (2.24) for the case C4, may depend on ε. We have been unable, under the
sole Hypotheses (H1) and (H2), to establish the bound: There exists δε > 0
independent of µ such that

0 < δε < ρ(ξ) (A)
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for any solution of (ρ, u) of Class C4. From here on, in order to simplify the
exposition, we admit (A) as an assumption and present the rest of the analysis
in Section 2 and 3 under Hypothesis (A). In Section 5 we validate (A) under
additional hypotheses on the pressure law p(ρ): for strictly hyperbolic systems
with convex laws (cf. Lemma 21), or for convex pressure laws under restrictions
on (ρ±, u±) that exclude vacuum (cf. Lemma ??).

Lemma 7 Under Hypothesis (A), there exist constants 0 ≤ a < 1 and b ≥ 0,
depending on ρ±, u± and δ and M in (2.24) and (2.25), such that (ρ, u) satisfies
(2.26).

PROOF. The proof of (2.26)1 and (2.26)2 are similar and we consider (2.26)1

only. Suppose u is increasing on (s,∞). Then we can take b = 0. Since u(ξ) <
ξ, u′(s) = 0 and u(ξ) → u+ < ∞ as ξ → ∞, there is a constant a ∈ (0, 1)
such that the line y = a(ξ − s) + s is tangent to the graph of u(ξ) and
u(ξ) ≤ a(ξ−s)+s on (s,∞). Now we need to show that the slope a is bounded
above by a constant which is less than 1 and depends only on ρ±, u±, δ and
M . Let ξ1 be the tangential point. If the tangential point ξ1 is far from the
fixed point s, for example, ξ1 − s > 2(u+ − s), then a < 1

2
. Now we assume

ξ1 − s ≤ 2(u+ − s). From (2.11) we get

{p′(ρ(ξ1)) − (u(ξ1) − ξ1)
2}ρ′(ξ1) = εu′′(ξ1). (2.28)

Since ρ′(ξ1) > 0 and u′′(ξ1) < 0,

ξ1 − u(ξ1) >
√

p′(ρ(ξ1)) ≥ θ,

and

a =
u(ξ1) − s

ξ1 − s
<

ξ1 − θ − s

ξ1 − s
≤ ξ1 − θ

ξ1

≤ 2(u+ − s) − θ

2(u+ − s)
.

So we get a ≤ max{1
2
, 2(u+−s)−θ

2(u+−s)
}.

Now suppose u is decreasing on (s,∞). Then we can take a = 0. Since u′(s) = 0
and u(ξ) ց u+ > −∞ as ξ → ∞, there exists a positive constant b such that
y = −b(ξ− s)+ s is tangent to the graph of y = u(ξ) and u(ξ) ≥ −b(ξ− s)+ s
on (s,∞). Now we need to show that the slope −b is bounded below by a
constant which depends only on ρ±, u±, δ and M . Let ξ1 be the tangential
point. Since |u(ξ1) − s| < |u+ − s|, it is enough to show that ξ1 − s > M0

for some constant M0 which depends only on ρ±, u±, δ and M . In that case
b ≤ |u+−s|

M0
.

Since u′′(ξ1) > 0 and ρ′(ξ1) < 0, (2.28) yields

√
a0 ≤

√

p′(ρ(ξ1)) ≤ (ξ1 − u(ξ1)).
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Multiplying by ρ(ξ1), we get

ρ(ξ1)θ ≤ ρ(ξ1)(ξ1 − u(ξ1)) =

ξ1
∫

s

ρ(ζ)dζ (2.29)

δθ ≤ M

ξ1
∫

s

dζ = M(ξ1 − s). (2.30)

Hence ξ1 − s ≥ δθ
M

. The proof is complete. 2

This Corollary is easily derived from Lemma 6 and the monotonicity of solu-
tions.

Corollary 8 Let {(ρε, uε)}ε>0 be a family of solutions to the boundary-value
problem (Pε) corresponding to fixed data (ρ±, u±). Then there exist constants
M and δ depending on the data such that

0 < δ ≤ ρε(ξ) ≤ M ; |uε(ξ)| ≤ M (2.31)

TV(−∞,∞)ρε ≤ M ; TV(−∞,∞)uε ≤ M, (2.32)

where δ may depend on ε only if the solution belongs to the category C4.

3 Existence of Solutions of (Pε)

To construct solutions of (Pε), we apply the Leray-Schauder degree theory
(Rabinowitz [6, Ch V]) to a deformation of maps. Degree theory has been
successful to establish connecting trajectories in problems of self-similar vis-
cous limits (Dafermos [1], Slemrod and Tzavaras [8] in parabolic problems
and Tzavaras [9], Slemrod [7] in hyperbolic-parabolic problems). In this work
we adapt the method in [9] capturing the interplay between hyperbolic and
parabolic effects in the system (2.1), but with significant modifications due to
the nature of our free-boundary problem.

Let C0(R) be the Banach space of bounded continuous functions with the
C0-norm, C1(R) the Banach space of the bounded continuously differentiable
functions with bounded derivatives equipped with the C1-norm, and let

X = {(P, V ) ∈ C0(R) × C1(R) : ‖(P, V )‖X < ∞}

be the Banach space equipped with the C0 × C1 norm:

‖(P, V )‖X = sup
−∞<ξ<∞

|P (ξ)| + sup
−∞<ξ<∞

|V (ξ)| + sup
−∞<ξ<∞

|V ′(ξ)|.
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For technical reasons we define two sets Y (whose structure is motivated by
the a priori estimates) and Ω where we will apply degree theory.

The set Y consists of all (P, V ) ∈ X which are bounded by

0 < δ̄ < P (ξ) < M̄, ξ ∈ R (3.1)

|V (ξ)| < M̄, ξ ∈ R (3.2)

and which satisfy the bounds

Ā < 1 − V ′(s) < B̄, (3.3)

Ā|ξ − s| < |ξ − V (ξ)| < B̄|ξ − s|, ξ 6= s (3.4)

for some s ∈ R. Here, δ̄, M̄ , Ā and B̄ are fixed constants which satisfy 0 <
δ̄ < δ, 0 < M < M̄ and 0 < Ā < A < 1 < B < B̄, where M, δ,A and B are
the constants in the estimates (2.24),(2.25) and (2.27). Note that the point
s in (3.3) and (3.4) can be different for each (P, V ) ∈ Y and δ̄ is the only
constant which may depend on ε. The geometric meaning of (3.4) is explained
by Figure 1. Note that s is a fixed point of V and that such fixed points are
bounded by (3.2), i.e., |s| < M̄ .

The boundary value problem (Pµ
ε ) is transformed to a fixed point problem as

follows: For a given (P, V ) ∈ Y , consider the linear problem

(V − ξ)ρ′ + Pu′ = 0

(V − ξ)Pu′ + p′(P )ρ′ = εu′′
−∞ < ξ < ∞ (3.5)

ρ(±∞) = ρµ
± := ρ− + µ(ρ± − ρ−)

u(±∞) = uµ
± := u− + µ(u± − u−).

(3.6)

This defines an operator F : [0, 1]×Y → X that carries (µ, (P, V )) ∈ [0, 1]×Y
to the solution of (3.5) and (3.6). From the a priori estimates of Section 2,
any solution (ρ, u) of (Pµ

ε ) belongs to Y and is a fixed point of the operator
F(µ, ·).

The Leray-Schauder degree theory will be applied on a bounded open subset
Ω of the Banach space X, which contains all possible solutions of (Pµ

ε ). The
subset Y ⊂ X defined by (3.1–4) contains all solutions of (Pµ

ε ) but is not
bounded in the C0 × C1 norm. Next, we define the appropriate set Ω.

Lemma 9 Let Y ⊂ X be given by (3.1–4). Then, for any K > 0, the set

Ω = {(P, V ) ∈ Y : |V ′(ξ)| < K}

is a bounded open subset of the Banach space X.

16



PROOF. Clearly Ω is bounded. To show that it is open, we fix (Po, Vo) ∈ Ω
and find a small positive number ν such that ‖(P, V )− (Po, Vo)‖X < ν implies
(P, V ) ∈ Ω. The inequalities (3.1) and (3.2) for (P, V ) are easy to verify, and
we just show (3.3) and (3.4).

Let so be the fixed point of Vo (i.e. Vo(so) = so). Since Vo is continuous and
bounded, there exist positive constants Ao and Bo such that

Ā|ξ − so| < Ao|ξ − so| < |ξ − Vo(ξ)| < Bo|ξ − so| < B̄|ξ − so|, ξ 6= so;

it also follows that Ao ≤ 1 − Vo
′(so) ≤ Bo. Define

νo := min{Ao − Ā, B̄ − Bo} < 1 .

and note that there exists a positive constant κ < 1 such that

Ā +
νo

2
< 1 − Vo

′(ξ) < B̄ − νo

2
, so − κ < ξ < so + κ. (3.7)

Choose

ν :=
1

2
νoκ

Ā

B̄
≤ 1

2
νoκ ≤ 1

2
νo

and suppose that ‖(Po, Vo)−(P, V )‖X < ν. Since V is bounded and continuous,
V has a fixed point. Let V (s) = s. Then,

ν ≥ |V (s) − Vo(s)| = |s − Vo(s)| ≥ Ā|s − so|

|s − so| ≤
ν

Ā
,

so that |s − so| ≤ κνo/2B̄ and, in particular, s ∈ [so − κ, so + κ].

Since |Vo
′(ξ) − V ′(ξ)| < νo/2, (3.7) implies that

Ā < 1 − V ′(ξ) < B̄ on (so − κ, so + κ),

and (3.3) is satisfied. Since V (s) = s, by integrating the above inequility over
(s, ξ), we obtain,

Ā|ξ − s| < |ξ − V (ξ)| < B̄|ξ − s|, ξ ∈ (so − κ, so + κ), ξ 6= s,

that (3.4) is satisfied on (so − κ, so + κ).

On the complementary intervals so + κ < ξ or ξ < so − κ, we have

|ξ − V (ξ)| ≤ |ξ − Vo(ξ)| + ν ≤ Bo|ξ − so| + ν

≤ B̄|ξ − s| − (B̄ − Bo)|ξ − s| + Bo|s − so| + ν.
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From the selections of the parameters

ν ≤ κνo/2B̄, |s − so| ≤ κνo/2B̄, νo ≤ B̄ − Bo, B̄ > 1

and since ξ takes values on the interval |ξ − s| > κ(1 − νo/2B̄), we get

−(B̄ − Bo)|ξ −s| + Bo|s − so| + v

≤ −κ(B̄ − Bo)(1 − νo/2B̄) + κνoBo/2B̄ + κνo/2B̄

≤ −κ(B̄ − Bo) + κνo(1 + B̄)/2B̄

≤ −κ(B̄ − Bo)(1 − (1 + B̄)/2B̄) ≤ 0.

So we have the upper bound of (3.4). The other inequality of (3.4) can be
shown similarly. So (P, V ) ∈ Ω and Ω is open. 2

3.1 Estimates of the Operator

In this section we check that the map F is well defined and establish uniform
estimates of (ρ, u) = F(µ, (P, V )) and their derivatives. The derived estimates
may depend on ρ±, u± and ε but are independent of the choice of (µ, (P, V )) ∈
[0, 1] × Y . Consider a mapping T which carries (P, V ) ∈ Y to a solution
T(P, V ) := (ρ, u) of (3.5) with boundary conditions

ρ(±∞) = ρ± − ρ− ; u(±∞) = u± − u−. (3.8)

It can be easily verified that (ρ−, u−) + µT(P, V ) is a solution of (3.5) and
(3.6), and hence F(µ, (P, V )) = (ρ−, u−) + µT(P, V ).

The bounds in (3.1) and Hypothesis (H1) imply the existence of positive con-
stants a0 and A0 which satisfy 0 < a0 < p′(P (ξ)) < A0 < ∞ for all ξ ∈ R and
depend on δ̄ and M̄ . From (3.5), we get

εu′′ +
{p′(P ) − (V − ξ)2}P

V − ξ
u′ = 0, V (ξ) 6= ξ. (3.9)

Since (3.9) has a unique singularity at the fixed point s of V , u′ is obtained
by

u′(ξ) =











c+ exp
{

− 1
ε

∫ ξ
α+

{(ζ−V )2−p′(P )}P
ζ−V

dζ
}

=: c+I+, s < ξ

c− exp
{

− 1
ε

∫ ξ
α−

{(ζ−V )2−p′(P )}P
ζ−V

dζ
}

=: c−I−, ξ < s
(3.10)
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for any α− < s < α+. In turn, ρ′ is obtained by (3.5)1

ρ′(ξ) =
P (ξ)

ξ − V
u′. (3.11)

Lemma 10 Let (P, V ) ∈ Y and V (s) = s. Then there exist positive constants
α, α′, β, β′ and Cε which depend only on a0, A0, Ā, B̄, δ̄ and M̄ (Cε may depend
on ε) and satisfy

1

Cε

|ξ − s|α′

ε ≤ I±(ξ) ≤ Cε|ξ − s|α
ε , |ξ − s| < 1, (3.12)

1

Cε

e−
β′

ε
(ξ−s)2 ≤ I±(ξ) ≤ Cεe

−β

ε
(ξ−s)2 , |ξ − s| > 1. (3.13)

PROOF. Let s < ξ < s + 1. Then

∫ s+1
ξ

{(ζ−V )2−p′(P )}P
ζ−V

dζ =
∫ s+1
ξ (ζ − V )Pdζ − ∫ s+1

ξ
p′(P )P
ζ−V

dζ

≤ M̄B̄
∫ 1
0 ζdζ − a0δ̄

B̄

∫ 1
ξ−s

1
ζ
dζ = A + α log |ξ − s|,

where α := a0δ̄
B̄

> 0 and A := M̄B̄
2

. Also

I+(ξ) = exp
{1

ε

s+1
∫

ξ

{(ζ − V )2 − p′(P )}P
ζ − V

dζ
}

≤ e
A
ε e

α
ε

log |ξ−s| = Cε|ξ − s|α
ε .

Let s + 1 < ξ, then

− ∫ ξ
s+1

{(ζ−V )2−p′(P )}P
ζ−V

dζ = − ∫ ξ
s+1(ζ − V )Pdζ +

∫ ξ
s+1

p′(P )P
ζ−V

dζ

≤ −δ̄Ā
∫ ξ−s
1 ζdζ + A0M̄

Ā

∫ ξ−s
1

1
ζ
dζ ≤ −β(ξ − s)2 + A,

where β = δ̄Ā
2

+ 1 and A is a positive constant which depends on β and A0M̄
Ā

.
Also

I+(ξ) = exp
{

− 1

ε

ξ
∫

s+1

{(ζ − V )2 − p′(P )}P
ζ − V

dζ
}

≤ e
A
ε e−

β

ε
(ξ−s)2 = Cεe

−β

ε
(ξ−s)2.

The rest follows by similar arguments. 2

By Lemma 10, u′ and ρ′ are integrable on (−∞,∞) and thus (ρ, u) can be
calculated by the formulas

ρ(ξ) =











(ρ+ − ρ−) − c+

∫ ∞
ξ

P (ζ)I+(ζ)
ζ−V (ζ)

dζ, s < ξ

c−
∫ ξ
−∞

P (ζ)I−(ζ)
ζ−V (ζ)

dζ, ξ < s
(3.14)
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u(ξ) =











(u+ − u−) − c+

∫ ∞
ξ I+(ζ)dζ, s < ξ

c−
∫ ξ
−∞ I−(ζ)dζ, ξ < s .

(3.15)

Expressing the continuity of (ρ, u) at ξ = s gives

c+

∫ ∞
s

P (ζ)I+(ζ)
ζ−V (ζ)

dζ + c−
∫ s
−∞

P (ζ)I−(ζ)
ζ−V (ζ)

dζ = ρ+ − ρ−

c+

∫ ∞
s I+(ζ)dζ + c−

∫ s
−∞ I−(ζ)dζ = u+ − u−.

(3.16)

The determinant ∆ of the linear system (3.16) is

∞
∫

s

P (ζ)I+(ζ)

ζ − V (ζ)
dζ

s
∫

−∞
I−(ζ)dζ −

s
∫

−∞

P (ζ)I−(ζ)

ζ − V (ζ)
dζ

∞
∫

s

I+(ζ)dζ > 0. (3.17)

So there exists a unique solution (c+, c−) to (3.16) and the operators T and F

are well defined.

We now estimate (ρ, u) = T(P, V ), defined by (3.14) and (3.15). Since our
objective in this section is to get uniform bounds which are independent of
the choice of (P, V ) ∈ Y , we consider a generic constant Kε which may depend
on a0, A0, Ā, B̄, δ̄, M̄ and ε but does not depend on (P, V ) ∈ Y .

Considering the lower bounds for I± in Lemma 10, the determinant ∆ of
the linear system (3.16) is bounded from below by a positive constant which
depends on a0, A0, Ā, B̄, δ̄ and M̄ . So we get

|c+| + |c−| < Kε. (3.18)

Now we estimate ρ, u and their derivatives to see the regularity properties of
the operator. Since u′, ρ′ are given by (3.10) and (3.11) and I± are bounded
by (3.12) and (3.13), we have

|u′(ξ)| < Kε|ξ − s|α
ε , |ξ − s| < 1, (3.19)

|u′(ξ)| < Kεe
−β

ε
(ξ−s)2 , |ξ − s| > 1, (3.20)

|ρ′(ξ)| =
|P (ξ)|

|ξ − V (ξ)| |u
′(ξ)| < Kε|ξ − s|α

ε
−1, |ξ − s| < 1, (3.21)

|ρ′(ξ)| =
|P (ξ)|

|ξ − V (ξ)| |u
′(ξ)| < Kεe

−β

ε
(ξ−s)2 , |ξ − s| > 1. (3.22)

We also have

u′′(ξ) =
1

ε

{p′(P ) − (ξ − V )2}P
ξ − V

c±I±, ξ 6= s, (3.23)
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and

|u′′(ξ)| ≤ 1

ε

( A0

(1 − a)|ξ − s|+(1+b)|ξ−s|
)

M̄c±I± ≤ Kε|ξ−s|α
ε
−1, |ξ−s| < 1,

(3.24)

|u′′(ξ)| ≤ 1

ε

( A0

(1 − a)|ξ − s|+(1+b)|ξ−s|
)

M̄c±I± ≤ Kεe
−β

ε
(ξ−s)2 , |ξ−s| > 1.

(3.25)
From these estimates we get equicontinuity of ρ, u and u′ on any closed set
which does not contain the singular point s. (3.19) and (3.20) imply

|u′(ξ)| < Kε, −∞ < ξ < ∞, (3.26)

and hence u is equicontinuous. From (3.12) and (3.13), we get

ξ
∫

s

I+(ζ)dζ < Kε(ξ − s)
α
ε
+1;

ξ
∫

s

PI+

|ζ − V |dζ < Kε(ξ − s)
α
ε , s < ξ < s + 1,

s
∫

ξ

I−(ζ)dζ < Kε(s − ξ)
α
ε
+1;

s
∫

ξ

PI−
|ζ − V |dζ < Kε(s − ξ)

α
ε , s − 1 < ξ < s,

ξ
∫

s+1

I+(ζ)dζ < Kεe
−β

ε
(ξ−s)2 ;

ξ
∫

s+1

PI+

|ζ − V |dζ < Kεe
−β

ε
(ξ−s)2 , s + 1 < ξ,

s−1
∫

ξ

I−(ζ)dζ < Kεe
−β

ε
(ξ−s)2 ;

s−1
∫

ξ

PI−
|ζ − V |dζ < Kεe

−β

ε
(ξ−s)2 , s + 1 < ξ.

These estimates imply the boundedness of ρ and u

|u(ξ)| < Kε; |ρ(ξ)| < Kε, −∞ < ξ < ∞, (3.27)

and establish estimates for ρ(ξ) and u(ξ) from (3.14) and (3.15);

|u(ξ) − u(s)| < Kε|ξ − s|α
ε
+1, |ξ − s| < 1, (3.28)

|u(ξ) − u(s)| < Kεe
−β

ε
(ξ−s)2 , |ξ − s| > 1, (3.29)

|ρ(ξ) − ρ(s)| < Kε|ξ − s|α
ε , |ξ − s| < 1, (3.30)

|ρ(ξ) − ρ(s)| < Kεe
−β

ε
(ξ−s)2 , |ξ − s| > 1. (3.31)

The estimates (3.26) and (3.27) imply that the image T(Y ) of Y under the
mapping T is bounded under the C0 × C1 norm.
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3.2 Existence

If (ρ, u) is a solution of (Pµ
ε ), then (ρ, u) is a fixed point under F(µ, ·). So

(ρ, u) is a image under the mapping F(µ, ·) and the previous estimate (3.26)
can be considered as an a priori estimate of solutions of (Pµ

ε ). Now we fix K
of Lemma 9 with K̄ := Kε + 1 and consider

Ω = {(P, V ) ∈ Y : |V ′(ξ)| < K̄}. (3.32)

Lemma 11 The mapping T : Ω̄ → X is a compact operator.

PROOF. First, we show that T(Ω̄) is precompact in X. Let (ρn, un) be a
sequence in T(Ω̄). Since u′

n is uniformly bounded by (3.26), un is equicontin-
uous. The equicontinuity of ρn follows from (3.21), (3.22) and (3.30) and the
one of u′

n from (3.19),(3.24) and (3.25).

For example we consider ρn. Let η > 0 be given. From (3.30) there exists
δ1 > 0 such that |ρn(ξ1) − ρn(ξ2)| < η for all ξ1, ξ2 ∈ I = [−δ1, δ1]. From
(3.21) and (3.22) ρ′

n is uniformly bounded on Ic = (−∞,−δ1) ∪ (δ1,∞) and
there exists δ2 > 0 such that |ρn(ξ1) − ρn(ξ2)| < η for all ξ1, ξ2 ∈ Ic with
|ξ1 − ξ2| < δ2. If we take δ = min(δ1, δ2), we see that |ρn(ξ1)− ρn(ξ2)| < 2η for
|ξ1 − ξ2| < δ. So ρn is equicontinuous.

From (2.25) and (2.26) ρn, un, u′
n are also uniformly bounded and the Ascoli-

Arzela theorem implies the existence of a subsequence, rename it ρn, un, which
converges uniformly on every compact set. By taking a subsequence again, we
can assume that the singular points sn converge to s.

Let ρ, u and u1 be the limit of ρn, un and un
′. We can easily verify that u′ = u1

and (ρ, u) ∈ X. Since the singular points sn are bounded by M̄ , we can choose
L > 0 which satisfies

|un
′(ξ)| < η, L < |ξ|

|un(ξ)| < η; |ρn(ξ)| < η, ξ < −L

|un(ξ) − (u+ − u−)| < η; |ρn(ξ) − (ρ+ − ρ−)| < η, L < ξ

from (3.20), (3.31) and (3.32). The limit (ρ, u) also satisfies these estimates.
From these estimates together with the fact that ρn, un, un

′ converge uniformly
on [−L,L], we can take N such that

‖(ρn, un)−(ρ, u)‖X = sup
−∞<ξ<∞

|ρn−ρ|+ sup
−∞<ξ<∞

|un−u|+ sup
−∞<ξ<∞

|un
′−u′| < 6η,

whenever n > N . So (ρn, un) → (ρ, u) in X, and T(Ω̄) is precompact.
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Now we show that the mapping T : Ω̄ → X is continuous. Let (Pn, Vn) ∈ Ω̄
and (Pn, Vn) → (P, V ) in X. Let (ρn, un) = T(Pn, Vn) and (ρ, u) = T(P, V ).
The sequence {(ρn, un)} has at least one limit point (ρo, uo). Let (ρnk

, unk
) be

a subsequence converges to (ρo, uo). Then,

ρnk
(ξ) =











(ρ+ − ρ−) − cnk
+

∫ ∞
ξ

Pnk
(ζ)I

nk
+ (ζ)

ζ−Vnk
(ζ)

dζ, snk
< ξ

cnk
−

∫ ξ
−∞

Pnk
(ζ)I

nk
−

(ζ)

ζ−Vnk
(ζ)

dζ, ξ < snk

(3.33)

unk
(ξ) =











(u+ − u−) − cnk
+

∫ ∞
ξ Ink

+ (ζ)dζ, snk
< ξ

cnk
−

∫ ξ
−∞ Ink

− (ζ)dζ, ξ < snk
,

(3.34)

where cnk
+ and cnk

− are solutions of (3.16) with Ink
± given by

Ink
± (ξ) = exp

{

− 1

ε

ξ
∫

±1

{(ζ − Vnk
)2 − p′(Pnk

)}Pnk

ζ − Vnk

dζ
}

.

Because of the bounds in (3.12) and (3.13) we can take the limit as k → ∞
inside the integrals in (3.33) and (3.34). Since (ρnk

, unk
) → (ρo, uo) in X, we

get
(ρo, uo) = T(P, V ) = (ρ, u).

This says that (ρn, un) = T(Pn, Vn) has exactly one limit point (ρ, u), i.e.
(ρn, un) → (ρ, u) in X. 2

We conclude with a theorem guaranteeing existence for solutions of (Pε) under
extra assumption (A). In Section 5 we justify (A) under additional assumptions
on the pressure function p(ρ) or on the Riemann data (ρ±, u±).

Theorem 12 Suppose a pressure function p(ρ) satisfies (H1), (H2). If solu-
tions (ρ, u) of (Pµ

ε ) satisfy the a priori lower bound (A), then the boundary
value problem (Pε) has a solution (ρ(ξ), u(ξ)) for any ε > 0.

PROOF. We define the map F : [0, 1] × Ω̄ → X by F(µ, P, V ) = (ρ−, u−) +
µT(P, V ). If (ρ, u) is a solution of (ρ, u) = (ρ−, u−)+µT(ρ, u) in Ω, then (ρ, u)
is a solution of (Pµ

ε ) with (ρ, u) ∈ Ω. We apply the Leray-Schauder degree
theory (Rabinowitz [6, Ch V]) to solve

(ρ, u) − µT(ρ, u) = (ρ−, u−) , µ ∈ [0, 1] . (3.35)

We have already shown that T : Ω̄ → X is compact. The map µT : [0, 1]×Ω̄ →
X is also compact, thus the Leray-Schauder degree of I − µT is well defined.
For any solution (ρ, u) of (3.35), 1

µ
{(ρ, u) − (ρ−, u−)} ∈ T(Ω̄). So u satisfies
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(3.26). Hence by Lemma 6 and 7 and the definition of Ω, any solution (ρ, u)
of (3.35) lies in the interior of Ω. Therefore

d(I − µT, Ω, (ρ−, u−)) = d(I, Ω, (ρ−, u−)) = 1 , µ ∈ [0, 1]

(3.35) admits at least one solution for each µ ∈ [0, 1]. 2

4 The Structure of the Solution of the Riemann Problem

In this section we consider a sequence (ρε, uε) of solutions of (Pε) obeying
the estimates (2.24), (2.25) and (2.26). Since the bounds M are independent
of ε, TV(−∞,∞)uε < 2M and TV(−∞,∞)ρε < 2M . On account of the Helly’s
theorem, there exists a subsequence, which we call (ρε, uε) again, such that
(ρε, uε) converges pointwise to a function (ρ, u) of bounded variation as ε → 0.
By taking further subsequences, if necessary, we assume that (ρε, uε) belongs
to one of the four categories in Section 2.3. Since the singular points sε of
(ρε, uε) are uniformly bounded, we may also assume that sε → s as ε → 0, for
some s. The limit ρ and u inherit the monotonicity properties of ρε and uε,
but the monotonicities are no longer strict.

4.1 Solution of the Riemann Problem

We construct solutions of (P) as limits of solutions (ρε, uε) of (Pε), and study
the structure of the emerging limit. First we consider the structure under the
condition of ρ > 0. In that case, we can assume that the lower bound δ for ρε

is independent of ε and the constants in (2.24)–(2.26) are all independent of
ε.

Theorem 13 Let (ρε, uε), ε > 0 be the solution of (Pε). Then there exists a
subsequence (ρεn

, uεn
), εn → 0 such that the sequence of singular points sεn

→ s
and (ρεn

, uεn
) converges pointwise to a weak solution (ρ, u) of (P). Further-

more, if ρ > 0, then there exist constants β− < α− < s < α+ < β+ such
that

(ρ(ξ), u(ξ)) =



























(ρ−, u−) , ξ < β−,

(ρ(s), u(s)) , α− < ξ < α+,

(ρ+, u+) , β+ < ξ.

(4.1)
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PROOF. We omit the sub-index of εn and simply use ε for the subsequence.
The first part of the theorem has been established already and we consider
the other parts. Integrate (2.1)2 on (sε, ξ) to get

εuε
′ = ρεuε

2 + p(ρε) − ξρεuε +

ξ
∫

sε

ρεuεdζ − p(ρε(sε)). (4.2)

Since ρε, uε and p(ρε) are bounded by a constant M ,

|uε
′(ξ)| ≤ M

ε
(|ξ| + 1), −∞ < ξ < ∞. (4.3)

If we multiply uε to (2.1)2 and integrate it on any bounded interval (a0, b0),
then integration by parts gives

ε

b0
∫

a0

(uε
′)2dζ ≤ M(|a0| + |b0| + 1) + εM(uε

′(b0) − uε
′(a0)). (4.4)

From (4.3), we have ε(uε
′(b0) − uε

′(a0)) ≤ M(|a0| + |b0| + 1). So

ε

b0
∫

a0

(uε
′)2dζ ≤ M(|a0| + |b0| + 1). (4.5)

Let ϕ be a test function with suppϕ ⊂ [a0, b0]. Then,

∣

∣

∣

∫ ∞
−∞ εuε

′′ϕdζ
∣

∣

∣ =
∣

∣

∣ε
∫ ∞
−∞ uε

′ϕ′dζ
∣

∣

∣ ≤ ε
(

∫ b0
a0

(uε
′)2dζ

)
1
2
(

∫ b0
a0

(ϕ′)2dζ
)

1
2

≤ ε
1
2 M(|a0| + |b0| + 1)

(

∫ b0
a0

(ϕ′)2dζ
)

1
2 .

(4.6)

Hence

lim
ε→0

ε

∞
∫

−∞
uε

′′ϕdζ = 0, (4.7)

and

∫ ∞
−∞ ρu(ζϕ)′dζ − ∫ ∞

−∞(ρu2 + p(ρ))ϕ′dζ

= limε→0

∫ ∞
−∞ ρεuε(ζϕ)′dζ − limε→0

∫ ∞
−∞(ρεuε

2 + p(ρε))ϕ
′dζ

= limε→0 ε
∫ ∞
−∞ uε

′′ϕdζ = 0.

That is (ρ, u) is a weak solution of (P).

Now we consider the structure of the limit solution under the condition ρ > 0.
In that case there exist constants δ > 0 and M > 0 such that

δ < ρ(ξ) < M, ξ ∈ R (4.8)
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for all small ε > 0. From (H1) there exist constants a0 > 0 and A0 > 0 such
that

a0 ≤ p′(ρ) ≤ A0, ξ ∈ R. (4.9)

So the constants β− < α− < s < α+ < β+ and α, β in Lemma 5 are indepen-
dent of ε. Taking the limit ε → 0 in Lemma 5, we obtain (4.1). 2

If (ρ, u) is a solution of (P), then it can be easily verified that (ρ(x, t), u(x, t)) =
(ρ(x

t
), u(x

t
)) is a weak solution of the Riemann problem (1.1) and (1.2). So the

solution of the Riemann problem has been established through the vanish-
ing viscosity process. Theorem 13 provides information on the structure of
solutions that do not have a vacuum state. We conclude this section with es-
tablishing the Rankine-Hugoniot jump conditions. Since (ρ, u) is of bounded
variation, it has right and left limits at each ξ ∈ R. Let S be the points of
jump discontinuity of either ρ or u.

Lemma 14 The solution (ρ, u) satisfies the Rankine-Hugoniot jump condition
at all ξ ∈ S:

ξ[ρ(ξ+) − ρ(ξ−)] = ρ(ξ+)u(ξ+) − ρ(ξ−)u(ξ−) (4.10)

ξ[ρ(ξ+)u(ξ+)−ρ(ξ−)u(ξ−)] = ρ(ξ+)u2(ξ+)+p(ρ(ξ+))−ρ(ξ−)u2(ξ−)−p(ρ(ξ−)).
(4.11)

PROOF. We integrate (2.5) over (ξ − δ, ξ + δ), along (ρε, uε), and take the
limit as ε → 0, to get

(ξ + δ − u(ξ + δ))ρ(ξ + δ) − (ξ − δ − u(ξ − δ))ρ(ξ − δ) =

ξ+δ
∫

ξ−δ

ρ(ζ)dζ. (4.12)

The limit of (4.12) as δ → 0 gives

ξ[ρ(ξ+) − ρ(ξ−)] = ρ(ξ+)u(ξ+) − ρ(ξ−)u(ξ−).

If we integrate of (2.6) over (ξ− δ, ξ + δ), along (ρε, uε), and perform the same
process, then we get the other equality. 2
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4.2 Structure of the Limit Solutions

In this section we study the structure of the limit (ρ, u) without the strict
positiveness of the density limit, i.e., ρ ≥ 0, but with the convexity hypothesis

p′′(ρ) ≥ 0 for ρ > 0. (H3)

Hypothesis (H3) includes both cases of genuine nonlinearity and linear degen-
eracy. Lemma 15 takes two important properties of solutions to (Pµ

ε ) under
Hypothesis (H3). From (2.11) we obtain

(p′(ρε) − (uε − ξ)2)ρε
′ = εuε

′′. (4.13)

Lemma 15 Let (ρε, uε) be a solution of (Pµ
ε ) and sε be the singular point.

Then (i) If uε is increasing on (sε,∞), then uε
′ ≤ 1 on (sε,∞). (ii) If uε is

increasing on (−∞, sε), then uε
′ ≤ 1 on (−∞, sε). (iii) If uε is decreasing on

(sε,∞) ,then there exists exactly one ξ ∈ (sε,∞) such that uε
′′(ξ) = 0. (iv) If

uε is decreasing on (−∞, sε), then there exists exactly one ξ ∈ (−∞, sε) such
that uε

′′(ξ) = 0.

PROOF. Let uε be increasing on (sε,∞) and suppose there exist ξ ∈ (sε,∞)
such that uε

′(ξ) > 1. Since uε
′(sε) = 0 and uε

′(ξ) → 0 as ξ → ∞, there exist
ξ1, ξ2 ∈ (sε,∞) such that uε

′(ξ1) = uε
′(ξ2) = 1, uε

′′(ξ1) > 0, uε
′′(ξ2) < 0 and

uε
′ > 1 on (ξ1, ξ2). In that case, (ξ − uε)

2 is decreasing on (ξ1, ξ2) and

p′(ρε(ξ1)) − (uε(ξ1) − ξ1)
2 = εuε

′′(ξ1)
ρ′(ξ1)

> 0,

p′(ρε(ξ2)) − (uε(ξ2) − ξ2)
2 = εuε

′′(ξ2)
ρ′(ξ2)

< 0.
(4.14)

Hence

p′(ρε(ξ2)) < (uε(ξ2) − ξ2)
2 < (uε(ξ1) − ξ1)

2 < p′(ρε(ξ1)). (4.15)

From (H3) p′ is increasing for ρ > 0. So ρε(ξ2) < ρε(ξ1) which contradicts the
fact that ρε is strictly increasing on (sε,∞) when uε is strictly increasing on
(sε,∞). A similar argument gives (ii).

Let uε be decreasing on (sε,∞). Since uε is decreasing on (sε,∞), ρε is de-
creasing on (sε,∞), too. Since uε

′(ξ) → 0 as ξ → ∞ and uε
′(sε) = 0, there

exists ξ1 ∈ (sε,∞) such that uε
′′(ξ1) = 0. Now suppose that there is ξ2 > ξ1

such that uε
′′(ξ2) = 0, too. If we put ξ1 and ξ2 into (4.13), we get

p′(ρε(ξ1)) − (uε(ξ1) − ξ1)
2 = 0,

p′(ρε(ξ2)) − (uε(ξ2) − ξ2)
2 = 0.

(4.16)
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So we have

p′(ρε(ξ1)) = (uε(ξ1) − ξ1)
2 < (uε(ξ2) − ξ2)

2 = p′(ρε(ξ2)). (4.17)

Since p′ is increasing, ρε(ξ1) ≤ ρε(ξ2). But ρε is an decreasing function. So
there exists exactly one point ξ ∈ (sε,∞) such that uε

′′(ξ) = 0. Property (iv)
is proved similarly. 2

Properties (i) and (ii) in Lemma 15 provide the structure of rarefaction waves
and (iii) and (iv) provide the structure of shock waves. Since (2.18) implies
the convergence of the double index sequence uε1(sε2) for viscous solutions uε

which belong to the category of C1, C2, C3, we have u(s) = s. For the case of
C4, the convergence is from (i) and (ii) of Lemma 15. So we get u(s) = s. In
the following two lemmas we study the continuity of the limit solution.

Lemma 16 Let a solution (ρ, u) of (P) be a limit of viscous solutions (ρε, uε)
of (Pε) and s be the limit of singular point sε. Then u(s) = s and ρ and u are
continuous at ξ = s.

PROOF. First, we suppose ρ(s) > 0. Then, from Theorem 13, ρ(ξ) and u(ξ)
are constant on a neighborhood of ξ = s. So ρ and u are continuous at ξ = s.

Now suppose ρ(s) = 0. Since ρ± are positive, this is possible only when (ρε, uε)
belongs to Category C4 in Section 2.3. So uε are increasing on (−∞,∞)
and |uε

′(ξ)| ≤ 1. We already know that {uε} is uniformly bounded. The
Ascoli-Arzela theorem implies the limit u is continuous on (−∞,∞). From
the Rankine-Hugoniot jump condition at ξ = s we have p(ρ(s+)) = p(ρ(s−)).
Then (H1) implies ρ(s+) = ρ(s−). 2

Lemma 16 implies that the limit of viscous solutions is continuous at a singular
point s = u(s) in both cases of shock or rarefaction waves. Now we consider
the continuity of the rarefaction waves on R.

Lemma 17 Let a solution (ρ, u) of (P ) be the limit of viscous solutions of
(Pε) and s be a singular point, i.e. u(s) = s. If uε(ξ) are increasing on (s,∞),
then the limit u and ρ are continuous on (s,∞). If uε(ξ) are increasing on
(−∞, s), then the limit u and ρ are continuous on (−∞, s).

PROOF. From Lemma 6, |uε(ξ)| is uniformly bounded by a constant M
which is independent of ε. We also know from Lemma 15 that |uε

′(ξ)| < 1.
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So {uε} is uniformly bounded and equicontinuous. So, from the Ascoli-Arzela
Theorem, u is continuous. From (2.11)1

|ρε
′| =

|ρεuε
′|

|uε − ξ| <
ρε

|uε − ξ| . (4.18)

Suppose ρ(s) > 0. Then, ρ is constant on an open set (s, s + δ) for some δ
which is independent of ε. The constant a in (2.26) is independent of ε. So
|ρε

′| is bounded above uniformly on the open interval (s+ c,∞) for any c > 0.
The Ascoli-Arzela theorem implies that |ρ| is continuous on (s+ c,∞) for any
c > 0, that is ρ is continuous on (s,∞).

Now we consider the case of ρ(s) = 0. This case is divided into two cases.

Case 1 : Suppose ρ(ξ) > 0 on (s,∞). It is enough to prove that ρ is continuous
on (s + δ,∞) for any δ > 0. Suppose u(s + δ) = s + δ. Then, since uε

′(ξ) ≤ 1
for all ε, u(ξ) = ξ on [s, s + δ]. From (2.11)1, we have ρ = 0 on [s, s + δ]. So
u(s+δ) < s+δ. Since |u(ξ)−ξ| is increasing, we have |u(ξ)−ξ| > s+δ−u(s+δ)
on (s + δ,∞). So, from (4.18), ρε

′ is uniformly bounded on (s + δ,∞). Hence
ρ is continuous on(s + δ,∞) by the Ascoli-Arzela theorem.

Case 2 : Suppose ρ(ξ) = 0 on (s, s + τ ] and ρ(ξ) > 0 on (s + τ,∞) for some
τ > 0. The proof of the continuity on (s + τ,∞) is the same as the Case 1.
We just prove the continuity at s + τ . The Rankine-Hugoniot jump condition
should be satisfied at s+ τ . If we write the condition with ρ((s+ τ)−) = 0 we
get

(s + τ)ρ((s + τ)+) = ρ((s + τ)+)u((s + τ)+)

(s + τ)ρ((s + τ)+)u((s + τ)+) = ρ((s + τ)+)u((s + τ)+)2 + p(ρ((s + τ)+)).

(4.19)
So we get u((s + τ)+) = s + τ and p(ρ((s + τ)+)) = 0. So ρ((s + τ)+) = 0
and ρ is continuous. 2

The previous lemmas provide regularity properties for the limit solution (ρ, u).
Let S be the set of points of discontinuity of (ρ, u) and C be the set of points
of continuity. If u is increasing, (ρ, u) is continuous from Lemma 17. If u is
decreasing, we can easily verify that there exists at most one point of discon-
tinuity in (−∞, s) and (s,∞) from Lemma 15 (iii),(iv).

Now we consider the relationship between the characteristic speeds of the
problem (P) and the weak derivative of the limit solution (ρ, u). Let

m = ρu, U =

(

ρ

m

)

, F (U) =

(

m
m2

ρ
+ p(ρ)

)

. (4.20)
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We know that the eigenvalues λ± of ∇F are given by

λ±(ρ, u) = u ±
√

p′(ρ). (4.21)

We use the notation λ±(ξ) = λ±(ρ(ξ), u(ξ)) and λε
±(ξ) = λ±(ρε(ξ), uε(ξ)).

Let dµ = (dµ1, dµ2) = dU
dξ

be the vector valued measure which corresponds to
the weak derivative of U , i.e. corresponding to the linear functional:

φ → −
∫

φ′(ξ)U(ξ)dξ, φ ∈ C1
c (R). (4.22)

We apply the Volpert product([11]) of ∇F (U) and dµ to the equation (P) to
get

(∇̂F (U) − ξI)dµ = 0 (4.23)

in the sense of measures, where the averaged superposition ∇̂F (U) of U by
∇F is given by

∇̂F (U)(ξ) =

1
∫

0

∇F (U(ξ−) + s(U(ξ+) − U(ξ−)))ds.

Let ξ ∈ C∩ suppµ. Since there is at most one point of discontinuity, ∇̂F (U) =
∇F (U) in a neighborhood of ξ. Suppose the determinant of (∇F (U) − ξI) is
not zero, for example det(∇F (U)−ξI) > 0. Then there exists a neighborhood
N of ξ such that det(∇F (U) − ζI) > δ > 0 for all ζ ∈ N . But from (4.23),
the measures det(∇F (U)−ζI)dµ1,2 = 0 on N , which contradicts the fact that
ξ ∈ suppµ. So ξ is an eigenvalue of ∇F (U(ξ)). We summarize these facts in a
lemma :

Lemma 18 Let a solution (ρ, u) of (P) be a limit of viscosity solutions (ρε, uε)
of (Pε) with a singular point s. Let dµ be the measure of (4.22). Then we have:
(i) If u is increasing, then (ρ, u) is continuous. If u is decreasing, then there
exists at most one point of discontinuity in (−∞, s) and (s,∞). (ii) If (ρ, u)
is continuous at ξ ∈ suppµ, ξ = λ+(ξ) on (s,∞) and ξ = λ−(ξ) on (−∞, s).

We conclude the section with a theorem which provides the structure of the
limit solution (ρ, u) of the viscosity solutions (ρε, uε) which obey the a priori
estimates (2.24)–(2.26).

Theorem 19 Let (ρ, u) be a solution of the Riemann problem (P) through
the method of self-similar zero-viscosity limits and s be the limit of singular
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points. (i) If u is increasing on (s,∞), then λ+(ξ) is continuous on (s,∞) and

λ+(ξ) =



























λ+(s) , s < ξ < λ+(s),

ξ , λ+(s) < ξ < λ+(ρ+, u+),

λ+(ρ+, u+) , λ+(ρ+, u+) < ξ.

(4.24)

(ii) If u is increasing on (−∞, s), then λ−(ξ) is continuous on (−∞, s) and

λ−(ξ) =



























λ−(s) , λ−(s) < ξ < s,

ξ , λ−(ρ−, u−) < ξ < λ−(s),

λ−(ρ−, u−) , ξ < λ−(ρ−, u−).

(4.25)

(iii) If u is decreasing on (s,∞), then λ+(ξ) has an unique discontinuity on
(s,∞) and

λ+(ξ) =











λ+(s) , s < ξ < ρ+u+

(ρ+−ρ(s))
,

λ+(ρ+, u+) , ρ+u+

(ρ+−ρ(s))
< ξ.

(4.26)

(iv) If u is decreasing on (−∞, s), then u has an unique discontinuity on
(−∞, s) and

λ−(ξ) =











λ−(s) , ρ−u−

(ρ−−ρ(s))
< ξ < s,

λ−(ρ−, u−) , ξ < ρ−u−

(ρ−−ρ(s))
.

(4.27)

PROOF. We always consider the eigenvalue λ− on the interval (−∞, s) and
λ+ on the other side (s,∞). If u is increasing, then u and ρ are continuous. So
they should be constant out of suppµ and λ± are continuous and increasing,
too. With these facts we can easily check that suppµ is a connected sub-
intervals of (−∞, s] or [s,∞). If not, λ± is discontinuous. So the structure of
λ± should follow (i) and (ii).

If u is decreasing, then λ± are also decreasing and there exists at most one
point of discontinuity on (−∞, s) and (s,∞). Since λ± = ξ on suppµ and λ±
are decreasing, suppµ should be the point of discontinuity and λ± be constant
before and after the discontinuity. We can find the point of the discontinuity
from the Rankine-Hugoniot jump condition, and λ± should follow (iii) and
(iv). 2

In summary, the limit of viscosity solutions has an intermediate state which is
connected to the boundary states by rarefaction waves ((i) and (ii)) or shocks
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((iii) and (iv)).

Corollary 20 If the system (1.1) is strictly hyperbolic, i.e. there exists c > 0
such that

p′(ρ) ≥ c2 > 0, ρ > 0, (4.28)

then the emerging limit does not have a vacuum state.

PROOF. Theorem 19 implies that λ+(ξ) is constant on the interval (s, λ+(s)) 6=
φ and (λ+(ρ+, u+),∞). Since

√

p′(ρ) is increasing on (s,∞), u(ξ) is also con-

stant on those intervals. From (1.6)1 ρ is also constant. Now we consider the
interval (λ+(s), λ+(ρ+, u+)). From (1.6)2 we get c2ρ′ ≤ (ξ − u)ρ, and hence
there exists a constant C such that

ρ′ ≤ Cρ.

So we have
ρ(ξ) ≤ ρ(λ+(s))eC(ξ−λ+(s)).

Suppose the solution has a vacuum state, i.e. ρ(s) = 0. Then, since ρ is con-
stant on (s, λ+(s)), ρ(λ+(s)) = 0, and hence ρ is zero on (λ+(s), λ+(ρ+, u+)).
So ρ(∞) = 0 which contradicts the boundary condition ρ(∞) = ρ+ > 0. 2

5 Convex pressure laws

In Lemma 6 the a priori estimates (2.24), (2.25) are established except for
the lower bound for ρ of the case C4. In this section we complete the a priori
estimates in two cases under the convex pressure laws (H3). First, we consider
the case of strictly hyperbolic systems.

The equation (2.22)1 can be written as a first order linear equation for ρ :

ρ′ +
u′

u − ξ
ρ = 0, ξ 6= s, (5.1)

where s is the singular point. Then the solution is given by

ρ(ξ) =











ρµ
+e

−
∫

∞

ξ

u′

ζ−u
dζ

, s < ξ

ρµ
−e

−
∫ ξ

−∞

u′

u−ζ
dζ

, ξ < s,
(5.2)

where ρµ
− = ρ− and ρµ

+ = ρ− + µ(ρ+ − ρ−) are the boundary conditions of
(2.23).
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Lemma 21 Let a solution (ρ, u) of (Pµ
ε ) belong to the class C4. If the system

(1.1) is strictly hyperbolic, i.e.

p′(ρ) ≥ c2 > 0, ρ > 0, (5.3)

then there exists a constant δ > 0 which satisfies (2.24) and is independent of
ε and µ.

PROOF. Since u is increasing on R, u′ ≤ 1 by Lemma 15 and ξ − u(ξ) is
also increasing. So there exists ξ1 > s such that 0 < ξ − u(ξ) ≤ c

2
on (s, ξ1)

and c
2
≤ ξ − u(ξ) on (ξ1,∞). Then

ρ(ξ1) = ρµ
+e

−
∫

∞

ξ1

u′

ζ−u
dζ ≥ ρµ

+e−
2
c
(u+−u−). (5.4)

Integrating (2.28) on (s, ξ1) we get

ε

ξ1
∫

s

u′′(ζ)dζ = εu′(ξ1) ≤ ε (5.5)

and
ξ1
∫

s

(p′(ρ) − (ζ − u)2)ρ′dζ ≥ 3c2

4

ξ1
∫

s

ρ′dζ ≥ 3c2

4
(ρ(ξ1) − ρ(s)). (5.6)

From the above estimations ρ is bounded below by

ρ(s) ≥ ρµ
+e−

2
c
(u+−u−) − 4ε

3c2
≥ min{ρ−, ρ+}e−

2
c
(u+−u−) − 4ε

3c2
. (5.7)

The positive lower bound for ρ is obtained for small ε. 2

We return to general convex pressure laws (H3) and consider the function

g(ρ) =
p(ρ)

ρ
, ρ > 0. (5.8)

Either the function g : R
+ → R

+ is invertible or the system is strictly hyper-
bolic. Consider the case when g has an inverse g−1.

Lemma 22 5.2 Let a solution (ρ, u) of (Pµ
ε ) belong to the class C4. If the

boundary conditions (ρ±, u±) satisfy

u+ − u− < max
m>0

(m ln(
ρµ
−

g−1(m2)
)) + max

m>0
(m ln(

ρµ
+

g−1(m2)
)), (5.9)

then there exists a constant δ > 0 which satisfies (2.24) and is independent of
ε and µ.

33



PROOF. Let s be the singular point of the solution (ρ, u). Since u is increas-
ing in R, we have u− < u(s) < u+. If (5.9) holds,

u+ − u(s) < max
m>0

(m ln(
ρµ

+

g−1(m2)
)) (5.10)

or

u(s) − u− < max
m>0

(m ln(
ρµ
−

g−1(m2)
)). (5.11)

We assume that (5.10) holds. Then there exists m > 0 such that u+ − u(s) <

m ln(
ρµ
+

g−1(m2)
) or equivalently

g(ρµ
+e−

(u+−u(s))

m ) − m2 > 0. (5.12)

Since ξ − u(ξ) is increasing, there exists ξ1 > s such that 0 < ξ − u(ξ) ≤ m
on (s, ξ1) and m ≤ ξ − u(ξ) on (ξ1,∞). Then

ρ(ξ1) = ρµ
+e

−
∫

∞

ξ1

u′

ζ−u
dζ ≥ ρµ

+e−
(u+−u(s))

m . (5.13)

We can easily check that g(ρ) is increasing for ρ > 0 and g(ρ(ξ1)) − m2 > 0.
Integrating (2.28) on (s, ξ1) we get

ε

ξ1
∫

s

u′′(ζ)dζ = εu′(ξ1) ≤ ε (5.14)

and

ξ1
∫

s

(p′(ρ) − (ζ − u)2)ρ′dξ ≥ (
p(ρ(ξ1)) − p(ρ(s))

ρ(ξ1) − ρ(s)
− m2)(ρ(ξ1) − ρ(s)). (5.15)

The convexity Hypothesis (H3) implies

p(ρ(ξ1)) − p(ρ(s))

ρ(ξ1) − ρ(s)
− m2 >

p(ρ(ξ1))

ρ(ξ1)
− m2 = g(ρ(ξ1)) − m2 > 0. (5.16)

So the density ρ is bounded below by

ρ(s) ≥ min{ρ+, ρ−}e−
1
m

(u+−u(s)) − ε

g(ξ1) − m2
> 0 (5.17)

for a sufficiently small ε > 0. The situation is similar if (5.11) holds. 2

One can check that, if

u+ − u− < max
m>0

(m ln(
ρ−

g−1(m2)
)) + max

m>0
(m ln(

ρ+

g−1(m2)
)) (5.18)
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holds and ρ− ≤ ρ+, then (5.9) holds. If ρ− > ρ+ and instead of using the
continuation of the boundary data (2.23) one uses

ρ(±∞) = ρµ
± := ρ+ + µ(ρ± − ρ+)

u(±∞) = uµ
± := u+ + µ(u± − u+)

(5.19)

then again (5.9) holds. Thus (5.18) provides a sufficient condition which pre-
vents vacuum from appearing. It is known that admissible solutions of (1.1)
and (1.2) do not have a vacuum state if and only if

u+ − u− <

ρ−
∫

0

√

p′(ρ)

ρ
dρ +

ρ+
∫

0

√

p′(ρ)

ρ
dρ. (5.20)

While (5.18) is a sufficient condition to avoid vacuum, simple numerical com-
putations show that it is not a necessary. In the case of γ-laws, p(ρ) = ργ for
γ > 1, the condition (5.18) corresponds to

u+ − u− < ln (
2

γ − 1
)
[

(
2

ρ−(γ − 1)
)

1−γ

2 + (
2

ρ+(γ − 1)
)

1−γ

2

]

. (5.21)

Now we summarize the previous lemmas and the results of Section 3 in the
theorem :

Theorem 23 Suppose p(ρ) satisfies (H1), (H2) and (H3). If the system (1.1)
is strictly hyperbolic or the initial data (ρ±, u±) satisfy (5.18), then the bound-
ary value problem (P) has a solution (ρ, u) which is a ε → 0 of solutions of
(Pε). The function (ρ, u) has the structure stated in Theorem 19 and does not
contain vacuum. (ρ(x/t), u(x/t)) is a solution of Riemann problem (1.1),(1.2).
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