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ABSTRACT. The main goal of this paper is to investigate the
mechanism of a conservation law that gives the N-wave like
asymptotics. It turns out that the positivity of the flux function
provides a certain invariance of solution which singles out the
right asymptotics among two parameter family ofN-waves. Two
kinds of long time asymptotic convergence orders in L1-norm to
this N-wave are proved using a potential comparison technique.
The first one is of the magnitude of the N-wave itself and the
second one is of order 1/t. We observe that these asymptotic
convergence orders are related to space and time translations of
potentials.

1. INTRODUCTION

This paper is devoted to the study of the long time asymptotics of bounded L1

solutions to a general scalar conservation law,

(1.1) ut + f(u)x = 0, u(x,0) = u0(x), x ∈ R, t > 0,

where the initial value u0 ∈ L1(R) ∩ L∞(R) and is compactly supported. We
assume that the flux is continuously differentiable and that

(1.2) f(0) = f ′(0) = 0.

One may get this normalization assumption without loss of generality after a suit-
able change of variables. In this paper we consider a non-convex flux that satisfies
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the following three hypotheses:

(H)


f(u) ≥ 0 for all u ∈ R,
f (u) has a finite number of inflection points,
f (u)/|u| → ∞ as |u| → ∞.

Notice that the first one implies that u = 0 is a global minimum of the flux.
This restriction to the flux is essential to obtain the invariance to be studied in
this paper. The other two are rather technical. The second one has been used to
construct fundamental solutions in [13,14]. If one considers a bounded solution,
the value of the flux at |u| near infinity does not make any difference and therefore
one may assume the third one without any loss of generality.

It is well known that N-waves are long time asymptotics of sign-changing
solutions to a conservation law with a convex flux. In this paper we will see that
the first hypothesis in (H) is the feature that makes a conservation law produce
this long time behavior. On the other hand the asymptotic convergence order
depends on the structure of initial value. One can not expect any L1 convergence
order with the generality of L1 initial value. In this paper we consider compactly
supported initial value such that

(1.3) −∞ <
∫
u0(x)dx =M <∞, spt(u0) ⊂ [−L, L], L ∈ R.

(We reserve the letter L > 0 to denote the support of the initial value.) Under
the positivity hypothesis in (H) the well-posedness of fundamental or source-type
solutions has been shown by Liu and Pierre [19]. One can easily find an explicit
formula of an N-wave for a convex case. For a non-convex case the structure
of a fundamental solution is more complicate and shows interesting dynamics.
Fundamental solutions for a non-convex case have been recently studied in [13,
14] under the assumptions in (H). N-waves are two-parameter families of special
solutions and we denote them by np,q(x, t). The N-waves satisfy np,q(x, t) ≥ 0
for x ≥ 0 and np,q(x, t) ≤ 0 for x ≤ 0. The two parameters p and q are given
by the relations

(1.4) p = − lim
t→0

∫ 0

−∞
np,q(y, t)dy, q = lim

t→0

∫∞
0
np,q(y, t)dy,

where the integrals are constant for all t > 0 due to the invariance property studied
in this paper.

In this paper we show two kinds of convergence orders of a general solution
u(x, t) to the N-wave np,q(x, t). First we show that if the initial value satisfies

(1.5) p = − inf
x

∫ x
−∞
u0(y)dy > 0, q =M + p > 0,



Invariance Property of a Conservation Law without Convexity 735

the solution u(x, t) converges to the N-wave np,q(x, t) as t → ∞ with the con-
vergence order

(1.6) ‖u(t)−np,q(t)‖1 = O(‖np,q(t)‖∞) as t →∞.

One may expect a higher convergence order by placing the N-wave at the
correct location. In fact under an extra condition on the initial value (2.8), we will
show that there exists c ∈ R such that

(1.7) ‖u(t)−ncp,q(t)‖1 = O(‖f(np,q(t))‖∞) as t →∞,

where ncp,q is a space translation ncp,q(x, t) = np,q(x − c, t). This convergence
order turns out to be order O(1/t) under a general assumption

(H1) lim inf
u→0

uf ′(u)
f(u)

= γ > 1.

Similar convergence orders in L1-norm can be found from the literature. For
example the Barenblatt-type solution is a source solution of a nonlinear diffusion
equation and decays with certain order depending on the dimension and the flux.
The L1 convergence of exactly this order can be found in various cases [3, 4, 9,
17, 22]. The convergence order O(1/t) has been obtained for radial solutions,
for solutions to fast diffusion equations [5, 15, 20, 23] and for solutions to its
linearized problems [7, 24].

For solutions to scalar conservation laws the L1 convergence order in (1.6) has
been observed for convex cases [2, 8, 11, 16, 25]. Convergence order of (1.7) are
found in [10,11]. For the case with a non-convex flux one can find well-posedness
and other estimates from [1, 6, 26]. However, the behavior of the solution is not
well understood. Recently N-waves for the non-convex case has been suggested
in [13] and the convergence orders in (1.6), (1.7) have been obtained for positive
solutions [12].

The rest of the paper consists as follos. In Section 2 several preliminaries
are given including the definition of entropy solutions, their potentials and the
potential comparison principle. The main results are given in Theorem 2.1 which
consists of three parts. In the succeeding three sections each of these three are
proved. In Section 3 the invariance property of conservation laws is shown under
hypotheses in (H). The convergence orders in (1.6) and (1.7) are obtained in
Sections 4 and 5, respectively.

2. PRELIMINARIES AND MAIN RESULTS

We consider a weak solution u(x, t) of (1.1) that satisfies

(2.1)
"

(uϕt + f(u)ϕx)dx dt +
∫
u0(x)ϕ(x,0)dx = 0



736 MIJOUNG KIM & YONG-JUNG KIM

for any test function ϕ ∈ C∞0 (R× [0,∞)). If a weak solution has a discontinuity
at x = ξ(t), then its propagation speed is given by the Rankine-Hugoniot jump
condition

(2.2) ξ′(t) = f(u`)− f(ur )
u` −ur

, u` = lim
y↑x
u(y, t), ur = lim

y↓x
u(y, t).

Since a weak solution is not unique, one should consider a weak solution with a
suitable admissibility condition to single out the physically right one. For a non-
convex flux the Oleinik entropy condition [21] is usually employed which accepts
the discontinuities that satisfy

(2.3)
`(u) ≤ f(u) for all u` < u < ur ,

`(u) ≥ f(u) for all ur < u < u`,

where `(u) is the linear function connecting two states ur and u`, i.e.,

`(u) = f(u`)+
f(u`)− f(ur )
u` −ur

(u−u`).

It is well known that the problem is well-posed under the entropy admissibility
condition in the class of bounded and measurable solutions (see [1]) and we con-
sider this unique solution only. It is also known that u(x, t) is a solution if and
only if it satisfies the conditions (2.2)–(2.3) at discontinuities and the conservation
law in smooth regions.

Our approach for the asymptotic convergence is based on a potential compar-
ison technique. We take the primitive of the solution,

(2.4) U(x, t) =
∫ x
−∞
u(y, t)dy, U0(x) =

∫ x
−∞
u0(y)dy,

as the potential of the solution u(x, t). The potential of the N-wave np,q(x, t) is
similarly given by

(2.5) Np,q(x, t) =
∫ x
−∞
np,q(y, t)dy.

Notice that N-waves are usually denoted using the capital letter N. However,
we denote an N-wave as np,q(x, t) and reserve the capital letter to denote its
potential. Now we are ready to state the main results of this paper:

Theorem 2.1. Let u(x, t) be the entropy solution of (1.1) with initial value
u0 ∈ L1(R) ∩ L∞(R) that satisfies (1.3) and (1.5). Let np,q(x, t) be the N-wave

satisfying (1.4) and −p =
∫ c
−∞
u0(y)dy for certain c ∈ R. If the smooth flux f

satisfies (1.2) and (H), then the following hold.



Invariance Property of a Conservation Law without Convexity 737

(i) For all t > 0,

(2.6) −p = inf
x

∫ x
−∞
u(y, t)dy =

∫ c
−∞
u(y, t)dy, q =

∫∞
c
u(y, t)dy.

(ii) If f(u) > 0 for all u , 0, then there exists T > 0 such that

(2.7) ‖u(t)−np,q(t)‖1 ≤ 8L‖np,q(t)‖∞ for t > T .

(iii) Furthermore, if the point c ∈ R satisfying −p =
∫ c
−∞
u0(y)dy is unique, p,

q > 0 and there exist constants α, ε > 0 satisfying

(2.8)
u0(x + c) ≥ np,q(x,α), 0 ≤ x ≤ ε,
u0(x + c) ≤ np,q(x,α), −ε ≤ x ≤ 0,

then there exist constants T , C > 0 such that, for ncp,q(x, t) = np,q(x− c, t),

(2.9) ‖u(t)−ncp,q(t)‖1 ≤ C‖f(np,q(t))‖∞ for t > T .

The proof of the theorem is based on a potential comparison technique, which
has been developed for nonlinear diffusion [15] and then applied to positive so-
lution of conservation laws. The proof of the following comparison principle is
given in [12] for positive solutions and it can be directly employed for sign chang-
ing cases. In the following we present the proof briefly.

Proposition 2.2 (Potential comparison). Let Ui(x, t), i = 1,2, be the poten-
tials of two integrable solutions ui, i = 1, 2, respectively. If U1(x,0) ≤ U2(x,0) for
all x ∈ R, then U1(x, t) ≤ U2(x, t) for all x ∈ R, t > 0.

Proof. Roughly speaking, after an integration of (1.1) on interval −∞ < y <
x, one obtains Ut + f(u) = 0 in a weak sense and, hence, E(x, t) = U1(x, t) −
U2(x, t) is a weak solution of

Et + a(x, t)Ex = 0, a(x, t) = (f (u1)− f(u2))/(u1 −u2),

where a(x, t) is understood as the derivative of the smooth flux if u1 = u2. Hence
the characteristic for E is same as the ones of solutions u1 and u2 if u1 = u2 and,
otherwise, it is between them. Since E is constant along the characteristics and
E(x,0) ≥ 0, we have E(x, t) ≥ 0, i.e., U1(x, t) ≤ U2(x, t) for all x ∈ R,
t > 0. ❐

3. INVARIANCE PROPERTY

Theorem 2.1(i) claims that the global minimum value p of the potential U(· , t)
and the minimum point x = c are two invariant quantities. Then the other
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quantity q is automatically invariant. For its proof we study how a local extremum
of a potential evolves. For the convex flux case this invariance has been shown
in [18] using the fact that admissible discontinuities are decreasing ones. The
solution may have increasing discontinuities and more complicate structures if the
flux is non-convex.

Proof of Theorem 2.1(i). Let t0 < t1 and x ∈ R be given. Then, since the wave
speed is finite and the support of the initial value is bounded, there exists x0 < x
such that u(y, s) = 0 for all y < x0 and s < t1. Let Ω := [x0, x] × [t0, t1]
and consider the characteristic function ϕ(y, t) = χ|Ω. Since ϕ is not smooth,
we may not directly apply ϕ to (2.1). However, using classical approximation
arguments with smooth functions,ϕε →ϕ, one may obtain

(3.1) U(x, t1)− U(x, t0) = −
∫ t1
t0
f(u(x, s))ds.

If u is continuous at a point (x, t), then one may easily obtain that

(3.2) Ux(x, t) = u(x, t), Ut(x, t) = −f(u(x, t)),

where the first one is from the definition of a potential and the second one is from
the Lebesgue differentiation theorem applied to (3.1). These two relations will be
frequently referred in the following.

Suppose that x = ξ(t) is the (global) minimum point of U(· , t) and u(· , t)
is continuous at that point. Then Ux(ξ, t) = u(ξ, t) = 0 and hence x = ξ(t) is a
characteristic line carrying the zero value, which implies that ξ′(t) = f ′(0) = 0.
Therefore, the minimum −p(t) = U(ξ(t), t) satisfies

−p′(t) = d
dt
U(ξ(t), t) = ξ′(t)u(ξ(t), t)− f(u(ξ(t), t)) = 0,

which implies that the minimum value p is constant. Notice that the invariance
of p does not depend on the assumptions (H) if the solution is continuous at the
minimum point of the potential. Furthermore, since ξ′(t) = 0 and p is constant,
we have U(c, t) = p for c = ξ(0) as long as u is continuous at the point.

Now we consider the case when u(· , t) has a discontinuity at the minimum
point x = ξ(t). Let u` and ur be the left and the right hand side limits, re-
spectively, and `(u) be their linear connection. Then, since U(· , t) has a mini-
mum at the point ξ(t), it is clear that u` ≤ 0 ≤ ur and u` , ur . (Note that,
if the flux is convex, this kind of discontinuities are not allowed.) Then since
u = 0 is a global minimum point of the flux, one can easily see that the entropy
condition (2.3) holds only if u` and ur are global minimum points and hence
f(u`,r ) = f ′(u`,r ) = 0. Therefore, we still have ξ′(t) = 0 by the Rankine-
Hugoniot condition (2.2) and hence p′(t) = 0.

Since the total mass M is preserved, the other quantity q in (1.5) is also con-
stant and the proof of Theorem 2.1(i) is complete. ❐
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The potential has local extrema at zero points of the solution and the previous
proof shows how they evolve. Let U(x, t) have a local extremum at x = ξ(t) and
u(x, t) be continuous at that point. Then, u(ξ(t), t) = 0, ξ′(t) = f ′(0) = 0,
and

d
dt
U(ξ(t), t) = ξ′(t)u(ξ(t), t)− f(u(ξ(t), t)) = 0.

Therefore, the local extremum point and the value are constant until it meets a
shock discontinuity. If a minimum meets a decreasing shock, then it is not a local
minimum anymore. In the proof it is basically shown that, if a minimum meets
an increasing discontinuity, it should be a harmless shock in the sense that the
onesided limits satisfy f(u`,r ) = f ′(u`,r ) = 0 and the minimum value and the
point are not changed. This kind of shock has been called a contact shock of type
II in [14]. If f(u) > 0 for all u , 0 (i.e., u = 0 is the only global minimum
point of the flux), then any local minimum of the potential does not meet a shock
discontinuity and hence one may say that the entropy condition basically prohibits
discontinuities at a local minimum point of the potential.

Suppose that u(x, t) has a shock at a local extremum point x = ξ(t) and
hence U(x, t) has a local maximum at that point. Let

u`(t) = lim
y↑ξ(t)

u(y, t), ur (t) = lim
y↓ξ(t)

u(y, t).

Then, the limits satisfy u` ≥ 0 ≥ ur and u` , ur . The wave speed of the
discontinuity is given by the Rankine-Hugoniot jump condition which is

ξ′(t) = f(u`)− f(ur )
u` −ur

.

Clearly, there exists ε > 0 small such that u(· , t) is continuous on (ξε(t), ξ(t)),
where ξε(t) = ξ(t)− ε. Then, ξ′ε(t) = ξ′(t) and

d
dt
U(ξε(t), t) = Ux(ξε(t), t)ξ′(t)+ Ut(ξε(t), t)

= u(ξε(t), t)ξ′(t)− f(u(ξε(t), t)).

Taking ε → 0 gives

d
dt
U(ξ(t), t) = u`

f(u`)− f(ur )
u` −ur

− f(u`) =
f(u`)ur − f(ur )u`

u` −ur
≤ 0.

Therefore, the local maximum of the potential decreases if it meets a shock. One
can easily check that (d/dt)U(ξ(t), t) = 0 if the left or the right limit is zero.
Suppose that the point (ξ(t), t) has a local minimum point of the potential and
u is discontinuous at the point (i.e., the entropy condition is not satisfied). Then,



740 MIJOUNG KIM & YONG-JUNG KIM

u` ≤ 0 ≤ ur and the local minimum decreases. Hence the entropy condition
allows the local minimums only to increase. If the flux is assumed f(u) ≤ 0,
then it will control the local maximum. Now we summarize the properties of the
critical values of a potential in the following proposition:

Proposition 3.1. Let u(x, t) be the solution to (1.1)–(1.3) and U(x, t) be its
potential function, where the flux f(u) satisfies (H). Then,

(i) If the potential U has a local minimum at (ξ(t), t), then u is continuous at
that point, ξ′(t) = 0 and (d/dt)U(ξ(t), t) = 0, i.e., the local minimum
point and the value are constant as long as they survive.

(ii) If the potential U has a local maximum at (ξ(t), t) and

u` := lim
y↑ξ(t)

u(y, t) , ur := lim
y↓ξ(t)

u(y, t),

then u` ≥ 0 ≥ ur and the maximum decreases as

(3.3)
d
dt
U(ξ(t), t) = f(u`)ur − f(ur )u`

u` −ur
≤ 0.

Remark 3.2. The non-negativity of the flux is essential for the invariance prop-
erty. If u = 0 is not a global minimum point of the flux f , then the solution may
have a discontinuity at the global minimum point of the potential U such that
u` < 0 < ur . Then the derivative in (3.3) can be strictly positive and hence
the global minimum of the potential may strictly increase. Therefore, one may
conclude that the non-negativity of the flux is the essential part for the invariance
of the global minimum point c and the value p of the potential in the case of one
dimensional hyperbolic conservation laws.

4. THE ASYMPTOTIC CONVERGENCE ORDER O(maxx |np,q(x, t)|)
Now we show Theorem 2.1(ii). Since the global minimum point of the potential
U is invariant, we may assume U has its minimum at the origin (c = 0), i.e.,

U(0, t) = −p, U(x, t) ≥ −p for all x ∈ R, t > 0

after an appropriate space shift. Then, as discussed earlier, u(x, t) is continuous
at x = 0 and u(0, t) = 0 for all t > 0. We assume this throughout this section.

Consider the convex envelope of the flux given by

(4.1) h(u) := sup
η∈A

η(u), A := {η : η′′(u) ≥ 0, η(u) ≤ f(u) for u ∈ R}.

Since there are only a finite number of inflection points, the convex envelope is
obtained by simply connecting the humps of the graph of the flux with tangent
lines. The convex envelope h(u) is continuously differentiable and is linear on
intervals on which f(u) , h(u).
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It is clear that h′ is not invertible. However, one may consider a function
g(x) given by an inverse relation

(4.2) g(0) = 0, h′(g(x)) = x, x ∈ R.

Then g(x) is piecewise continuous. Since f(0) = 0 and f(u) > 0 for all u , 0,
there exists a maximal open interval 0 ∈ (−a,b) such that

(4.3) f(u) = h(u) for − a < u < b, where a,b > 0.

Since the long time asymptotics of a solution depend on the structure of the flux
near the origin, the interval (−a,b) will play an important role asymptotically
and hence will appear several times in the rest of the paper.

Lemma 4.1 (No contact discontinuity for u small). Let ξ(s), s < t, be a
characteristic that emanates from a continuity point (x0, t) with u(x0, t) ∈ (−a,b).
Then, ξ(s) does not intersect a discontinuity curve, i.e., it is global.

Proof. Suppose that the backward characteristic ξ(s) intersects a discontinuity
(or shock) curve which connects the value u(x0, t) to ū at the intersection point.
If ū > u(x0, t), then the entropy condition implies that ur := u(x0, t) and
u` := ū are right and left hand side limits, respectively. The convexity of the flux
on (−a,b) also implies that

f ′(u(x0, t)) <
f(ur)− f(u`)
ur −u`

.

Clearly, it is not possible that a slower backward characteristic intersects a faster
shock curve from the right hand side. One can derive a similar contradiction
if ū < u(x0, t) and hence one can conclude that ξ(s) is global and does not
intersect a discontinuity for all 0 < s < t. ❐

Now define N-waves like functions as

(4.4) ñp,q(x, t) =


g
(
x
t

)
, −ap(t) < x < bq(t),

0, otherwise,

where ap(t), bq(t) > 0 satisfy

(4.5) p = −
∫ 0

−ap(t)
g
(
y
t

)
dy, q =

∫ bq(t)
0

g
(
y
t

)
dy.

One can easily check that ñp,q(x, t) is a weak solution of both of the con-
servation laws ut + f(u)x = 0 and ut + h(u)x = 0. However, ñp,q(x, t)
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does not satisfy the entropy condition (2.3) in general and hence it is not the
solution. On the other hand, under Hypothesis (H), it is shown in [13] that
np,q(x, t) = ñp,q(x, t) for 0 < t � 1 small or t � 1 large. In particular there
exists T > 0 such that

(4.6) np,q(x, t) = ñp,q(x, t) ∈ (−a,b) for all x ∈ R, t > T .

Since our interest in this paper is the long time behavior of the solution, we employ
the explicit formula for the N-wave like function ñp,q(x, t) for t > T .

Lemma 4.2. There exists T > 0 such that, for all t > T ,


u(x, t) ≤ np,q(x, t), 0 < x < bq(t),

u(x, t) ≥ 0, x > bq(t),
(4.7)


u(x, t) ≥ np,q(x, t), −ap(t) < x < 0,

u(x, t) ≤ 0, x < −ap(t),
(4.8)

‖np,q(t)−u(t)‖1 ≤ 4‖Np,q(t)−U(t)‖∞.(4.9)

Proof. We take T > 0 that satisfies (4.6). Since ap(t), bq(t) → ∞ as t → ∞,
we may assume ap(t), bq(t) > L by taking larger T > 0 if needed. Consider a
backward characteristic ξ(s), 0 < s < t, that emanates from a continuity point
(x0, t) with 0 < x0 < bq(t), t > T .

We first show u(x0, t) ≤ np,q(x0, t). Suppose that 0 ≤ u(x0, t) < b. Then
Lemma 4.1 implies that ξ(s) does not intersect a shock curve. Furthermore,
the invariance property implies that x = 0 is a characteristic line of u(x, t) and
hence ξ(0) ≥ 0. Consider another backward characteristic ξ̃(s), 0 < s < t, that
emanates from the same point (x0, t) related to the N-wave np,q(x, t). Then
ξ̃(s) is a line with speed f ′(np,q(x0, t)) and ξ̃(0) = 0 since the N-wave is a
rarefaction wave centered at x = 0. Therefore, f ′(u(x0, t)) ≤ f ′(np,q(x0, t)).
Since f is convex on (−a,b), we have u(x0, t) ≤ np,q(x0, t).

Suppose that u(x0, t) ≥ b. Then since u(x, t) is continuous at x = 0 and
u(0, t) = 0, we have β := inf{0 < x < bq(t) : u(x, t) ≥ b} ∈ (0, bq(t)). Let ur
and u` be the right and the left hand side limits of u(x, t) at x = β, respectively.
Thenu` ≤ np,q(β, t) < b ≤ ur , which is a discontinuity that violates the entropy
condition. Hence u(x0, t) ≤ b and we obtained u(x0, t) ≤ np,q(x0, t) for
0 < x < bq(t). Since the characteristics for negative values have negative speed
and bq(t) > L we have u(x, t) ≥ 0 for x > bq(t), which completes (4.7).
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One may similarly obtain (4.8) and we show (4.9) in the following. The
relations in (4.7) and (4.8) imply that

‖u(t)−np,q(t)‖1 = −
∫ −ap
−∞

u(x, t)dx +
∫ 0

−ap

(
u(x, t)−np,q(x, t)

)
dx

+
∫ bq

0

(
np,q(x, t)−u(x, t)

)
dx +

∫∞
bq
u(x, t)dx.

Since U(0, t) = Np,q(0, t) = p, one can easily see that

‖u(t)−np,q(t)‖1 = −2
∫ −ap
−∞

u(x, t)dx + 2
∫∞
bq
u(x, t)dx.

Since −
∫ −ap
−∞

u(x, t)dx,
∫ bq
∞
u(x, t)dx ≤ ‖U(t) − Np,q(t)‖∞, the inequality in

(4.9) is now clear. ❐

Lemma 4.3 (Trapped between space translations). There exists T > 0 such
that, for all x ∈ R and t > T ,

(4.10) Np,0(x+L, t)+N0,q(x−L, t) ≤ U(x, t) ≤ Np,q(x, t).

Proof. One can easily check that

Np,0(x + L,0)+N0,q(x − L,0) ≤ U(x,0),

and hence the comparison principle gives the first inequality in (4.10). Now let

p̄ = max
x<0

U(x,0), q̄ = max
x>0

U(x,0).

Then, since U(x,0) → 0 as x → −∞ and U(x,0)→ M as x →∞, we clearly have
p̄ ≥ 0 and q̄ ≥M. Consider a summation of three N-waves

n0,p̄(x + L, t)+np̄+p,q̄+p(x, t)+nq̄−M,0(x − L, t).

Then the N-waves have disjoint supports for t > 0 small, say 0 < t < t0. Let
n(x, t) be a solution with this summation of N-waves as its initial value, and let
N(x, t) be its potential. Then clearly, U(x,0) ≤ N(x,0) and hence the potential
comparison principle implies that U(x, t) ≤ N(x, t) for all t > 0. Therefore, the
second inequality in (4.10) is completed if it is shown that n(x, t) = np,q(x, t)
for all t > T , where T > 0 is the one in Lemma 4.2 with n(x, t) in the place of
u(x, t).

Suppose that there exists x0 > bq(t) such that n(x0, t) > 0 and t > T .
Then, since n(x0, t) ∈ (−a,b), the backward characteristic ξ(s), 0 < s < t,
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that emanates from the point (x0, t) does not intersect a shock curve (Lemma
4.1) and ξ(0) ≥ 0. Since nq̄−M,0(x − L, t) is negative and np̄+p,q̄+p(x, t) has
rarefaction waves centered at the origin, we have ξ(0) = 0. Therefore, for any
characteristic ξ̄(s) that emanates from a point (x, t) with 0 < x < bq(t), we have
ξ̄(0) = 0 and hence comparison of characteristic speed gives n(x, t) = np,q(x, t)
for all 0 < x < bq(t). Therefore limx→∞N(x, t) > limx→∞Np,q(x, t) = M,
which is a contradiction. Therefore, n(x, t) = 0 for all x > bq(t) and hence
n(x, t) = np,q(x, t) for all x > 0. One can show the equality for x < 0 similarly
and obtain N(x, t) = Np,q(x, t) for all x ∈ R and t > T . ❐

Notice that the inequality (4.9) transfers the convergence order between two po-
tentials to the one between their derivatives. This is one of the essential steps that
make the potential comparison technique work. Now we show the second part of
Theorem 2.1 as a corollary of previous lemmas.

Proof of Theorem 2.1(ii). Let t > T . Then, Lemma 4.3 implies that

|Np,q(x, t)−U(x, t)| ≤ |Np,q(x, t)−Np,0(x+L, t)−N0,q(x−L, t)|

=



∣∣∣∣∫ x+L
x

np,0(y, t)dy
∣∣∣∣, x < 0,∣∣∣∣∫ x

x−L
n0,q(y, t)dy

∣∣∣∣, x > 0.

Therefore,

‖Np,q(t)− U(t)‖∞ ≤ Lmax
x
(np,q(x, t)), t > T ,

and (4.9) in Lemma 4.2 implies that

‖np,q(t)−u(t)‖1 ≤ 4Lmax
x
(np,q(x, t)), t > T .

Remember that we are considering the problem assuming the global minimum
point of U(x,0) is c = 0 after a space translation. Hence, this estimate should be
understood as

‖ncp,q(t)−u(t)‖1 ≤ 4Lmax
x
(np,q(x, t)), t > T .

One can easily check using the previous arguments that

‖np,q(t)−ncp,q(t)‖1 ≤ 4|c|max
x
(np,q(x, t)).

Then the triangle inequality in the L1 norm gives

‖np,q(t)−u(t)‖1 ≤ 4(L+ |c|)max
x
(np,q(x, t)), t > T .

Therefore, since |c| < L, the proof of Theorem 2.1(ii) is complete. ❐
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5. THE ASYMPTOTIC CONVERGENCE ORDER 1/t

Now we show Theorem 2.1(iii). Remember that we assume U has its minimum
at the origin after an appropriate space shift (i.e., c = 0). Furthermore, since the
minimum point is unique, we may set

U(0, t) = −p, U(x, t) > −p for all x , 0, t > 0.

Lemma 5.1 (Trapped between time translations). Let u be the solution of
(1.1), np,q be the N-wave satisfying (1.4), and U , Np,q be their potentials, respec-
tively. If the flux f satisfies (H) and the initial value u(x,0) satisfies the conditions
in (2.8) (with c = 0), then there exist T , T1 > 0 such that, for all t ≥ T ,

(5.1) Np,q(x, T1 + t) ≤ U(x, t) ≤ Np,q(x, t).
Proof. The second inequality in (5.1) has been shown in Lemma 4.3 and we

show the first one in the following. Due to the invariance property in Theorem
2.1(i), U(0, t)+p = Np,q(0, t)+p = 0 for all t > 0. Therefore, we may split the
domain for x > 0 and x < 0 and show the inequality on each domains separately.

One can clearly see that

p +Np,q(L, t) =
∫ L

0
np,q(x, t)dx → 0 as t →∞.

Therefore, there exists T1 > α such that p + Np,q(L, T1) ≤ p + U(ε,0). Since
U(x,0) has a unique minimum point at x = 0, we may assume that U(x,0) ≥
U(ε,0) for all x > ε by taking smaller ε > 0 if needed. Therefore, Np,q(x, T1) ≤
U(x,0) for all 0 < x < L. Furthermore, since p + U(x,0) = q for all x ≥
L and p + Np,q(x, T1) ≤ q for all x ∈ R, we obtain Np,q(x, T1) ≤ U(x,0)
for all x > 0. For x < 0 we may similarly obtain the estimate and obtain the
initial comparison Np,q(x, T1) ≤ U(x,0). Therefore, the comparison principle
completes that Np,q(x, T1 + t) ≤ U(x, t) for all x ∈ R, t > T , which is the first
inequality of the lemma. ❐

Theorem 2.1(iii) is obtained as a corollary of Lemma 5.1.

Proof of Theorem 2.1(iii). Using the comparison inequality (5.1) and the evo-
lution equation for potentials (3.1), we obtain

|U(x, t)−Np,q(x, t)| ≤ |Np,q(x, T1 + t)−Np,q(x, t)|

=
∫ t+T1

t
f (np,q(x, s))ds ≤ T1‖f(np,q(t))‖∞.

Since the right hand side is independent of x ∈ R, the estimate is uniform. This
uniform estimate is naturally transferred to the L1 estimate of the difference be-
tween solutions using (4.9), i.e.,

(5.2) ‖u(x + c, t)−np,q(x, t)‖1 ≤ 4T1‖f(np,q(t))‖∞.
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Therefore, the proof of Theorem 2.1(iii) is completed with C = 4T1. ❐

In Lemma 5.1 the potential U(x, t) has been sandwiched between Np,q(x, t) and
its time delay Np,q(x, T1 + t) with T1 ≥ α. Basically we may take T1 = α after
taking larger T > 0 if needed. In what follows we give a brief sketch of it.

First we may assume

max
x
np,q(x, T) ≤ max

0<x<ε
np,q(x,α)

by taking larger T > 0 if needed. Consider a backward characteristic ξ(s),
0 < s < t, related to the N-wave np,q(x, t + α) that emanates from a conti-
nuity point (x0, t) with 0 < x0 < bq(t) and t > T . As discussed in the proof of
Lemma 4.3, it does not meet a discontinuity all the way to s = 0 and hence it is a
straight line with speed f ′(np,q(x0, t+α)). Similarly consider another backward
characteristic ξ̃(s),0 < s < t, that emanates from the same point (x0, t) related
to the solution u(x, t). Then ξ̃(s) is also a line with speed f ′(u(x0, t)). By
taking larger T > 0 if needed we may expect that 0 ≤ ξ̃(0) ≤ ε if u(x0, t) , 0.

Now we show the order between ξ(0) and ξ̃(0). Suppose that ξ(0) < ξ̃(0).
Then the speed of the characteristic lines should be ordered by f ′(u(x0, t)) <
f ′(np,q(x0, t+α)). Since f is convex near u = 0 (or u ∈ (−a,b)) and solutions
are constant along the characteristics, we have u(ξ̃(0),0) < np,q(ξ(0),α). Since
np,q(x,α) is an increasing function on the interval (−a,b), we have

u(ξ̃(0),0) < np,q(ξ(0),α) < np,q(ξ̃(0),α)

which contradicts the initial condition (2.8). Therefore we have ξ(0) ≥ ξ̃(0) and
hence u(x0, t) > np,q(x0, t) if u(x0, t) , 0. Therefore,∫ x

0
u(y, t)dy ≥

∫ x
0
np,q(y, t +α)dy.

One may obtain a similar estimate for x < 0 and may complete the comparison

Np,q(x, t +α) ≤ U(x, t).

Therefore, we may take T1 = α which is reasonable in the sense that the α mea-
sures the age of the initial value and hence it should control the convergence speed.

In the following we compute the order of the supremum norm ‖f(np,q(t))‖∞
for t large to obtain an algebraic convergence order, which turns out to be the or-
der 1/t. For that purpose we take a hypothesis

(H1) lim inf
u→0

uf ′(u)
f(u)

= γ > 1.
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Corollary 5.2 (Convergence order O(1/t)). If the flux function f satisfies
(H1), then

(5.3) lim
t→∞

t‖u(x, t)−np,q(x, t)‖1 ≤ 4T1 max(p, q)/(γ − 1).

Proof. Since |np,q(· , t)| has its supremum at x = −ap(t) or x = bq(t) for
t large, we only need to check the order of |f(np,q(· , t))| at these two points
to estimate ‖f(np,q(t))‖∞. Let ur = g(bq(t)/t) and hence f ′(ur ) = bq(t)/t.
One can easily check that g(x/t) and tf ′(x) satisfy the inverse relation for any
fixed t. Therefore,∫ bq(t)

0
g
(
x
t

)
dx +

∫ ur
0
tf ′(x)dx = urbq(t).

Using these relations one can easily see that

q =
∫ bq(t)

0
g
(
x
t

)
dx = urbq(t)−

∫ ur
0
tf ′(x)dx(5.4)

= t(urf ′(ur )− f(ur)) = t
(
urf ′(ur )
f (ur)

− 1

)
f(ur ).

This equality shows that urf ′(ur )/f (ur ) > 1. Therefore, the flux that satisfies
the assumptions in (H) satisfies lim infu→0(uf ′(u)/f(u)) =: γ ≥ 1. Under the
extra hypothesis (H1), one obtains from (5.4) that

lim
t→∞

tf (ur) ≤ q
γ − 1

.

We may similarly estimate that

lim
t→∞

tf (u`) ≤
p

γ − 1
for u` = g(−ap(t)/t)

and obtain
lim
t→∞

t‖f(np,q(t))‖∞ ≤ max(p, q)
γ − 1

.

Therefore, the estimate (5.2) gives the convergence order O(1/t) in (5.3). ❐

Even if it is natural to ask whether or not the assumptions in (H) imply (5.3), we
do not have a proof nor a counter example. However, there are many examples
that satisfy (5.3). First, the power law f(u) = |u|γ , γ > 1, is a typical example.
Suppose that f is C2 and f ′′(0) , 0. Then, using l’Hôpital’s rule, one obtains

lim
u→0

uf ′(u)
f(u)

= 1+ lim
u→0

u
f ′(u)

f ′′(u) = 2.
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Suppose f is C2 and f ′′(0) = 0. Then, one can easily see that f ′(u)/u < f ′′(u)
for |u| small, i.e., 1 < uf ′′(u)/f ′(u). Therefore, if the flux is C2 and f ′′(0) = 0,
then one has

lim inf
u→0

uf ′(u)
f(u)

≥ 2.

If f(u) = exp(−1/|u|) for |u| < 1, then one can easily check thatuf ′(u)/f(u)→
∞ as u → 0. This example indicates that, if the flux f is very flat near the origin,
the ratio uf ′(u)/f(u) may diverge. However, the hypothesis (H1) is satisfied
and we still have the convergence order O(1/t).
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[5] J.A. CARRILLO and J.L. VÁZQUEZ, Fine asymptotics for fast diffusion equations, Comm. Par-
tial Differential Equations 28 (2003), 1023–1056, http://dx.doi.org/10.1081/PDE-120021185.
MR 1986060 (2004a:35118)

[6] C.M. DAFERMOS, Regularity and large time behaviour of solutions of a conservation law without
convexity, Proc. Roy. Soc. Edinburgh Sect. A 99 (1985), 201–239. MR 785530 (86j:35107)

[7] J. DENZLER and R.J. MCCANN, Fast diffusion to self-similarity: complete spectrum, long-
time asymptotics, and numerology, Arch. Ration. Mech. Anal. 175 (2005), 301–342,
http://dx.doi.org/10.1007/s00205-004-0336-3. MR 2126633 (2005k:35214)

[8] R.J. DIPERNA, Decay and asymptotic behavior of solutions to nonlinear hyperbolic systems of conser-
vation laws, Indiana Univ. Math. J. 24 (1975), 1047–1071,
http://dx.doi.org/10.1512/iumj.1975.24.24088. MR 0410110 (53 #13860)

[9] J. DOLBEAULT and M. DEL PINO, Best constants for Gagliardo-Nirenberg inequalities and ap-
plications to nonlinear diffusions, J. Math. Pures Appl. (9) 81 (2002), 847–875. MR 1940370
(2003h:35051) (English, with English and French summaries)

[10] J. DOLBEAULT and M. ESCOBEDO, L1 and L∞ intermediate asymptotics for scalar conservation
laws, Asymptot. Anal. 41 (2005), 189–213. MR 2127996 (2006i:35233)

http://dx.doi.org/10.2307/1995581
http://dx.doi.org/10.1016/j.jde.2006.07.017
http://dx.doi.org/10.1007/s006050170032
http://dx.doi.org/10.1512/iumj.2000.49.1756
http://dx.doi.org/10.1081/PDE-120021185
http://dx.doi.org/10.1007/s00205-004-0336-3
http://dx.doi.org/10.1512/iumj.1975.24.24088


Invariance Property of a Conservation Law without Convexity 749

[11] Y.-J. KIM, Asymptotic behavior of solutions to scalar conservation laws and optimal convergence orders
to N-waves, J. Differential Equations 192 (2003), 202–224,
http://dx.doi.org/10.1016/S0022-0396(03)00058-5. MR 1987091 (2004e:35147)

[12] , Potential comparison and asymptotics in scalar conservation laws without convexity, J.
Differential Equations 244 (2008), 40–51, http://dx.doi.org/10.1016/j.jde.2006.08.013. MR
2373653 (2009d:35220)

[13] Y.-J. KIM and Y. HA, Fundamental solutions of a conservation law without convexity,
http://amath.kaist.ac.kr/papers/Kim/16.pdf.

[14] Y.-J. KIM and Y. LEE, Structure of fundamental solutions of a conservation law without convexity,
http://amath.kaist.ac.kr/papers/Kim/17.pdf.

[15] Y.-J. KIM and R.J. MCCANN, Potential theory and optimal convergence rates in fast nonlinear
diffusion, J. Math. Pures Appl. (9) 86 (2006), 42–67. MR 2246356 (2007f:35163) (English,
with English and French summaries)

[16] P.D. LAX, Hyperbolic systems of conservation laws. II , Comm. Pure Appl. Math. 10 (1957), 537–
566, http://dx.doi.org/10.1002/cpa.3160100406. MR 0093653 (20 #176)

[17] C. LEDERMAN and P.A. MARKOWICH, On fast-diffusion equations with infinite equilibrium
entropy and finite equilibrium mass, Comm. Partial Differential Equations 28 (2003), 301–332,
http://dx.doi.org/10.1081/PDE-120019384. MR 1974458 (2004a:35125)

[18] T.-P. LIU, Invariants and asymptotic behavior of solutions of a conservation law, Proc. Amer. Math.
Soc. 71 (1978), 227–231, http://dx.doi.org/10.2307/2042838. MR 500495 (81c:35085)

[19] T.-P. LIU and M. PIERRE, Source-solutions and asymptotic behavior in conservation laws, J. Differ-
ential Equations 51 (1984), 419–441, http://dx.doi.org/10.1016/0022-0396(84)90096-2. MR
735207 (85i:35094)
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