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Abstract. The signed fundamental solution of a scalar conservation law is constructed

explicitly or implicitly when its flux is nonconvex. The flux is assumed to have finite

number of inflection points. The fundamental solution constructed consists of a series

of rarefaction waves, contact discontinuities and a shock. These analytically constructed

fundamental solutions are also compared with numerical approximations, which possess

the structure of the analytically constructed fundamental solution.
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1. Introduction. The single purpose of this paper is to construct the signed funda-

mental solution of a scalar conservation law,

∂tu+ ∂xf(u) = 0, u(x, 0) = u0(x) ≥ 0, x ∈ R, t > 0, (1.1)

explicitly or implicitly. A solution of (1.1) is called the fundamental solution of mass

m > 0, denoted by ρm(x, t) in this paper, if the initial value is the Dirac mass of the size

given at the origin, i.e., if

lim
t→0

ρm(x, t) = mδ(x). (1.2)

We consider a nonconvex flux f under two hypotheses:

f has a finite number of inflection points,

and
f(u)
u

→ ∞ as u → ∞.

(1.3)

We assume a smooth flux f ∈ C1 and, without loss,

f(0) = f ′(0) = 0. (1.4)

The success of the nonlinear conservation law was highlighted for its shock wave theory

which was not possible with a local linear model. A convex flux or a genuinely nonlinear

case is particularly well studied (see [6, 19, 20, 24]). However, the convex case is still in a

stage between a local and the true global phenomenon and one need to study nonconvex

case to understand a real global phenomenon. The fluxes in Buckley-Leverett equation

[26] and thin film equations [2] are good examples of nonconvex fluxes. The study of

a nonconvex flux also has a long history (see [1, 7, 27]). In particular, asymptotics,

regularity and solution structure are well studied for a single inflection point case (see

more examples [4, 5, 25]). However, the understanding of the nonconvex case is still far

less than the one of a convex case because of its complexity. We suggest in this paper that

a comprehensive survey for a fundamental solution will provide a better understanding

of a nonconvex flux.

The construction of the fundamental solution with a nonconvex flux is obtained

throughout this paper. The final formula of the fundamental solution is (4.9). Un-

fortunately, there is no simple and explicit formula for the nonconvex case. The solution

is understood with the usual entropy condition or, equivalently, in the sense of Kružkov

[19]. The construction of the fundamental solution is based on the dynamics of the

convex-concave envelope, which gives similarity profiles that consist of a series of rar-

efaction waves and discontinuities. Even though the focus of this paper is construction

itself, the detail of the structure can be obtained from the dynamics of the convex-concave

envelope (see [17]).

The fundamental solution is the key in the theoretical development of a Cauchy prob-

lem. For an autonomous linear problem the solution is given by the convolution between

the fundamental solution and the initial value. Even for nonlinear problems, the funda-

mental solution provides key information about the solution. The Oleinik inequality for

a conservation law and the Aronson-Benilan inequality for a porous medium equation are

basically comparisons of a solution to the fundamental solution. However, these inequal-

ities fail for nonconvex flux or nonhomogeneous diffusion laws and hence there have been
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efforts to obtain such inequalities for general cases (see [9, 11, 12, 21]). Understanding

the fundamental solution should be the first thing to do to extend the theory and, in fact,

such inequalities have been unified for a general class of PDEs by comparing a solution

to the fundamental solution (see [16]). The asymptotics of an evolutionary problem in

L1 is a study of a process how a solution turns into the shape of a fundamental solution

(see, e.g., [3, 8, 14, 15, 18]). This is because the fundamental solution reflects the intrinsic

properties.

The rest of the paper is as follows. In Section 2 we briefly give preliminaries about

admissible weak solutions and explicit fundamental solutions in the convex case. In Sec-

tion 3 the dynamics of the convex-concave envelope of a nonconvex flux is studied using

the maximum of the fundamental solution as a parameter. We construct a fundamental

solution in Section 4 using the convex-concave envelope and show that the constructed

solution really is the admissible weak solution. Some of the basic structures are also

introduced.

Scalar conservation laws have been used as test cases in the development of numer-

ical schemes for hyperbolic problems. WENO, ENO and central schemes are some of

them (see [10, 13, 23]). It is natural to ask if these schemes give the fundamental solu-

tion correctly even if there are several inflection points and the convex-concave envelope

evolves drastically. In Section 5 the fundamental solutions are computed numerically us-

ing these schemes, where the numerical simulations show the evolution of the analytical

fundamental solution correctly.

2. Preliminaries. The solutions of (1.1) is defined in a weak sense that satisfies
∫ ∫

(uφt + f(u)φx )dxdt +

∫

u0(x)φ(x, 0)dx = 0 (2.1)

for any test function φ ∈ C∞
0 (R × [0,∞) ). If a weak solution has a discontinuity along

a curve x = x(t), then it satisfies the Rankine-Hugoniot jump condition,

x′(t) =
f(u+(t))− f(u−(t))

u+(t)− u−(t)
, u±(t) = lim

y→x(t)±
u(y, t). (2.2)

A weak solution u(x, t) is called the entropy solution if






ℓ(u) ≤ f(u) if u− ≤ u+

ℓ(u) ≥ f(u) if u− ≥ u+

(2.3)

for all u between u− and u+, where ℓ(u) is the linear function connecting two states

(u+, f(u+)) and (u−, f(u−)), i.e.,

ℓ(u) =
f(u−)− f(u+)

u− − u+
(u− u−) + f(u−). (2.4)

(One may read from this entropy condition that an increasing discontinuity should be

given by the lower convex envelope since ℓ(u) ≤ f(u). Similarly, a decreasing one should

be given by the upper concave envelope since ℓ(u) ≥ f(u).) This entropy solution exists

and is unique for a bounded measurable initial value and this is the solution we consider.

Readers are referred to Ballou [1] and Oleinik [24] for the well-posedness of the entropy
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solution. For the unbounded initial value of the Dirac mass, the sign-changing solutions

ares not unique in general. However, our focus in this paper is a nonnegative solution

and the uniqueness of a signed solution is given by Liu and Pierre [22].

In summary, a piecewise smooth function is the entropy solution if it satisfies the

equation (1.1) in smooth regions, every discontinuity satisfies the entropy condition (2.3),

and discontinuity curves satisfy the Rankine-Hugoniot jump condition (2.2).

The structure of the conservation law (1.1) gives a similarity variable,

ξ =
x

t
.

A self-similar solution is a special one given in this similarity variable. The fundamental

solution ρm(x, t) will turn out to be a piecewise self-similar solution. Let a piecewise

smooth solution be self-similar in a region and given by u(x, t) = g(x/t). Then,

ut + f ′(u)ux = − x

t2
g′ +

1

t
f ′(g)g′ = 0,

and hence

f ′

(

g
(x

t

))

=
x

t
or f ′(g(x)) = x. (2.5)

The profile g that satisfies this relation is called a similarity profile. This relation gives a

significant consequence that the similarity profile g should be an increasing function if f ′

is an increasing one. Hence, if the flux f is convex, then the decreasing part of a piecewise

similarity solution should be a discontinuity that satisfies the Rankine-Hugoniot jump

condition (2.2) and the entropy admissibility condition (2.3). If the flux is concave,

then the similarity profile g is a decreasing function and the increasing part should be a

discontinuity.

If the flux is strictly convex, f ′′(u) > 0, the fundamental solution ρm(x, t) is given

explicitly. Then, f ′ is invertible and the similarity profile g(x) is given by

g = (f ′)−1 or f ′(g(x)) = x, x ∈ R. (2.6)

The signed fundamental solution of mass m > 0 is explicitly given by

ρm(x, t) =

{

g(x/t), 0 < x < ζm(t),

0 , otherwise,
(2.7)

where ζm(t) ≥ 0 is decided by the total mass relation

m =

∫ ζm(t)

0

g(y/t)dy . (2.8)

One may easily check that the fundamental solution satisfies

ρm(mx,mt) = ρ1(x, t), x ∈ R, t > 0. (2.9)

Therefore, a single fundamental solution may cover all others.

For the Burgers equation case f(u) = u2/2, the similarity profile becomes g(x) = x.

Then, one can easily solve (2.8) and obtains

ζm(t) =
√
2mt, ρm(ζm(t)−, t) = g(ζm(t)/t) =

√

2m/t. (2.10)
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Fig. 1. Graphs of a fundamental solution ρ1(x, t) are given at
three instances t = 0.5, 1 and 2. The Burgers case is with a flux
f(u) = u2/2 and the cubic law case is with f(u) = u3/3.

In Figure 1(a), graphs of fundamental solutions with m = 1 is given at three instances

t = 0.5, 1 and 2. If the flux is given by a cubic law f(u) = u3/3, then the similarity

profile is g(x) =
√
x . In Figure 1(b), similar graphs are given at the same instances.

In summary, the fundamental solution of the conservation law has a simple structure

if the flux is convex. Under the normalization assumption (1.4), the support of the

fundamental solution is [0, ζm(t)] for some ζm(t) > 0. The fundamental solution increases

in the interval from u = 0 to the maximum value, say u = ū, and then drops to u = 0 at

x = ζm(t) with an admissible discontinuity.

Remark 2.1. The similarity profile g is actually a rarefaction wave for the convex flux

case. However, we will see later that a similarity profile may include rarefaction waves,

contact discontinuities and a shock for a nonconvex flux case. Furthermore, the profile

is dynamically changing if the solution range is changed.

3. Convex and concave envelopes. If the flux f is not convex nor concave, then

the relation (2.5) fails. In the next section we will see that the fundamental solution is

constructed dynamically using convex-concave envelopes of the flux, but not directly by

the flux. In this section we will first study the dynamics of convex-concave envelopes.

3.1. Convex envelope. The first step to construct a fundamental solution is to find the

lower convex envelope of the given flux. The convex envelope on a given interval (u1, u2)

is defined by

h(u;u1, u2) := sup
η∈A

η(u), (3.1)

where

A := {η ∈ C2(R) : η′′(u) ≥ 0, η(u) ≤ f(u) for u1 < u < u2}. (3.2)

Since there are only finite number of inflection points, the convex envelope h(u;u1, u2)

is obtained by simply connecting the humps of the graph of the flux and the end points
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0 b1

 |

 b2  b3  b4  b5  b6  b7  b8  b9 ...  b12

Fig. 2. A nonconvex flux f(u) is given in a solid curve and its
convex envelope h(u) is in a dashed one, which is linear on intervals
(b2i−1, b2i) and h(u) = f(u) on the intervals (b2i, b2i+1).

u = u1 and u = u2 with tangent lines from below of the graph (see Figure 2). For the

case with the whole domain, we simply write it as h(u).

The convex envelope h(u) is a continuously differentiable function which is piecewise

identical to f(u) or piecewise linear. In other words, there exist strictly increasing se-

quences bi, ci, i = 1, 2, · · · , n, such that

h′(u) =

{

ci , b2i−1 < u < b2i,

f ′(u), otherwise.
(3.3)

Consider a pseudo similarity profile g̃(x) given by

g̃(0) = 0, h′(g̃(x)) = x, x ∈ R, (3.4)

which is piecewise continuous with discontinuities such that

lim
x→ci−

g̃(x) = b2i−1, lim
x→ci+

g̃(x) = b2i

(see Figures 3(a) and 3(b)). Since h is a convex envelope, we have

f ′( lim
x→ci−

g̃(x)) = h′(b2i−1) = ci = h′(b2i) = f ′( lim
x→ci+

g̃(x)). (3.5)

Hence, this is a special kind of contact discontinuity, but not a genuine shock. In other

words the pseudo similarity profile g̃(x) consists of rarefaction waves and contact discon-

tinuities.

Now we mimic the convex flux case to construct a pseudo fundamental solution with

a nonconvex flux. Define a function by

ρ̃m(x, t) =

{

g̃(x/t) , 0 < x < ζ̃m(t),

0 , otherwise,
(3.6)
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Fig. 3. (a) Graphs of f ′(u) and h′(u) for the flux in Figure 2. (b)
Similarity profile g(x) consists of a series of rarefaction waves and

discontinuities.
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Fig. 4. Graphs of pseudo fundamental solution ρ̃m in (3.6) with
m = 3 are given at several instances t = 1, 2, 3, 5, 10 and 20. However,
the shocks may violate the entropy condition.

where ζ̃m(t) ≥ 0 satisfies

m =

∫ ζ̃m(t)

0

g̃(y/t)dy (3.7)

(see Figure 4). One can easily check that this function satisfies the equation in (1.1) in

smooth regions and the condition (1.2). At the increasing jumps the entropy condition

(2.3) is satisfied since h is the convex envelope of f . The Rankine-Hugoniot jump con-

dition is also satisfied. However, since f is not a convex function, there may exist ū > 0

such that the decreasing discontinuity from u− = ū and u+ = 0 fails the entropy condi-

tion (2.3). Then, at the moment that ρ̃m(x, t) has such a value ū as its the maximum for

the first time, it fails to be an admissible solution. In conclusion, we need to construct

the correct decreasing profile which will be obtained from the concave envelope.
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Remark 3.1. It is natural to ask when ρ̃m(x, t) in (3.6) becomes a fundamental

solution. One can easily see that if the graph of f(u) is star-shaped with respect to the

origin, the discontinuity at x = ζ̃m(t) is admissible and hence it is a solution. Therefore,

the convex flux f is a special case that makes ρ̃m(x, t) a fundamental solution. Even if f is

not convex, under the hypothesis (1.3), there exists u0 > 0 large such that the decreasing

discontinuity that connects u− = ū and u+ = 0 is admissible for all ū > u0. Then,

ρ̃m(x, t) is identical to the fundamental solution until maxx ρ̃m(x, t) > u0. We will use

this fact later to choose an initial configuration for the construction of the fundamental

solution.

3.2. Concave envelope. The next step is to find the upper concave envelope of the

flux. The concave envelope on a given interval (u1, u2) is defined by

k(u;u1, u2) := inf
η∈B

η(u), (3.8)

where

B := {η ∈ C2(R) : η′′(u) ≤ 0, η(u) ≥ f(u) for u1 < u < u2}. (3.9)

The concave envelope k(u;u1, u2) is similarly obtained by connecting the humps of the

graph of y = f(u) and the end points from the above with tangent lines (see Figure 5).

The concave envelope is the dual concept of the convex one and decides the shape of

the decreasing side of a fundamental solution. The assumption that breaks a complete

duality in this paper is the second hypothesis in (1.3), which assumes the convexity of f

for u large.

Remark 3.2. Consider a Riemann problem with an initial value

u0(x) =

{

u−, x < 0,

u+, x > 0.

Then, the solution u(x, t) is simply given by relations

th′(u(x, t);u−, u+) = x, if u− < u+,

tk′(u(x, t);u+, u−) = x, if u− > u+

(see [27]). Since the maximum and the minimum values are fixed, the convex and concave

envelopes are also fixed. This make the above formula work. However, for the fundamen-

tal solution case, the maximum decreases to zero and hence the convex-concave envelopes

constantly evolve in time. To count such a change the left hand side of the above formula

should be understood as an integral in time variable. The correct relations to construct

the fundamental solution are given in (4.3) and (4.7).

In the following two lemmas we consider several obvious relations for concave and

convex envelopes. These lemmas are useful in the following proofs and in finding the

structure of a fundamental solution.

Lemma 3.3. The convex and concave envelopes are ordered as

h(u;u1, u2) ≤ k(u;u3, u4), u ∈ (u1, u2) ∩ (u3, u4). (3.10)

If (u1, u2) ⊂ (u3, u4), then

k(u;u1, u2) ≤ k(u;u3, u4), u ∈ (u1, u2), (3.11)

h(u;u1, u2) ≥ h(u;u3, u4), u ∈ (u1, u2). (3.12)
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Fig. 5. Concave envelopes ki := k(u; 0, ui) give decreasing profile of
a fundamental solution. A linear part indicates that there is a contact
discontinuity connecting two end values. A part with k(u; 0, ui) =
f(u) shows a rarefaction wave part that connects two contact dis-

continuities.

Proof. The relation (3.10) is clear since h(u; a, b) ≤ f(u) ≤ k(u; a, b) for all a < b.

Let (u1, u2) ⊂ (u3, u4). Then, since the sets given in (3.9) are ordered as B(u3, u4) ⊂
B(u1, u2), the corresponding infimums should be ordered as in (3.11). Similarly we have

(3.12). � �

The next lemma is for envelopes with u1 = 0.

Lemma 3.4. (i) If the convex envelope h(u; 0, ū0) is linear on (a, b) ⊂ (0, ū0), then

h(u; 0, ū) is linear on (a, b) for all ū ≥ ū0. This property holds for the concave envelope,

too.

(ii) At least one of h(u; 0, ū) and k(u; 0, ū) is linear on (ū− ε, ū) for an ε > 0 small.

Proof. (i) Suppose that h(u; 0, ū) is not linear on (a, b) for some ū ≥ ū0. Then

there exists a subinterval (c, d) ⊂ (a, b) on which h(u; 0, ū) is strictly convex and hence

h(u; 0, ū) = f(u). Since h(u; 0, ū0) is linear on (c, d) and is a lower convex envelope of

f(u), h(u; 0, ū0) < f(u) = h(u; 0, ū) on the interval (c, d) after taking a smaller interval if

needed. It contradicts to Lemma 3.3 (3.12). Similar arguments hold for concave envelope

k(u; 0, ū).

(ii) If h(u; 0, ū) is not locally linear near u = ū, then h(u; 0, ū) = f(u) and strictly

convex for u ∈ (ū− ε, ū). Therefore, the concave envelope cannot be identical to f(u) on

the interval. Hence it should be linear on it. � �

4. Construction of a fundamental solution.

4.1. Nonconvex flux. In this section we construct a signed fundamental solution. The

construction in this paper is an extension of the convex flux case. We will present it step

by step comparing it with the convex case and the figures.

The construction is given as a time integration of derivatives of convex-concave en-

velopes as in (4.3) and (4.7). We first construct the initial configuration at t0 > 0 small.

Due to the second hypothesis of (1.3) there exists ū > 0 large such that a decreasing

discontinuity from u− = u to u+ = 0 is admissible for all u ≥ ū. Therefore, we have
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Fig. 6. The flux and the envelopes are given for two cases, ki :=
k(u; 0, ui), hi := h(u; 0, ui), i = 0, 1. u0 is the value that shock that
connects u− = u0 and u+ = 0 is admissible. This gives the initial
profile h̄0(u) and k̄0(u). As ū(t) decreases or as the time t increases,
h̄(u, t) and k̄(u, t) may show interesting behavior.

ρm(x, t) := ρ̃m(x, t) until that moment. Hence, there exist t0 > 0 and ζm(t0) such that

g̃(ζm(t0)/t0) = u0 ≥ ū and m =

∫ ζm(t0)

0

g̃(y/t0)dy , (4.1)

where g̃ is the pseudo similarity profile given by (3.4). Let the boundary of the level set

of the fundamental solution be

h̄0(u) = inf{x : ρ̃m(x, t0) > u}, k̄0(u) = sup{x : ρ̃m(x, t0) > u}. (4.2)

Gluing the graphs of h̄0 and k̄0 gives the graph of ρ̃m(x, t0) of course. An example is

given in Figure 6. In the top left figure, flux and convex-concave envelopes are given

with a possible choice of u0 > 0 that makes the concave envelope k(u; 0, u0) a line. The

corresponding time t0 and the graphs of h̄0 and k̄0 are given in the top right figure, where

the total mass is m = 4.

Consider the convex envelope h(u; 0, u0) in the top left figure. Then there exists a

maximal interval (v0, u0) such that h(u; 0, u0) = f(u) on it and v0 is a tangent point.

(v0 is not marked in the figure.) Notice that the concave envelope k(u; 0, ū) changes

drastically as ū moves from u0 to v0. However, the convex envelope stays as it is except
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for a domain change. Therefore, for v0 < u < u0 and t > t0, we define

h̄(u, t) = h̄0(u) +

∫ t

t0

h′(u; 0, u0)dτ, v0 ≤ u ≤ u0, (4.3)

where the derivative in the integrand is with respect to u . One can easily see that h̄(u, t)

is an increasing function with respect to the u variable since h(u; 0, u0) is convex.

The next step is to find the maximum point x = ζm(t), which is the place that two

profiles is glued. For the convex flux case this point is the right end point of the support

and hence it can be easily computed by the total mass relation (2.8). For a general

nonconvex flux case it is still the maximum point, but it is not the end point of the

support anymore. Hence we cannot use the total mass relation (2.8). The maximum

point x = ζm(t) and the maximum value ū(t) should be obtained by solving a system

a′m(τ) =
f(ū(τ)) − f(u∗(τ))

ū(τ) − u∗(τ)
, (4.4)

ζm(τ) = h̄(ū(τ), τ), (4.5)

where the first equation is the Rankine-Hugoniot jump condition. The value u∗(τ) is

an end of the linear part of the concave envelope k(u; 0, ū(τ)) that connects this end to

the maximum value ū(τ). Note that, if ū(τ) is given, u∗(τ) can be explicitly computed.

One can solve this system explicitly if the flux is convex, where such an example is given

in Section 4.2. However, it is not possible for a general case and so the fundamental

solution is defined only implicitly.

Now we show that the maximum ū(t) strictly decreases in time. Since the monotonicity

is a local property, it is enough to consider t0 < t1 < t2 with |t1 − t2| ≪ 1 small enough.

We consider the first stage for now so that ū(t2) > v0. By taking smaller |t1 − t2| if
needed we may assume, for all t1 < τ < t2,

k′(ū(τ); 0, ū(τ)) < h′(ū(t1); 0, u0)

due to the relation between the convex and the concave envelopes, or by Lemma 3.4(ii).

Then, by (4.4) and (4.3), we have

ζ′m(τ) = k′(ū(τ); 0, ū(τ)) < h′(ū(t1); 0, u0) = ∂th̄(ū(t1), τ).

This strict inequality and (4.5) imply

h̄(ū(t2), t2) = ζm(t2) < h̄(ū(t1), t2).

Since h̄(·, t) is a strictly increasing function in the region u ∈ (v0, u0), we finally have an

strict inequality,

ū(t2) < ū(t1) for all t1 < t2. (4.6)

Next, we define the decreasing side of the fundamental solution,

k̄(u, t) = k̄0(u) +

∫ t

t0

k′(u; 0, ū(τ))dτ, u < ū(t). (4.7)

The concave envelope in the integrand changes drastically as the maximum ū(τ) moves

from u0 to v0 (see the top left figure in Figure 6). One can easily check that, since
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k′(u; 0, ū(τ)) = f(ū(τ))−f(u∗(τ))
ū(τ)−u∗(τ)

for any v0 < u < u0, k̄(u, t) actually moves with the

same speed as ζm(t) and hence

ζm(τ) = k̄(ū(τ), τ). (4.8)

Therefore, h̄(ū(τ), τ) = k̄(ū(τ), τ) = ζm(τ) and hence we may define the fundamental

solution using the inverse relation of these functions

{

h̄(ρm(x, t), t) = x for x < ζm(t),

k̄(ρm(x, t), t) = x for x > ζm(t).
(4.9)

In the bottom left of Figure 6, graphs of h̄ and k̄ are displayed at t = 0.085 when

ū(t) = u1 is slightly bigger than the tangent point v0. As ū(t) approaches to v0 the thin

spike in the figure becomes thinner and eventually disappears as in the bottom right of

Figure 6. At the moment, the maximum jumps from ū(t) = v0 to u∗(t), which is the

other end of the linear part of concave envelope at the moment of collapse of the thin

spike. The first stage of the fundamental solution is completed.

In the second stage, the roles of convex and concave envelopes are exchanged. Let

(v1, u∗) be the maximal interval such that k(u; 0, u∗) = f(u) on it. In the second stage

the fundamental solution is constructed similarly in the interval v1 < u < u∗. Since we

have assumed that there are a finite number of inflection points, this process will be done

in finite steps and hence the construction of the fundamental solution is complete now.

Remark 4.1. One can clearly see that ū(t) which was employed in the construction is

the maximum of the fundamental solution. The monotonicity in (4.6) now implies that

maximum of the fundamental solution decreases strictly as t → ∞.

Remark 4.2. For a convex flux case the inverse relation of the flux is considered first

to find similarity profile g and then the time effect is counted simply by g(x/t) as in (2.7).

However, for the nonconvex case, the convex-concave envelope changes as the maximum

of the fundamental solution changes. Therefore, the time effect is considered first as in

(4.3) and then the inverse relation (4.9) is taken.

The discontinuities of the fundamental solution constructed so far satisfy the entropy

condition since they are all from convex-concave envelopes which produces only admis-

sible discontinuities only. These discontinuities also satisfy the Rankine-Hugoniot jump

condition since the discontinuity at the maximum point ζm(t) satisfy (4.4) which is ac-

tually from the jump condition. All the other discontinuities are of the contact type that

satisfy (3.5). Hence, the constructed function ρm(x, t) is really the fundamental solution

satisfying the entropy condition if we show that ρm(x, t) satisfies the conservation law in

a classical sense in smooth regions.

Assume that ρm(x, t) is smooth at (x, t) such that x < ζm(t). First differentiate the

first relation in (4.9) with respect to x and t and obtain

∂

∂x

(

h̄(ρm(x, t), t)
)

=
∂

∂u
h̄

∂

∂x
ρm = 1, (4.10)

∂

∂t

(

h̄(ρm(x, t), t)
)

=
∂

∂u
h̄

∂

∂t
ρm +

∂

∂t
h̄ = 0. (4.11)
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On a rarefaction wave part, the convex envelope and the flux itself are identical. There-

fore, from (4.3),

∂

∂t
h̄(ρm(x, t), t) = h′(ρm(x, t); 0, ū(t)) = f ′(ρm(x, t)). (4.12)

Substituting (4.10) and (4.12) into (4.11), we finally obtain

∂

∂t
ρm(x, t) + f ′(ρm(x, t))

∂

∂x
ρm(x, t) = 0.

On the region x > ζm(t), one can similarly show equation by differentiating the second

relation in (4.9), which completes the proof.

In summary, we conclude the construction of the fundamental solution in this section

with a theorem.

Theorem 4.3. Let the flux f satisfy (1.3). The function ρm(x, t) given by the relation

(4.9) is the nonnegative fundamental solutions of (1.1) that satisfies the entropy condition.

For any t1 < t2,

max
x

ρm(x, t2) < max
x

ρm(x, t1). (4.13)

Now we discuss several basic properties of h̄ and k̄. These provide key structures of

fundamental solutions (see [17] for detailed structure of fundamental solutions).

Lemma 4.4. (i) h̄(u, t) and k̄(u, t) are continuous for all t ≥ t0.

(ii) If the convex envelope h(u; 0, ū(t)) has a linear part that connects u = a and u = b,

then h̄(u, t) is constant for u ∈ (a, b) and hence ρm(x, t) has an increasing discontinuity

that connects u− = a and u+ = b. Similarly, a linear part of the concave envelope gives

ρm(x, t) a decreasing discontinuity.

(iii) The maximum point (ζm(t), ū(t)) of a fundamental solution is always connected

to a shock one side and a rarefaction wave the other.

Proof. (i) Since the envelopes are continuously differentiable, h̄(u, t) and k̄(u, t) are

continuous.

(ii) Lemma 3.4 implies that h′(u; 0, ū(τ)) is constant for u ∈ (a, b) for any given time

0 < τ < t. Therefore, its integral with respect to time variable (4.3) is also constant

on the interval. From the construction of ρ̃m(x, t), h̄0(u) is constant on the interval.

Therefore, h̄(u, t) is constant on (a, b) and hence the inverse relation ρm(x, t) has the

discontinuity in the claim. Similar arguments hold for concave envelopes.

(iii) If the maximum point is connected to shocks on both sides, that means it has

a removable jump at the point. Lemma 3.4(ii) implies that the maximum point cannot

be connected by two rarefaction waves. Therefore, the maximum point is connected

by an increasing shock and a decreasing rarefaction, or an increasing rarefaction and a

decreasing shock. � �

4.2. Examples and comparison with a convex case. In this section we consider ex-

amples that show the structure of the fundamental solution ρm(x, t) constructed in the

previous section. First, we review the fundamental solution of the Burgers equation

and compare it with a general nonconvex case in this paper. We will observe that the
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construction of the fundamental solution in this paper is a natural generalization of the

well-known Burgers equation case.

The flux of the Burgers equation is f(u) = u2/2 which is convex. Therefore, the

convex envelope is simply h(u; 0, ū) = f(u) and the concave envelope is the linear line

connecting the origin and (ū, f(ū)), i.e., k(u; 0, ū) = ū
2u. For the initial time we may

take t0 = 1. Then, one can easily compute that h′(u; 0, ū(t)) = u, k′(u; 0, ū(t)) = ū(t)/2,

ζm(1) = ū(1) =
√
2m and hence the initial profiles in (4.2) are given by

h̄0(u) = u, k̄0(u) =
√
2m.

Therefore,

h̄(u, t) = u+

∫ t

1

udt = tu, k̄(u, t) =
√
2m+

∫ t

1

ū(t)/2dt.

Now we solve ζm(t) and ū(t) in (4.4)-(4.5). Since

ζm(t0 = 1) =
√
2m, ζm(t) = h̄(ū(t), t) = tū(t),

f(ū(t))

ū(t)
=

ū(t)

2
,

the equation (4.4) becomes

ζ′m(t) = ζm(t)/2t, ζm(1) =
√
2m.

One may compute this first order equation and obtain

ζm(t) =
√
2mt, ū(t) =

√

2m/t,

which are identical to the values in (2.10).

For a general nonconvex flux case it is not possible to solve the equations by hand

and one needs to compute it numerically using appropriate iterative method. However,

the properties given in Lemmas 3.4 and 4.4 give us a chance to see the structure of the

fundamental solution via the structures of h̄(u, t) and k̄(u, t).

In Figure 6 several examples are given. In the first figure the graph of the flux

and convex-concave envelopes are shown. Since the convex envelope has a linear part

with negative slope, the corresponding discontinuity has a negative speed. The concave

envelope k(u; 0, u0) is a straight line. One can find in the figure at t = 0.0053 that k̄0(u)

is constant. The convex envelope h(u; 0, u0) consists of two linear parts and two tangent

parts. In the graph of h̄0(u) one can find two constant parts and two rarefaction parts.

The concave envelope k(u; 0, u1) consists of three straight lines and two curves tangent

to f(u). One can find from the figure at t = 0.085 that k̄(u, t) has three constant parts

and two rarefaction (or nonconstant) waves. The convex envelope h(u; 0, u1) consists of

two linear parts and one tangent part. In the graph of h̄(u, t) one can find two constant

states and one rarefaction wave. Notice that, at the right end of the thin peak, there is

a tiny rarefaction wave. That means that u1 is slightly bigger than the tangent point v0
of the convex envelope.

If the maximum ū(t) arrives at the tangent value v0, then the thin peak will be

disappeared and there will be a jump in the maximum from v0 to u∗. This peak has

been gone in the figure at t = 0.125. One interesting point is the angle in the middle

of the rarefaction wave of h̄(u, t) in the last picture. This is due to the sudden change

of the convex envelope that happened when the peak collapsed. The corresponding
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Fig. 7. Numerical computations for ρ1(x, t) are given at three in-
stances. The flux is f2 in (5.1) or in Figure 5(a). WENO is used for
this numerical computation.

fundamental solution is obtained from the relations in (4.9). Therefore, the fundamental

solution is obtained by simply reflecting the figures with respect to the line y = x. As

we have observed from these examples the dynamics of envelopes indicates the dynamics

of the fundamental solution in detail.

5. Numerical examples. The purpose of this section is to construct fundamental

solutions numerically and compare them to the analytic ones constructed in the previous

section. In these computations we have used WENO and a central type scheme. In

many cases simplified numerical schemes are used under a convexity assumption. Hence

one should modify such parts and use such schemes with their full complexity. We

were curious if these numerical schemes solve the conservation law without convexity

correctly. The numerical solutions in this section explain the structure of the fundamental

solution discussed in the previous section and hence one may get convinced that both

the numerical schemes and the analysis are correct.

For the comparison we took nonconvex fluxes

fn(u) = un(u2 − 2u+ 1.02)(u2 − 4u+ 4.02), n ≥ 2, (5.1)

which satisfies the hypotheses (1.3) and (1.4). Furthermore, this flux satisfies

f(u) > 0 for u > 0, (5.2)

which may make the situation simpler. Graphs of these fluxes are given in Figure 5.

For a numerical computation one should consider an appropriate initial value. Since the

Dirac-delta measure cannot be used directly, we took an initial value

u0(x) =

{

m/ǫ, 0 < x < ǫ,

0, otherwise
(5.3)

for m/ε large. In fact, if the jump from u− = m/ε to u+ = 0 is admissible, one may

show u(x, t) = ρm(x, t) for all t > t0 such that max u(x, t0) < m/ǫ.
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Fig. 8. Numerical computations for ρ1(x, t) are given at three in-
stances. The flux is f3 in (5.1) or in Figure 5(b). WENO is used for
this numerical computation.

In Figure 7, intermediate states of the fundamental solution ρ1(x, t) are given at

three instances. The first one, at t = 0.14, has the maximum value corresponding to

u1 in Figure 5(a). The concave envelope at the moment consists of two linear and one

rarefaction parts. Since the amount of time to form a rarefaction is short, one can barely

find a rarefaction wave in the figure. One can find the corresponding rarefaction wave

more clearly when t = 1. The concave envelope with the maximum u2 in Figure 5(a) has

three linear and two rarefaction parts. One can find them in the decreasing profile of the

fundamental solution at time t = 1. At a later time t = 4, the corresponding maximum

is u3 and the concave envelope has two linear and one rarefaction parts. In the figure at

t = 4 one can observe two shocks and one rarefaction waves after the maximum point.

In Figure 8 another example for intermediate states of a fundamental solution are

given with the flux function f3 in (5.1). The figures of its graph and concave envelopes

are given in Figure 5(b). The first one at t = 0.1 has the maximum value corresponding

to u1. The concave envelope at the moment is a line. One can see a discontinuity that

connects u1 and 0. The second figure at t = 0.4 is the moment with the maximum

u2 and the concave envelope has two linear parts divided by a rarefaction wave. One

can find them in the decreasing profile of the fundamental solution. At time t = 3.8,

the corresponding maximum is u3 and the concave envelope has two linear part and

one rarefaction wave. One can find two shocks and one rarefaction in the figure. In

these discussion, we only discussed about the relation between the concave envelopes

and the decreasing profile of the fundamental solution. Readers may compare the convex

envelopes and the increasing profiles of these examples similarly.

Now we discuss the asymptotic structure. Notice that, even if the formulas in (4.3)

and (4.7) give us a view for the structure of fundamental solutions in detail, it is not

easy to compute it exactly. That is why we could not display the examples in Figures

7 and 8 with exact solutions. However, for the asymptotic structure, one can explicitly

compute a fundamental solution ρm(x, t) for t large if

f(u) > 0, u 6= 0.
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(a) Flux is (5.1) with n = 4 (t = 7, 000) (b) Flux is (5.1) with n = 5 (t = 2, 000)

Fig. 9. The fundamental solution ρ0.5(x, t) is in solid lines and its
numerical simulation is in dots. A central type scheme is used for
the numerical solution.

Then, if the maximum of the fundamental solution is less than the smallest tangent value

of the convex envelope, then ρm(x, t) = ρ̃m(x, t) and hence one can explicitly compute

the fundamental solution.

In Figure 9(a) the fundamental solution ρ0.5(x, t) is given in a solid line together with

a numerical solution, where the flux is f4 in (5.1). For an easier comparison with the

exact solution the numerical solution is plotted using less grid points. One can clearly

see that the numerical solution matches the exact solution. For this numerical example

we used the central scheme. The example with fn with n = 5, Figure 9(b) also matches

the exact one well.
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[19] S. N. Kružkov, First order quasilinear equations with several independent variables., Mat. Sb. (N.S.)

81 (123) (1970), 228–255. MR 0267257 (42 #2159)
[20] P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537–

566. MR 0093653 (20 #176)
[21] Philippe G. Lefloch and Konstantina Trivisa, Continuous Glimm-type functionals and spreading of

rarefaction waves, Commun. Math. Sci. 2 (2004), no. 2, 213–236. MR 2119939 (2005i:35174)
[22] Tai-Ping Liu and Michel Pierre, Source-solutions and asymptotic behavior in conservation laws, J.

Differential Equations 51 (1984), no. 3, 419–441. MR 735207 (85i:35094)
[23] Haim Nessyahu and Eitan Tadmor, Nonoscillatory central differencing for hyperbolic conservation

laws, J. Comput. Phys. 87 (1990), no. 2, 408–463. MR 1047564 (91i:65157)
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