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There is a huge jump in the theory of conservation laws if the convexity assumption
is dropped. In this paper we study a scalar conservation law without the convexity
assumption by monitoring the dynamics in the fundamental solution. Three extra
shock types are introduced other than the usual genuine shock, which are left, right
and double sided contacts. There are three kinds of phenomena of these shocks,
which are called branching, merging and transforming. All of these shocks and
phenomena can be observed if the flux function has two inflection points. A
comprehensive picture of a global dynamics of a nonconvex flux is discussed in terms
of characteristic maps and dynamical convex-concave envelopes.

1. Introduction

We consider the solution of a scalar conservation law,

∂tu+ ∂xf(u) = 0, x ∈ R, t > 0. (1.1)

The goal of this paper is to understand the dynamics of shock and rarefaction waves
when the flux function f is not convex. We assumes two hypotheses:

f has a finite number of inflection points,
f(u)

u
→ ∞ as u → ∞.

(1.2)

For a simpler presentation, we also assume f ∈ C1 and, without loss of generality,

f(0) = f ′(0) = 0. (1.3)

We will focus on the dynamics of the fundamental solution, denoted by ρ, which is
a nonnegative entropy solution that satisfies

lim
t→0

ρ(x, t) = δ(x). (1.4)

This signed fundamental solution has been constructed in [13] using its relation to
convex-concave envelopes. We will classify the components of the fundamental solu-
tion and obtain the global dynamics of a nonconvex conservation law by combining
them.
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Nonlinear scalar conservation laws provide a shock wave theory in a simplest
form, which is well understood for a genuinely nonlinear case (see [8, 19, 20, 24]).
In particular, the Lax-Hopf transformation [20] may make the solution even ex-
plicit. This simplicity is from the fact that the information is only destroyed along
a shock wave, but never produced. However, such a simplicity cannot be expected
for nonconvex case and it is a completely different game without the convexity as-
sumption. First of all, a nonconvex conservation law generates new types of shocks
and some of them may produce new information. Furthermore, these shocks interact
each other via branching, merging or transforming phenomena. These various phe-
nomena show the essence for conservation laws one may obtain when the convexity
assumption is dropped.
There are various examples of nonconvex flux which are from Buckley-Leverett

equation, thin film equation, systems of conservation laws and many others (see
[2, 3, 11, 27]). The existence and the uniqueness of a bounded solution and the
convergence of zero viscosity limit hold true for both convex and nonconvex cases
(see [1, 5, 19, 25]). The solution structure has been studied for a case with a single
inflection point (see [1, 9]), which shows the complexity of the solution even with a
single inflection point. The idea of this paper is to focus only on the fundamental
solution, which allows us to glimpse the dynamics of a conservation law with a
nonconvex flux function. The BV-boundedness of a solution holds for a uniformly
convex case, but not for a general nonconvex one (see [6, 7, 9, 22, 26] for more
regularity properties). We will see that the difference in the dynamics of the two
cases is more drastic than the regularity theory.
The rest of this paper is organized as follows. In Section 2 a structural lemma,

Lemma 2.3, is introduced, which gives basic relations between convex-concave en-
velopes and the evolution of the fundamental solution. It is this lemma that provides
us a tool to closely monitor the dynamics of the fundamental solution. In Section 3,
four types of shock waves are classified, which are left contact, right contact, dou-
ble contact and genuine shock. These shocks can be increasing or decreasing ones
depending on the flux function. Remember that only a decreasing genuine shock
is allowed for a convex flux case. Three kinds of shock interactions are introduced
in Section 4. Branching is a phenomenon that a single shock is divided into two
smaller shocks and merging is a one that two shocks are combined into a single
shock of a smaller size. If the flux changes its sign as in (4.1), a genuine shock can
become a left or right contact. We call this phenomenon transforming.
In Section 5, rarefaction waves are discussed. For a convex flux case, a fundamen-

tal solution may have only a centered wave fan placed at the origin (x, t) = (0, 0).
However, for a nonconvex flux case, the centered rarefaction wave fan can be placed
at any place. Furthermore, there exists another kind of rarefaction wave which is
called a contact rarefaction. In Section 6, we classify possible shocks and shock
interactions when the number of inflection points is given. We will see that if the
number of inflection points is two, then all possible shocks and phenomena can
be observed. Finally, a comprehensive scenario of a fundamental solution is given
in Section 7 for a flux function with four inflection points. An illustration of the
whole characteristic map is given in Figure 11. One may observe such an evolution
of the fundamental solution by numerical computations (see Figure 12). In this
computation the flux in Figure 10 has been used.
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The study of solution behavior beyond the fundamental solution is a wide open
area if the convexity of the flux function is not assumed. For example, the Riemann
solution is given by fixed convex or concave envelops and hence the phenomena
such as branching, merging and transforming are not observed. Hence, we need
more than the Riemann solver to explain a general solution behavior. Notice that
the Buckley-Leverett type nonconvex flux functions do not satisfy (1.2)2. However,
the convex-concave envelops technique in this paper is still applicable. For more
discussions with possible open problems and further directions to study nonconvex
conservation laws are given in Section 8.

2. Structural lemma for fundamental solutions

Denote the speed of a shock that connects u1 and u2 by

σ(u1, u2) :=
f(u1)− f(u2)

u1 − u2
.

Suppose that an entropy solution u(x, t) has a discontinuity along a curve x = s(t).
The discontinuity curve of an entropy solution or the discontinuity itself is called a
shock or a shock curve. Then, the curve satisfies the Rankine-Hugoniot condition,

s′(t) = σ(u−(t), u+(t) ), u±(t) = lim
y→s(t)±

u(y, t). (2.1)

A characteristic line x = ξ(t) that emanates from a point (x0, t0) satisfies

ξ′(t) = f ′(u(ξ(t), t)), ξ(t0) = x0, t ∈ I. (2.2)

If I ⊂ [t0,∞), then the characteristic line ξ(t) is called a forward one and, if
I ⊂ [0, t0], then it is called a backward one.
The uniqueness of a signed fundamental solution has been shown by Liu and

Pierre [23, Theorem 1.1] for a Lipschitz continuous flux ϕ such that ϕ([0,∞)) ⊂
[0,∞) and ϕ(0) = 0. In the followings we first obtain a similar uniqueness theorem
under (1.2).

Theorem 2.1 (Uniqueness of a signed fundamental solution). Suppose that the
flux function f ∈ C1(R) satisfies (1.2) and m > 0 is given. Then, there exists a
unique nonnegative solution ρm(x, t) that satisfies (1.1) and

lim
t→0

ρm(x, t) = mδ(x). (2.3)

Proof. It is enough to show the uniqueness of a nonnegative solution for m > 0.
The assumptions (1.2) and (1.3) imply that there exists b > 0 such that f(u) ≥ −bu
for all u ≥ 0. Let ϕ(u) = f(u) + bu. Then ϕ(0) = 0 and ϕ(u) ≥ 0 for all u ≥ 0.
Therefore, there exists a unique nonnegative solution to

ut + ϕ(u)x = 0, lim
t→0

u(x, t) = mδ(x) (2.4)

(see [23, Theorem 1.1]). Let u be the nonnegative solution and v be its translation
given by v(x, t) = u(x− bt, t) ≥ 0. Then,

vt + ϕ(v)x = ut − bux + f(u)x + bux = 0.
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One can easily check that, if u is an entropy solution that satisfies the entropy and
the Rankine-Hugoniot jump conditions, then v is one as well. Therefore, v is an
entropy solution to (1.1). Let ṽ be another nonnegative solution and ũ be given
similarly by ṽ(x, t) = ũ(x − bt, t). Then, since a nonnegative solution to (2.4) is
unique, u(x, t) = ũ(x, t) and hence v(x, t) = ṽ(x, t).

Now we show a scaling argument using this uniqueness theorem.

Lemma 2.2. Let ρm be the unique nonnegative solution of mass m > 0. Then,

ρ(x, t) = ρm(mx,mt), x ∈ R, t > 0. (2.5)

Proof. Let u(x, t) = ρm(mx,mt) with m > 0. Then

ut = m∂tρm(mx,mt), ux = m∂xρm(mx,mt)

and hence

ut + f ′(u)ux = m∂tρm(mx,mt) +mf ′(ρm(mx,mt))∂xρm(mx,mt) = 0.

Therefor, u(x, t) is a solution of the conservation law. Furthermore, since
∫

R

φ(x)u(x, 0)dx =

∫

R

φ(x)ρm(mx, 0)dx =

∫

R

φ(y/m)δ(y)dy = φ(0)

for any test function φ(x), u(x, t) is the fundamental solution, i.e., u = ρ. Therefore,
the uniqueness of a signed solution gives the relation (2.5).

In the construction of a signed fundamental solution, the maximum value ρ̄ and
the maximum point ζ(t), i.e.,

ρ̄(t) := sup
x

ρ(x, t), max{ρ(ζ(t)−, t), ρ(ζ(t)+, t)} = ρ̄(t),

are used as parameters and then decided implicitly. The convex and concave en-
velopes are respectively defined by

h(u; ρ̄) := sup
η∈A(0,ρ̄)

η(u), k(u; ρ̄) := inf
η∈B(0,ρ̄)

η(u), (2.6)

where

A(0, ρ̄) := {η : η′′(u) ≥ 0, η(u) ≤ f(u) for 0 < u < ρ̄}, (2.7)

B(0, ρ̄) := {η : η′′(u) ≤ 0, η(u) ≥ f(u) for 0 < u < ρ̄}. (2.8)

One can easily check that, for any fixed ρ̄ > 0, h(u; ρ̄) and k(u; ρ̄) are convex and
concave functions on the interval (0, ρ̄), respectively. Since we consider a flux with
a finite number of inflection points, the domain (0, ρ̄) can be divided into a finite
number of subintervals so that envelopes are identical to the flux or a line on each
subinterval.
Finally, the fundamental solution is given by the inverse relation of

{

h̄(ρ(x, t), t) = x for x < ζ(t),

k̄(ρ(x, t), t) = x for x > ζ(t),
(2.9)
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where h̄ and k̄ satisfy

∂th̄(u, t) = ∂uh(u; ρ̄(t))), ∂tk̄(u, t) = ∂uk(u; ρ̄(t))) (2.10)

(see [13, Section 4] for details). The structure of the fundamental solution is ana-
lyzed in the rest of the paper using the dynamics and the relations of the envelopes.
The following lemma is a summary of the basic relations and dynamics. We will use
this structural lemma in analyzing the components and dynamics of fundamental
solutions.

Lemma 2.3 (structural lemma for fundamental solutions). Let 0 = a0 < a1 <
· · · < ai0 = ρ̄(t) be the minimal partition of [0, ρ̄(t)] such that the convex envelope
h(u; ρ̄(t)) is either linear or identical to f(u) on each subinterval (ai, ai+1), 0 ≤ i <
i0. Similarly, let 0 = b0 < b1 < · · · < bj0 = ρ̄(t) be the minimal partition related to
the concave envelope k(u; ρ̄(t)). Let ζ0(t) is the maximum point in the sense that
ρ̄(t) = max(ρ(ζ0(t)+, t), ρ(ζ0(t)−, t)) and spt(ρ(·, t)) = [ζ−(t), ζ+(t)].
(i) The linear parts of the envelopes are tangent to the flux, i.e.,

h′(ai; ρ̄(t)) = f ′(ai), i = 1, · · · , i0 − 1,

k′(bj ; ρ̄(t)) = f ′(bj), j = 1, · · · , j0 − 1.

(ii) The maximum ρ̄(t) is strictly decreasing as t → ∞.
(iii) The solution ρ(x, t) increases in x on the interval (ζ−(t), ζ0(t)). If h(u; ρ̄(t))

is linear on (ai, ai+1), ρ(x, t) has an increasing discontinuity that connects u− = ai
and u+ = ai+1. If f(u) = h(u; ρ̄(t)) on (ai, ai+1), ρ(x, t) has a rarefaction profile
that continuously increases from u = ai to u = ai+1.
(iv) The solution ρ(x, t) decreases in x on the interval (ζ0(t), ζ+(t)). If k(u; ρ̄(t))

is linear on (bj , bj+1), ρ(x, t) has a decreasing discontinuity that connects u− = bj+1

and u+ = bj. If f(u) = k(u; ρ̄(t)) on (bj , bj+1), ρ(x, t) has a rarefaction profile that
continuously decreases from u = bj+1 to u = bj.

Lemma 2.3 gives the dynamics of the fundamental solution in terms of convex-
concave envelopes. First, the number of discontinuities and their left and right hand
limits are given by the convex-concave envelopes if the maximum ρ̄(t) at a specific
time t > 0 is known. However, we do not know the location of a discontinuity. The
discontinuities are connected by rarefaction waves. However, if the flux is not con-
vex, the structure of rarefaction waves are quite complicated and are not functions
of x/t (see Section 5).
In Figure 1(a), convex-concave envelopes on a given domain [0, ρ̄(t)] are illus-

trated. Note that, the graph of the flux f(u) is tangent to the u-axis at the origin
since (1.3) is assumed. The minimal partition values ai’s for the convex envelope
are marked at the corresponding tangent points. Two linear parts of the convex en-
velope indicate that the fundamental solution have two increasing discontinuities.
One of them jumps from 0 to a1 and the other from a2 to a3. These discontinuities
satisfy the entropy condition. Similarly the concave envelope and the corresponding
minimal partition bj ’s provide the decreasing shocks.
As the maximum ρ̄(t) decreases, the corresponding envelopes evolve continu-

ously. However, if the end point (ρ̄(t), f(ρ̄(t))) reaches to a tangent point, then



6 Yong-Jung Kim and Young-Ran Lee

ρ̄(t)

b1b2 b3 b4

a1a2
a3

f(u)

0

(a) continuous change of envelopes

b1 b2

b3

ρ̄(t−) = b1

a1 a2

a3 = ρ̄(t+)

0

(b) discontinuous change of envelopes

Figure 1. Examples of envelopes and minimal partitions. consist of 0, ρ̄(t) and coordinates
of the horizontal axis (or u-axis) of the tangent points. If both of the envelopes meet with
linear parts as in (b), then the maximum jumps to the nearest interior partition point a3

in the figure.

the envelopes change discontinuously and an example is given in Figure 1(b). The
envelopes in dashed lines are the case when ρ̄(t−) = b1. This implies that the max-
imum value ρ̄(t−) is connected to the value a3 by an increasing shock and also
connected to 0 by a decreasing shock. In other words the solution has an isolated
singularity. The case a3 < ρ̄ < b1 is not admissible by the same reason. Therefore
ρ̄ jumps from b1 to a3 and the envelopes jump from the dashed ones to the solid
ones in the figure. In particular the minimal partition for the concave envelope has
new members and should be re-indexed as in the figure.

3. Classification of shocks

The dynamics of shocks is the key in understanding the structure of a fundamental
solution of a conservation law. In this section we classify the types of shocks. Let
x = s(t) be a shock curve of ρ(x, t) and u±

0 = limε↓0 ρ(s(t0) ± ε, t0) be one-sided
limits1. Let x = ξ+(t) be the maximal characteristic curve and x = ξ−(t) be the
minimal one, where both of them emanate from the given point (s(t0), t0). Then,
the backward and the forward characteristic curves satisfy

ξ′+(t0) = f ′(u+
0 ), ξ′−(t0) = f ′(u−

0 ), (3.1)

where the derivatives of characteristic curve are understood as one sided ones de-
pending on its domain. We are interested in the characteristic curve that satisfies
(3.1) since they are the ones that carry the information.
One may obtain the following well known relations from the Oleinik entropy

condition,
f ′(u−

0 ) ≥ s′(t0) ≥ f ′(u+
0 ). (3.2)

In the followings we classify the shocks into four types.

3.1. Genuine shock

If both inequalities in (3.2) are strict, i.e.,

f ′(u−
0 ) > s′(t0) > f ′(u+

0 ), (3.3)

1In this notation the subindex, 0, indicates the time t0 and the super indexes, ±, indicate right
and left side limits. Since ρ may have multiple discontinuities, u±

0
is used instead of ρ±

0
.
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then the shock curve x = s(t) is called a genuine shock and denoted by the letter ‘G’
in figures. If a faster characteristic line x = ξ−(t) collides to the slower shock curve
x = s(t) from the left at time t = t0, it should come from the past (or as t → t0−).
Similarly, if the slower characteristic line x = ξ+(t) collides to the shock curve from
the right, then it should also come from the past. Therefore, for a genuine shock
case, characteristics satisfying (3.1) are backward ones and

ξ′−(t) > s′(t) > ξ′+(t), t0 − ε < t < t0 (3.4)

for some ε > 0. If one may take the domain as 0 < t < t0, then the characteristic
curve is called global, which is always the case with a convex flux. However, if the
flux is nonconvex, the characteristic curves are not necessarily global.

Proposition 3.1. A signed fundamental solution has at most one genuine shock,
and it has one if and only if the convex or the concave envelope is a non-horizontal
line. Furthermore, the genuine shock always connects the maximum to zero.

Proof. Suppose that a shock connects a value of an intermediate partition point,
say ai with 0 6= i 6= i0. Since the shock speed s′(t) is given by the relation in (2.1),
Lemma 2.3(i) gives that

s′(t) = h′(ai; ρ̄(t)) = f ′(ai) = ξ′(t), t0 − ε < t < t0.

Therefore, at least one of the inequalities in (3.2) is an equality and hence the shock
is not a genuine one. If a genuine shock connects the zero and the maximum, the
corresponding envelope should be a line. Furthermore, since both envelopes can not
be lines at the same time, a fundamental solution has at most one genuine shock
at any given time.

If the convex or concave envelope is a horizontal line, then due to the normaliza-
tion (1.3), one of the inequalities in (3.2) is an equality. This is a transition stage
of a genuine shock into a contact discontinuity which will be discussed in Section
4. Now suppose that a concave envelope is a non-horizontal line. Of course, the
discontinuity connects the zero value and the maximum. We may easily see that
if the line is not tangent to the graph of the flux, then it gives a genuine shock.
Suppose that the line is tangent to the flux at the maximum as in Figure 1(b). Then
the flux is locally concave near the maximum value u = ρ̄(t) and hence the convex
envelope is also linear at the point (ρ̄(t), f(ρ̄(t))). This implies that the maximum
is an isolated singularity which is not admissible. Therefore, such envelopes do not
exist. The same arguments are applied to the convex envelope.
If the flux is convex, its concave envelope is simply a non-horizontal line and gives

a decreasing genuine shock all the time. Furthermore, there are no other types of
shocks for the convex flux. Figure 2(a) is an illustration of a genuine shock.

3.2. Contact shocks

A shock is called a contact if it is not a genuine shock. If both inequalities in
(3.2) are equalities, i.e.,

f ′(u−
0 ) = s′(t0) = f ′(u+

0 ), (3.5)
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G
(a) genuine shock

D
(b) double contact

L
(c) left contact

R
(d) right contact

Figure 2. [xt-plane] Shocks of a nonconvex scalar conservation law are classified into four
types.

then the shock is called a double sided contact or simply double contact and denoted
by ‘D’ in figures. One can easily find such a discontinuity from convex-concave
envelopes. Let ai, i = 0, · · · , i0, be the minimal partition in Lemma 2.3 related to
the convex envelope h. One can easily see that if h is linear in an interior subinterval
(ai, ai+1) (i.e., ai 6= 0 and ai+1 6= ρ̄(t)), then Lemma 2.3(i) implies that (3.5) is
satisfied. In this case the shock is placed between two rarefaction waves. Since the
shock speed is constant until the tangent point ai+1 stays in the minimal partition,
the double sided contact is a line parallel to adjacent characteristic lines (see Figure
2(b)). One may similarly consider double sided contacts related to the concave
envelope.
If one of the inequalities in (3.2) is an equality and the other one is a strict

inequality, then we call it a single sided contact. If

f ′(u−
0 ) = s′(t0) > f ′(u+

0 ), (3.6)

then this single sided contact is called a left sided contact or simply left contact
and denoted by ‘L’ in figures. This means that the characteristic lines on the left
hand side of the shock curve have the same speed as the one of the shock. Hence
the characteristic lines are tangent to the shock curve from the left hand side (see
Figures 2(c)).
Similarly, if

f ′(u−
0 ) > s′(t0) = f ′(u+

0 ), (3.7)

then this single sided contact is called a right sided or right contact and denoted
by ‘R’ in figures.

Proposition 3.2. A signed fundamental solution has two or three single sided
contacts counting a genuine shock as two. If there is no genuine shock at a moment,
then there exist at least one right and left contacts for each.

Proof. A single sided contact should connect the maximum ρ̄(t) or the zero value to
an interior partition value. If a discontinuity connects two interior partition points,
then it is a double sided contact as discussed before. Since the maximum can not
be connected by two shocks (see the comments following Figure 1(b)), the total
number of contact shocks is at most three.
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Proposition 3.3. Double sided contacts are lines. Single sided contacts connected
to zero are lines. There exists exactly one shock connected to the maximum ρ̄(t),
which is the only one that moves with a nonconstant speed.

Proof. We have already observed that the double sided contacts are lines. Single
sided contacts connected to the zero value are also lines by the same reason that
the linear part of the corresponding envelope is not changed as long as the contact
is a single sided one. For example, consider a right contact case. Then, since 0 is
the minimum, the contact is an increasing shock and hence the convex envelope
is considered. Since the shock speed s′(t) is given by the relation in (2.1), Lemma
2.3(i) gives that

s′(t) = h′(a1; ρ̄(t)) = f ′(a1),

where a1 is the first interior partition point, which is constant as long as the right
contact remains as it is. Hence, the right contact is a line. The left contact case is
similar (see Figure 2(c)).
Now consider a left contact that connects the maximum ρ̄(t). Then, it is an

increasing shock that connects the maximum to the last interior partition point
ai0−1. Hence the shock speed is

s′(t) = h′(ai0−1; ρ̄(t)) = f ′(ai0−1),

Since the maximum of the fundamental solution ρ̄(t) strictly decreasing, the slope
of the convex envelope at the maximum point is strictly increasing. Hence the left
contact is not a line, but is curved to right since the propagation speed is increasing.
One can show the similar behavior for the right contacts and the difference is that
the right contact is curved to left (see Figure 2(d)). The genuine shock is similar as
the contacts that connects to the maximum value ρ̄(t).

According to the previous propositions, there exists only one shock that connects
the maximum ρ̄(t). This shock is a genuine shock or a single sided contact that
moves along a curve. All the other shocks propagate with a constant speed. Hence,
all the dynamics of shock waves are produced along the shock that connects the
maximum ρ̄(t) which is the only curved one of the signed fundamental solution.
Furthermore, if this shock is a single sided contact, it produces new information.

Remark 3.4 (Information generating contact shock). Consider the linear part of
the concave envelope in Figure 1(a) that connects the maximum and an interior
partition value b4. First, note that the right hand side limit of the shock is b4 since
the concave envelope gives a decreasing shock. The speed of the characteristic line
carrying this value is f ′(b4) which is identical to the shock speed and hence the
corresponding discontinuity is always a right contact. One can easily see that the
slope of the linear part decreases as ρ̄(t) decreases (i.e., as t increases). Therefore
the shock curve makes a turn to the left hand side as t increases like in Figure
2(d). Furthermore, the interior tangent value b4 increases, which indicates that the
range covered by rarefaction wave is increasing. In other words new information is
produced and propagates to the future. Therefore, the characteristic line x = ξ+(t)
touching the shock from the right hand side has a domain t ∈ (t0, t0 + ε) for some
ε > 0. In Figure 2(d) this kind of right contact has been illustrated. Even though
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the previous discussions are in terms of the concave envelope, one may repeat them
with the convex envelope and obtain the dual statements.

4. Dynamics of shocks

The convex-concave envelopes have one end at the origin and the other end at
the maximum point (ρ̄(t), f(ρ̄(t))) with ρ̄(t) = supx ρ(x, t). Since the maximum
ρ̄(t) decreases in time t, the envelopes and the corresponding minimal partitions
change. In the followings we consider the dynamics of shock curves by tracking
these changes.

4.1. Branching

A shock curve may split into two smaller shocks divided by a rarefaction wave
and we call this phenomenon branching. Consider a shock curve that connects the
maximum value ρ̄(t). Then it should be a genuine shock or a single sided contact.
If the corresponding linear part of the envelope touches a hump of the graph of
the flux f(u) on its way (see Figures 10(b) and 10(c) ), it will split into two linear
parts with a convex or a concave part in between. Since both of these two linear
parts belong to the convex envelope or concave envelope, both shocks are increasing
ones or decreasing ones. In other words an increasing shock splits into two smaller
increasing shocks and a decreasing one into two smaller decreasing ones.
One can easily see that, at the moment the branching process starts, the linear

parts of the envelope corresponding to the incoming and outgoing shocks are all the
same line. Hence, the slopes of shock curves at the branching point in the xt-plane
are identical and hence they form smooth curves of branching as in Figure 3.
Since the incoming shock is connected to the maximum ρ̄(t), one of the outgo-

ing shocks connects the maximum, which should be a single sided contact. If the
incoming shock is a single sided contact, then the other outgoing shock is a double
sided contact as in Figure 3(a). Therefore, we may conclude that if the incoming
shock is of single sided, it splits into one single sided and one double sided con-
tacts. Similarly, if the incoming shock is a genuine shock, then it splits into two
single sided contacts (see Figure 3(b)). Note that type D doesn’t split. In summary,
branching process is classified as the following.

Proposition 4.1. There are three cases of branching classified by the incoming and
outgoing shocks, which are (i) R→R+D, (ii) L→L+D, and (iii) G→R+L. Shock
curves are smooth after a branching incident.

4.2. Merging

Two shocks can be combined and then form a single shock. We call this phe-
nomenon merging. In the process these two shocks have different monotonicity.
One may see this phenomenon from the change of envelopes. As the maximum
value ρ̄(t) decreases, two linear parts of convex and concave envelopes may meet
at a point, say (ρ̄(t0), f(ρ̄(t0))) (see Figures 1(b) ). However, in this case it gives
a removable jump (see [13, Lemma 3(iii)]) and the maximum of the fundamental
solution has a decreasing jump from ρ̄(t0+) to ρ̄(t0−). In this case ρ̄(t0−) is the
largest interior partition point (e.g., the point a3 in Figure 1(b) ).
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R

R

D

(a) branching (R→R+D)
G

R L

(b) branching (G→R+L)
Figure 3. [xt-plane] There are three kinds of branching process. The third one is

‘L→L+D’.

Remark 4.2 (Discontinuous change of envelopes). A sudden change of envelopes
after a merging incident gives several consequences (see Figure 1(b) ). (i) The slopes
of the linear parts of the envelopes related the two incoming shocks and one outgoing
shock are all distinct and hence the shock curves are not differentiable after merging.
(ii) The new nonlinear part of the concave envelope gives a centered rarefaction
wave fan (see Section 5.1). (iii) The evolution of the fundamental solution is rather
independent of the values of the flux function on the interval (ρ̄(t0+), ρ̄(t0−)). For
example, even if one changes the values of the flux for u ∈ (ρ̄(t0+), ρ̄(t0−)) in Figure
1(b), the fundamental solution is not changed as long as its graph stays inside the
dashed lines. (Such a change of flux function makes a difference for general solutions
of course.)

G

LL
(a) merging (L+L→G)

R

L

D
(b) merging (R+D→L)

L

LL

R

(c) merging+branching
(L+L→G→R+L)

Figure 4. [xt-plane] There are two kinds of merging. The last figure shows an example
when merging and branching occur simultaneously.

In Figure 4(a) two left contacts merge into a genuine shock. If a right contact is
merged with ap double sided contact, then a left contact is produced as in Figure
4(b). Note that merging is not exactly the reverse process of branching. In a merging
process, two shocks of different monotonicity produces a single smaller shock and
however, in a branching process, two shocks of the same monotonicity are produced.
Another difference is that the shock curve is not smooth after a merging process.
In summary, merging process is classified as the following.
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Proposition 4.3. There are four cases of merging classified by the incoming and
outgoing shocks, which are (i) R+R→G, (ii) L+L→G, (iii) R+D→L, and (iv)
L+D→R. The shock curves are not differentiable after a merging incident.

4.3. Merging + Branching

Merging and branching are basic phenomena in the dynamics of discontinuities.
These two phenomena may appear at the same time. Since the envelopes may
change discontinuously after a merging process, a branching may follow immediately
after it. Consider the example in Figure 1(b), where two incoming shocks meet at
a point. Then, the merging process in the figure produces one left contact and one
right contact, where the corresponding figure is in Figure 4(c). Notice that the
outgoing shocks are of the same monotonicity. In this example they are given by
the concave envelope and hence they are decreasing ones. It is also possible that
there are more than two out going shocks. For example, if there are many wiggles
in the inside hump of Figure 1(b), then there can be many outgoing shocks with
same monotonicity with each other. However, all extra smaller contacts are double
sided contacts for those cases. We finally obtain the following from Propositions 4.1
and 4.3.

Proposition 4.4. There are four possible situations of ‘branching after merging’
classified by the incoming and outgoing shocks, which are (i) R+R→G→R+L, (ii)
L+L→G→R+L, (iii) R+D→L→L+D, and (iv) L+D→R→R+D.

4.4. Transforming

A shock may change its type without branching or merging and we call this
phenomenon transforming. This phenomenon may appear only if

f
(

[0,∞)
)

6⊆ [0,∞). (4.1)

The only possible scenario is that a genuine shock is transformed to a single sided
contact. It always happens when a genuine shock changes its direction from the
negative one to the positive one or in the other way. For example consider a genuine
shock that moves at a negative speed as in Figure 5(a). If it stops and then moves
to the positive direction, then it is not a genuine shock any more. It becomes a
left contact as one can see from the figure. Similarly, if a genuine shock changes its
direction from the positive one to the negative one, then it becomes a right contact.

Proposition 4.5. There are two kinds of transforming phenomena under (4.1),
which are (i) G→R, (ii) G→L.

4.5. Merging +Transforming

In Figure 4(a) two single sided contacts are merged into a genuine shock. If the
transformation appears simultaneously, then one may see the phenomenon that
two contacts of single sided are merged into a single sided contact as in Figure
5(b). One may consider this phenomenon as an example of merging. However,
instead of placing it in the section for merging, we have separated the phenomenon
in this section since the transforming process can be forgotten. Furthermore, the
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G

L

(a) transforming (G→L)

L

RR
(b) merging+transforming (R+R→G→L)

Figure 5. [xt-plane] Transforming can be observed under an extra condition (4.1).

transformation phenomena can be found only under the extra hypothesis (4.1).
Hence the phenomena in the following proposition do not appear if f

(

[0,∞)
)

⊆
[0,∞).

Proposition 4.6. There are two possible situations of ‘transforming after merg-
ing’ classified by the incoming and outgoing shocks if (4.1) holds, which are (i)
R+R→G→L, (ii) L+L→G→R.

Combining Propositions 4.3 and 4.5, there are two more possibilities of R+R →
G → R and L + L → G → L. However, these cases are not possible for the
following reasons. First, the genuine shock obtained after a merging process of two
right contacts moves to left since the right contact connecting to the zero value
has negative speed under the assumptions (1.2)2 and (1.3). Hence, it turns into a
left contact after a transformation. Hence the possibility of R + R → G → R is
removed. Similarly, a phenomenon of L+ L → G → L is not possible, neither.

5. Structure of rarefaction waves

There is no contact shock for a convex flux case and hence all the characteristics of
a fundamental solution carrying the information of a non-zero value are emanated
from the origin. Therefore, if a fundamental solution ρ has a rarefaction profile at
a point (x, t), the speed of the characteristic line that passes through the point is
x/t and hence it should be satisfied that f ′(ρ(x, t)) = x/t. Furthermore, since f ′ is
invertible if the flux is strictly convex, the rarefaction wave should be given by the
following relation

ρ(x, t) = g(x/t), a(t) ≤ x ≤ b(t), (5.1)

where f ′(g(x)) = x and [a(t), b(t)] is the support of the fundamental solution ρ(·, t).
However, if the flux is not convex, then there may exist contact shocks and hence
there are various possibilities for the starting point of the characteristic line. Fur-
thermore, since f ′ is not invertible in the whole domain, one should clarify the
correct profile that gives the rarefaction wave. In the followings we classify the
rarefaction waves.

5.1. Centered rarefaction wave fans

There are two kinds of centered rarefaction waves. The first one is the one pro-
duced from the initial profile of the Dirac-measure and hence centered at the origin.
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Let h(u;∞) be the convex envelope of the flux and 0 = a0 < a1 < · · · < ai0 < ∞
be the minimal partition. Then the rarefaction wave is given as

ρ(x, t) = g∞(x/t), a(t) ≤ x ≤ b(t), 0 < t < ε, (5.2)

where the similarity profile g∞(x) is a piecewise continuous function that satisfies
h′(g∞(x);∞) = x. Notice that the function g∞(x) may have a discontinuity and
hence ρ(x, t) given by (5.2) may have a discontinuity which is actually contact.
Therefore, the rarefaction wave in (5.2) should be understood as a sequence of
rarefaction waves divided by contacts. In Figure 11 an example of initial centered
rarefaction wave can be found for t > 0 small. In the figure one may find the wave
fan bounded by a genuine shock and a right contact. One may also find the inside
profile is divided by a double sided contact.
A centered rarefaction wave may also appear after a merging process. If a shock

collides to another one, then the envelopes change discontinuously and a centered
rarefaction wave may emerge. For example consider the merging process in Figure
1(b) and let (x0, t0) be the merging point. Then the concave envelope jumps from
the dashed one to the solid ones and a rarefaction part in the interval (b2, b3) is
added to the concave envelope, Figure 1(b), which generates a centered rarefaction
wave given as

ρ(x, t) = g1

(x− x0

t− t0

)

, ξ(t) ≤ x ≤ s(t), t0 < t < t0 + ε, (5.3)

where g1 is the inverse function of the flux on the domain (b2, b3) and the wave is
bounded by a contact line of single sided and a characteristic line, which are given
by

ξ(t) = x0 + f ′(b2)(t− t0), s(t) = x0 +
f(b1)

b1
(t− t0), t0 < t < t+ ε.

The wave fan which is between two outgoing contacts of single sided in Figure 4(c)
and emanates from the branching point is a corresponding case.
One may also observe a centered rarefaction wave bounded by two characteristic

lines. Consider the change of envelopes in Figure 10(d) after a merging. Then the
interior partition point a2 jumps from a−2 to a+2 and a rarefaction part in the interval
(a−2 , a

+
2 ) is added to the convex envelope, which generates a centered rarefaction

wave given by

ρ(x, t) = g2

(x− x0

t− t0

)

, ξ1(t) ≤ x ≤ ξ2(t), t0 < t < t+ ε, (5.4)

where g2 is the inverse function of the derivative of the convex envelope of the flux
on the domain (a−2 , a

+
2 ) and the wave fan is bounded by two characteristic lines,

which are given by

ξ1(t) = x0 + f ′(a−2 )(t− t0), ξ2(t) = x0 + f ′(a+2 )(t− t0), t0 < t < t+ ε.

Remark 5.1. The solution is continuous along the characteristic ξ1, but not dif-
ferentiable. This kind of regularity has been mentioned in Dafermos [9]. The rar-
efaction wave fan is bounded by a characteristic line at least one side. However, it
is possible that there exist several contacts of type D inside of the fan.
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Proposition 5.2. If a portion of the graph of the flux is added to the envelopes
after a merging phenomenon, a centered rarefaction wave fan appears.

5.2. Contact rarefaction

A centered rarefaction wave fan of a fundamental solution is produced instantly
at the moment of the initial time or a merging phenomenon. On the other hand,
a contact rarefaction wave is produced continuously along a single sided contact
shock connected with the maximum value ρ̄(t). A typical example can be found
in Figures 10(a) and 10(b). The concave envelope in Figures 10(a) shows that it
is about the moment that the genuine shock splits into two contacts. The concave
envelope at a later time is given in Figure 10(b), which shows that the rarefaction
region (b1, b2) is expanding. This indicates that new informatio n is being produced
and propagates to the future. On the other hand the rarefaction region (a3, ρ̄(t))
from the convex envelope is shrinking. In other words the information from the past
is destroyed if it meets this shock.
In summary a contact rarefaction wave is produced by the single sided contact

which connects the maximum from one side. For example, the right contact R in
Figure 10(b) connecting b2 and ρ̄(t) is the corresponding one. This single sided con-
tact erases the information of the past from one side and produces new information
from the other side.

6. Shock classifications on the number of inflection points

In this section we discuss what kinds of shock waves and their dynamics may or must
appear in the evolution of the fundamental solution when the number of inflection
points of the flux function is given. Note that we are taking the hypotheses (1.2)
and (1.3) for simplicity and one may easily extend the theory without them. For

example, one may consider the case with f(u)
u

→ −∞ as u → ∞ instead of (1.2)2
and obtain dual arguments in this section.

6.1. Convex flux function

Flux functions without any inflection point have been considered by many authors
and are well understood. Such a flux is convex under the assumption (1.2)2. In this
case the fundamental solution has a simple structure

ρ(x, t) =

{

g
(

x
t

)

, 0 < x < b(t),

0, otherwise,

where f ′(g(x)) = x and b(t) is given by the relation
∫ b(t)

0
g
(

x
t

)

dx = 1. The funda-
mental solution has a genuine shock at x = b(t). A contact shock does not exist and
hence the dynamics between shocks such as a merging, branching or transforming
is never observed.

6.2. Flux function with a single inflection point

If the number of inflection points of the flux function is odd and (1.2)2 and (1.3)
are satisfied, then the flux function should be negative in a region u ∈ (0, u0) for
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some u0 > 0 and f
(

[0,∞)
)

6⊆ [0,∞). Therefore, if a flux function has a single
inflection point, it should be as in Figure 6. In that case the fundamental solution
should start with a genuine shock and a right sided contact. Then, the genuine shock
is transformed to another right contact and the two right contacts are merged into

a genuine shock. If f(u)
u

→ −∞ as u → ∞ instead of (1.2)2, then left sided contacts
will appear in the place of right sided ones. However, a double sided contact and a
branching phenomenon never appear.

R
0

G

f(u)

u

(a) initial envelopes

R
0

R

f(u)

u

(b) transforming (G→R)

G
0

f(u)

u

(c) merging (R+R→G)
Figure 6. Flux function with a single inflection point:

6.3. Flux function with two inflection points

If the number of infection points is a non-zero even number, we may split the
case into two. First consider a case that f

(

[0,∞)
)

⊆ [0,∞) as in Figure 7. It is clear
that we cannot observe a transforming phenomenon in this case. However, we can
observe all sorts of shocks and the other phenomena. As illustrated in Figure 7(a),
the fundamental solution starts with a genuine shock and a double sided contact.
Then, the genuine shock is split into a left and a right contacts and the right
contact and the initial double sided contact are merged into a left contact. Finally
the two left contacts are merged into a genuine shock which is the final stage of the
dynamics.
Now we consider the other case that f

(

[0,∞)
)

6⊆ [0,∞) as in Figure 8. As
illustrated in Figure 8(a), the fundamental solution starts with a genuine shock
and a right sided contact. The initial genuine shock is split into a left and a right
contacts and then the new right contact and the initial right contact are merged into
a genuine shock. This genuine shock is transformed into a left contact. However, it
is also possible that the genuine shock may be immediately transformed into a left
contact depending on the shape of the flux function (see Figures 8(b) and 8(c) ).
The two left contacts are merged into a genuine shock which is the final stage of
the dynamics. Notice that a double sided contact never appears in this case.

6.4. Flux functions with three or more inflection points

A merging incident produces a discontinuous change of convex-concave envelops
and one may add arbitrary even number of inflection points without changing the
fundamental solution (see Remark 4.2(iii)). Therefore, only the phenomena that
appear for the single or double inflection points cases are guaranteed to appear for
the odd or even number of inflection points cases respectively and all the others may
appear depending on the specific choice of a flux function. In Table 1, the shock
types and their dynamics that can be observed from a fundamental solution are



Fundamental solutions of a conservation law 17

G

0

D

f(u)

u

(a) initial envelopes

L

0

D

R

f(u)

u

(b) branching
(G→L+R)

L

0

L

f(u)

u

(c) merging
(R+D→L)

G

0

f(u)

u

(d) merging
(L+L→G)

Figure 7. Flux function with two inflection points: Minimal model with all sorts of
shocks.

R

G

0

f(u)

u

(a) initial envelopes

R

L

0

R

f(u)

u

(b) branching
(G→L+R)

L

0

L

f(u)

u

(c)merging+transforming
(R+R→G→L)

G

0

f(u)

u

(d) merging
(L+L→G)

Figure 8. Flux function with two inflection points: Minimal model with all sorts of shock
dynamics.

Table 1. Some of the shock types and their dynamics may or may not appear during the
evolution of the fundamental solution. This table shows which of them must or must not
appear. (G,R,L and D denote genuine shock, right, left and double sided contacts, respec-
tively. M,B and T denote merging, branching and transforming phenomena, respectively.)

# of inflection sign of flux must depending on never

points of flux appears flux functions appears

0 f ≥ 0 G ∅ R,L,D,M,B,T

1 f 6≥ 0 G,R,M,T ∅ L,D,B

2 f ≥ 0 G,R,L,D,M,B ∅ T

2 f 6≥ 0 G,R,L,M,B,T ∅ D

2n− 1, n ≥ 2 f 6≥ 0 G,R,M,T L,D,B ∅

2n, n ≥ 2 f ≥ 0 G,R,L,D,M,B ∅ T

2n, n ≥ 2 f 6≥ 0 G,R,L,M,B,T D ∅

listed with respect to the number of inflection points. In summary, one may observe
only a genuine shock and a right contact if the flux function has one inflection point.
However, if there are two inflection points and the flux is nonnegative, one may
observe all the four types of shocks. Hence two inflection points are just enough to
observe all the shock phenomena.
To justify the table, we will give examples with three and four inflection points

that give all the phenomena. In this section we consider an example with three
inflection points. A case with four inflection points are given in Section 7 with
a discussion for a full dynamics. In Figure 9 the dynamics of the convex-concave
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envelope of a flux function with three inflection points is considered. In this example

G

0

D

R

f(u)

u

(a) initial envelopes

L

0

D

R

R

f(u)

u

(b) branching (G→L+R)

L

0

R L

f(u)

u

(c) merging (R+D→L)

G

0

R

f(u)

u

(d) merging (L+L→G)

R0

R

f(u)

u

(e) transforming (G→R)

0
G

f(u)

u

(f) merging (R+R→G)
Figure 9. Flux with three inflection points: This flux gives all types of shocks and

dynamics.

one may observe all the four kinds of shocks and all the three kinds of interactions.
There are four merging, a single branching, and a single transforming phenomena.
One may find a centered rarefaction wave fan in Figure 9(b). The final stage of the
dynamics is of the genuine shock with a negative speed.

7. An example for a global picture

This section is designed to provide a complete characteristic map that shows all
the dynamics of shocks and rarefaction waves discussed before. We take a flux in
Figure 10 which is complicated enough for this purpose and satisfies (4.1). Since
the change of an envelope is linked to each stage of a solution, all the dynamics of
a solution can be interpreted in terms of envelopes. First eight figures in Figure 10
show the dynamics of the envelopes corresponding to the possible eight stages of the
fundamental solution. As an example to show this connection we put an illustration
of a signed fundamental solution in Figure 10(i), which belongs to the second stage,
Figure 10(b). More examples of fundamental solution can be found in [13, Figures
6–8], which are actually obtained by computing the equation numerically. A com-
plete characteristic map corresponding to this flux is given in Figure 11 with stage
numbers on the left. In the rest of this section we investigate the relation between
the flux and its characteristic map.
Due to the second hypothesis in (1.2), one can find a moment t0 such that for

all nonnegative t < t0 the concave envelope consists of a single non-horizontal line.
In the case there exists a decreasing genuine shock as denoted in Figure 10(a). In
addition, there are two increasing shocks from the very beginning, a right and a
double contact. These contacts are connected by a wave fan centered at the origin.
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(b) branching (G→L+R)
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(e) merging (D+L→R)
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(h) final merging
(L+L→G)
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(c) branching (R→D+R)
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(f) merging (R+R→G)
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a1
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ρ̄(t)

b1
b2

0
x

u

(i) fundamental solution
corresponding to (b)

Figure 10. The envelopes of all eight stages. As the maximum of the fundamental solution
decreases the corresponding envelopes change. G: genuine shock, R: right contact of single
sided, L: left contact of single sided, D: contact of type D. aj , bj in (b), (d) for horizontal
coordinates but vertical in (i).

These right and double sided contacts move with constant speeds until Figure 10(d)
arrives.
The slope of the concave line corresponding to the genuine shock decreases as time

t increases and hence the genuine shock curve is not a line as in Figure 11. We can
observe two branching phenomena while the concave envelope moves toward 10(d),
which are G→L+R in 10(b) and R→D+R in 10(c). Note that at every branching
point all the curves and the line have the same slope as shown in Figure 11.
After that, we may observe three merging phenomena, D+R→L in 10(d), L+D→R

10(e), and R+R→G in 10(f). Notice that none of two contacts have the same slope
after a merging phenomenon. In addition, centered wave fans appear after the first
two merging phenomena. However, if a genuine shock is produced, any kind of rar-
efaction waves is not produced. This genuine shock moves to left slower and slower,
and eventually stops. Then, the genuine shock turns into a left contact which moves
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Figure 11. Dynamics of characteristics. The letter in the left indicates the stage of each
strip corresponding to the stage in Figure 10.

to the right, see Figures 10(g) and 11. Note that it is possible that, after the third
merging, Figure 10(f), a left contact may appear instead of the genuine shock and
directly go to the stage 10(g), which is the case discussed for Figure 5(b). Finally,
this left contact meets the other left contact after a long time and generates a gen-
uine shock as in Figure 10(h). The picture in the magnified circle shows the final
merging process. From this moment this genuine shock is a unique discontinuity
and persists forever.
Note that Figure 11 is for an illustration purpose and made under some exagger-

ations to keep the whole dynamics in a single figure. It seems interesting to compare
this illustration with one obtained from an actual numerical solution. In fact, we
have computed a fundamental solution numerically and then displayed its dynamics
in Figure 12. In the figure we have displayed up to the beginning of Figure 10(g).
The wave speed f ′(u) is displayed in Figure 12, where u is a numerically computed

fundamental solution. One may observe the shock curves and easily distinguish if
it is a left contact or a right contact. This shock curves match with Figure 11
pretty well except the ones near the initial time. For t > 0 small the evolution of
the solution is fast and one may observe numerically if the corresponding part is
magnified which is omitted here. In this figure the appearance of the centered rar-
efaction waves and propagation of discontinuities discussed before are more clearly
observed. To produce these figures we used the WENO method. These figures in-
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Figure 12. [The horizontal axis is for space x and the vertical axis is for time t.] The wave
speed f ′(u) has been displayed in this figure. This figure clearly shows the interaction of
shock waves and emerging centered rarefaction waves at the place where two shock waves
are merged.

dicate that the theoretical explanation and the numerical simulation give a perfect
match.

8. Discussions

Fundamental solutions are called with different names. It is called the heat ker-
nel or the Gaussian for the heat equation, the Barenblatt solution for the porous
medium equation, the diffusion wave for the Burgers equation, N-waves for the
inviscid Burgers equation. There are more cases that have no specific names. For
the Laplace equation case, it is simply called the fundamental solution. In all the
cases the fundamental solution serves as a useful tool in understanding the behavior
of solutions. If the equation is linear and autonomous, one may obtain a general
solution by convoluting it with an initial value and that is why the fundamental
solution is sometimes called a kernel. Even though it is not a kernel anymore in
a nonlinear problem, the fundamental solution still plays a key role in theoretical
development. The Oleinik one-sided inequality for convex flux is written by

f ′(u)x ≤ 1/t, t > 0,

which gives the uniqueness and the sharp regularity to the conservation law. Note
that the fundamental solution satisfies the equality, f ′(ρ)x = 1/t and, in other
words, this inequality is basically a comparison to the fundamental solution. There
have been several attempts to extend the inequality to nonconvex cases (see [12, 14,
15, 21]). It is clear that the key of such an extension is in a better understanding of
the fundamental solution. One may find an extension of such one-sided inequalities
from the first author’s recent work [18]. The asymptotic analysis is actually a study
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how a solution evolves into the shape of the fundamental solution. (see, e.g., [4, 10,
16, 17]).
Notice that the solution structure discussed in this paper is only for the funda-

mental solution. For example Table 1 in Section 6.4 shows the shocks and their
dynamics that may appear in a fundamental solution. We will briefly discuss about
other cases. First, consider a Riemann problem with an initial value

u0(x) =

{

u−, x < 0,

u+, x > 0.

If u− < u+, then the convex envelope that connects u− and u+ is involved and, if
u− > u+, the concave envelope is involved (see [27]). Recently, Fossati and Quar-
tapelle considered the Riemann problem for a nonconvex flux with two inflection
points and applied it to systems of conservation laws (see [11]). Note that the con-
vex and concave envelopes defined in (2.6)–(2.8) are the ones that connect the zero
and the maximum of the fundamental solution. Since the maximum decreases, the
convex-concave envelope evolves in time and this evolution gives the shock dynam-
ics such as merging, branching and transforming. However, since the convex or
concave envelope is fixed in a Riemann problem, such a dynamics cannot be obtain
from a Riemann solver. Hence one need develop a way to recover such phenomena
to use the Riemann solver to approximate a general solution.
If a piecewise constant initial value is taken, the convex and concave envelopes

connecting the constant values will decide the solution dynamics until the constant
part survives. If it disappears, the envelopes will be merged to make a bigger ones.
The evolution of these envelopes will explain the solution dynamics. In particular,
the local maximum will play the role of the maximum of the fundamental solution
and one may observe various dynamics of the fundamental solution across the local
maximum. One may also observe interesting phenomenon across the local minimum,
which was not observed from a fundamental solution. These formal discussions need
to be justified and further investigation is needed.
Note that the classification in Table 1, Section 6, depends on the technical as-

sumption (1.2)2. One may also consider the convex-concave envelopes without this
assumption. For example, a Buckley-Leverett type flux function and possible en-
velops are given in Figure 13. This flux function has a single inflection point. One
may observe a genuine shock, left contacts, and a merging phenomenon. However,
other shocks types and phenomena are not observed. On the other hand, flux func-
tions with discontinuity has been considered by many authors and one may develop
a theory for such a flux function. Note that, adding a discontinuity increases the
number of inflection points by two.

0

LL

f(u)

u

(a) initial envelopes

G0

L
L

f(u)

u

(b) the moment of merging

G0

f(u)

u

(c) after merging

Figure 13. Buckley-Leverett type flux function with a single inflection point
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