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Abstract. One traditionally considers positive measures in the moment prob-

lem. However, this restriction makes its theory and application limited. The
main purpose of this paper is to generalize it to deal with complex measures.
More precisely, the theory of the truncated moment problem is extended to in-
clude complex measures. This extended theory provides considerable flexibility

in its applications. In fact, we also develop an approximation technique based
on control of moments. The key idea is to use the heat equation as a link that
connects the generalized moment problem and this approximation technique.

The backward moment of a measure is introduced as the moment of a solution
to the heat equation at a backward time and then used to approximate the
given measure. This approximation gives a geometric convergence order as the
number of moments under control increases. Numerical examples are given

that show the properties of approximation technique.

1. Introduction. Let a doubly indexed complex sequence αij ∈ C satisfy αij =
αji. Then the full complex K-moment problem related to a set K ⊂ C and this
sequence is to find a positive Borel measure µ that is supported on K and satisfies

αij =

∫
zizj dµ, i, j ≥ 0. (1)

Depending on the choice of K, the problem is called with the names Stieltjes (K =
R+), Hamburger (K = R), Hausdorff (K = [a, b]), and Toeplitz (K = T) (see
[1, 2, 20, 24]). However, if K ⊂ R, then αij =

∫
xi+jdµ = αji = αij . Therefore,

the doubly indexed sequence αij is actually a singly indexed one with real values
(i.e., αi+j := αij), and (1) becomes

αk =

∫
xkdµ, k ≥ 0. (2)

Hence the word ‘complex’ in the name of classical complex moment problem indi-
cates that the support K can be a subset of the complex plane C. The main part
of its theory is to determine necessary and sufficient conditions of the sequence for
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the existence and the uniqueness of such a nonnegative measure µ. (Readers are
referred to [3, 22, 23, 25] for the multidimensional full moment problem.)

The truncated moment problem is to find a positive Borel measure that satisfies
(1) for 0 ≤ i, j < n. In particular, a measure in an atomic representation dµ =∑n

i=1 ρiδ(x − ci)dx is mostly considered. If supp(µ) ⊂ R, then the truncated
moment problem is finding 2n unknowns in ρi ≥ 0 and ci ∈ R that satisfy

αk =
n∑

i=1

ρic
k
i , 0 ≤ k < 2n. (3)

This truncated moment problem has a direct impact on the full moment problem.
Indeed, using a weak compactness arguments, one may solve the full problem from
the solutions of truncated ones. However, a solution to the full moment problem
does not give a one for the truncated one. For detailed discussions on the truncate
moment problem readers are referred to [7, 8, 9, 15] for one dimensional cases and
[10, 11, 16] for multidimensional cases.

It is well-known that if αk’s are the k-th moments of a nonnegative function,
then both of the full and the truncated moment problems are solvable. For the
case with supp(µ) ⊂ R, the full moment problem (2) can be solved for any given
sequence by constructing a singed or a complex measure that satisfies (2) (see
[4, 13]). However, the truncated moment problem (3) is not solvable without certain
positivity structure even if complex solutions are included. If supp(µ) ⊂ C, even
the solvability of the full moment problem is not known without the positivity
restriction.

We have two purposes in this paper. The first one is to develop a theory to
generalize the truncated moment problem and drop the positivity restriction. To do
that we first introduce a nontrivial nonnegative function ϱ0(x) ≥ 0 for an imaginary
part and take a sequence of complex numbers

mk := αk + iβk, where βk :=

∫
xkϱ0(x)dx. (4)

The letter i is to denote the imaginary unit which should be easily distinguished
from the index i from the context. The truncated moment problem related to the
complex sequence mk in this paper is to find a complex measure µ such that

mk =

∫
xkdµ, supp(µ) ⊂ C, 0 ≤ k < 2n. (5)

We will only consider the discrete measure in an atomic representation dµ =∑n
i=1 ρiδ(z − ci)dx with ρi, ci ∈ C and, hence, (5) is written as

mk =

n∑
i=1

ρic
k
i , 0 ≤ k < 2n. (6)

We will show in Theorem 2.4 that there exists a nonnegative function ϱ0(x) such
that the complex moment problem (6) is solvable. As a result we may conclude
that, for any sequence αk ∈ R, there exist ρi’s and ci’s such that

αk = Re

(
n∑

i=1

ρic
k
i

)
, ρi, ci ∈ C, 0 ≤ k < 2n,

where Re(·) takes the real part of a complex number.
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The second purpose of this paper is to develop an approximation theory based on
moments. We do this as an application of the generalized truncated moment prob-
lem. (In fact, this application was the motivation for the generalized theory.) Note
that, due to the positivity restriction of the classical moment problem, only a posi-
tive solution to the heat equation was considered in [19]. However, the generalized
theory developed in this paper gives an approximation for general sign-changing
functions.

Consider the solution to the heat equation

ut = uxx, u(x, 0) = u0(x), u, x ∈ R, (7)

where the initial value u0(x) has finite moments up to 2n-th order, i.e., x2nu0(x) ∈
L1(R). One may consider u0(x) as the target function to be approximated. Let
αk(t) be the k-th order moment of the solution, i.e.,

αk(t) :=

∫ ∞

−∞
xku(x, t)dx, 0 ≤ k < 2n.

Note that the solution u(x, t) is not defined for a backward time t < 0 in general.
However, the moment at the backward time αk(−t0) with t0 > 0 is well defined
using the relations in (24) and we call it a backward moment. Notice that this back-
ward moment is not a moment of a nonnegative function even if u0(x) is positive.
Therefore, the classical theory of the moment problem is not applicable even for a
positive solution case if backward moments are considered.

However, the theory of the generalized moment problem, Theorem 2.4, gives us
ρi, ci ∈ C for any given t0 > 0 that satisfy

Re

(
n∑

i=1

ρic
k
i

)
= αk(−t0), 0 ≤ k < 2n. (8)

Let

φn(x, t) := Re

(
n∑

i=1

ρi√
4π(t+ t0)

e
−(x−ci)

2

4(t+t0)

)
, t > 0, x ∈ R. (9)

Then, since the heat kernels in (9) are delta sequences with weights ρi’s as t→ −t0,

lim
t→−t0

∫
xkφn(x, t)dx = Re(

n∑
i=1

ρic
k
i ) = αk(−t0), 0 ≤ k < 2n.

Since φn(x, t) is also a solution of the heat equation, φn(x, t) and u(x, t) share the
same moments up to order 2n− 1. This agreement of moments gives the following
asymptotic convergence (see [14, 19]):

∥u(x, t)− φn(x, t)∥p = O
(
t

1
2p−

2n+1
2

)
as t→ ∞. (10)

This convergence order indicates that φn(x, t) is a good approximation of the solu-
tion u(x, t) for t > 0 large.

In this paper we are more interested in the approximation of a general func-
tion, i.e., the initial approximation u0(x) ∼= φn(x, 0). Note that, if t0 = 0, then
limt→0 φn(x, t) is simply a summation of delta distributions. Hence, it is important
to take the backward moments with a positive backward time t0 > 0 to obtain cer-
tain regularity. In fact, if the initial heat distribution u0 is of age t0 > 0 (see [21] or
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Remark 1) and we take it as our backward time, then one may observe numerically
that

∥u0(x)− φn+1(x, 0)∥∞
∥u0(x)− φn(x, 0)∥∞

→ v

v + 2t0
as n→ ∞,

where the constant v > 0 may depend on the initial value. This geometric conver-
gence indicates that φn(x, 0) is a good approximation of the target function u0(x).
(Similar analysis has been given in [19] for the positive solutions with t0 = 0 and
t > 0.) One may compare this approximation technique to the Fourier integrals.
Several interesting properties are discussed in Section 6 (see Figures 1– 4).

This paper consists as the following. In Section 2 the truncated moment problem
is generalized to include complex measures. Then, arbitrary real sequence is em-
bedded to a complex sequence that its corresponding complex moment problem is
solvable. In Section 3 the relations for the backward moments of the heat equation
are given. Approximate solutions are constructed in Section 4 using the backward
moments and the generalized moment problem. Several properties of approximate
solutions are given in Section 5 for the special case with βk = 0. In Section 6
the property of approximation technique is discussed with a few numerical exam-
ples. Finally, in Section 7, the remaining issues in the generalized moment problem
and the approximation technique are discussed. Possible directions of the further
investigation of this study are also discussed.

2. Truncated moment problem with a complex density. In this section we
extend the theory of moment problem to complex measure space. The moment
problem (3) with arbitrary real αk’s will be understood as the real part of a complex
moment problem. Let βk be the k-th moment of a nonnegative function ϱ0(x) ≥ 0,
i.e.,

βk =

∫
xkϱ0(x)dx, 0 ≤ k < 2n,

and mk’s be a sequence of complex numbers given by

mk := αk + iβk, 0 ≤ k < 2n.

We will follow the routine of the classical moment problem to solve a complex valued
moment problem,

n∑
i=1

ρic
k
i = mk, 0 ≤ k < 2n, (11)

where we are looking for complex solutions ρi’s and ci’s. Let a column vector
hk ∈ Cn×1 and the Hankel matrix H ∈ Cn×n be given by

hk := (mk,mk+1, · · · ,mk+n−1)
t, 0 ≤ k ≤ n,

H := (mi+j), 0 ≤ i, j < n.
(12)

(Here, Cm×n stands for the collection of m × n complex matrices.) Note that
Hankel matrix is symmetric and that the j-th column is hj−1. Similarly, we take
the Hankel matrices and column vectors corresponding to the real sequences αk’s
and βk’s:

ak := (αk, αk+1, · · · , αk+n−1)
t, 0 ≤ k ≤ n,

bk := (βk, βk+1, · · · , βk+n−1)
t, 0 ≤ k ≤ n,

A := (αi+j), 0 ≤ i, j < n,
B := (βi+j), 0 ≤ i, j < n.

(13)
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The Hankel matrices and the moment vectors satisfy

H = A+ iB, hk = ak + ibk, k = 0, · · · , n.

Let 0 ̸= y ∈ Rn×1. Then,

ytBy =
n−1∑
i,j=0

yiyjβi+j =

∫ ( n−1∑
i,j=0

yix
iyjx

j
)
ϱ0(x)dx

=

∫ ( n−1∑
k=0

ykx
k
)2
ϱ0(x)dx > 0.

Hence, the matrix B is positive definite.

Lemma 2.1. Let A and B be n × n real symmetric matrices. If B is positive
definite, then
(i) The matrix H := A+ iB is non-singular.
(ii) For z ∈ Cn,

ztHz = 0 ⇐⇒ z = 0.

Proof. Let z := x + iy with x,y ∈ Rn×1 satisfy Hz = 0. Then, the linear system
Hz = 0 can be written as(

H2n

)( y
x

)
=

(
0
0

)
,
(
H2n

)
:=

(
B A
A −B

)
. (14)

Hence, if the 2n× 2n matrix H2n is invertible, then so is the n× n complex matrix
H. Since the matrix B is positive definite, it is invertible and a block elimination
gives (

I 0
−AB−1 I

)(
B A
A −B

)
=

(
B A
0 −(B +AB−1A)

)
.

Let x̃ = B−1Ax for any given x ∈ Rn×1. Then, Bx̃ = Ax and

xtAB−1Ax = (Bx̃)tB−1Bx̃ = x̃tBx̃ ≥ 0.

Therefore, AB−1A is at least semi-positive definite. Finally we have that the Schur
martix −(B +AB−1A) is negative definite and

det(H2n) = −det(B) det(B +AB−1A) < 0,

which completes the proof of the first part (i).
Let z = x+ iy satisfy ztHz = 0, i.e.,

ztHz = (xtAx+ ytAy) + i(xtBx+ ytBy) = 0.

Since B is positive definite, xtBx + ytBy = 0 implies x = 0 = y and hence
z = 0.

Since H is invertible, there exists a vector Ψ = (ψ0, · · · , ψn−1)
t that satisfies

HΨ = hn. (15)

This can be written as
∑n−1

j=0 ψjhj = hn or

mn+k −
n−1∑
j=0

ψjmj+k = 0, 0 ≤ k < n. (16)



6 YONG-JUNG KIM

Introduce an auxiliary polynomial,

gn(z) := zn −
n−1∑
j=0

ψjz
j , z ∈ C. (17)

Due to the fundamental theorem of algebra, there exist n complex zeros of the
polynomial gn(z) including multiplicities.

The next step is to investigate the multiplicity of zeros of the auxiliary polynomial
gn(z). To do that we consider a linear functional S(f) defined on the polynomial

space. For a given polynomial f(z) =
∑l

i=0 fiz
i, S(f) is defined by

S(f) := f0m0 + · · ·+ flml =

l∑
i=0

fimi =

l∑
i=0

fi(αi + iβi). (18)

One may easily see that this is the linear functional that gives the expectation of
the polynomial if the sequence mi’s are moments of a probability function. For
example, if mk =

∫
xkp(x)dx for all k, then

S(f) =

l∑
i=0

fimi =

l∑
i=0

fi

∫
xip(x) =

∫
f(x)p(x)dx. (19)

Since we are interested in the application to the solutions of the heat equation
in the real line, the moments mk’s and the functional S(f) are defined as a line
integral along the real axis. In general one may take a line integral and define

S(f) :=

∮
C

f(z)p(z)dz =

∫ 1

0

f(z(t))p(z(t))z′(t)dt,

where z = z(t) is a parametrization of a curve C. For example, the case with C = T ,
the unit circle in C, is called Toeplitz.

We set the conjugate of the polynomial f(z) =
∑l

i=0 fiz
i as

f(z) :=
l∑

i=0

f iz
i.

In the followings we consider basic properties related to this functional and the
zeros of the auxiliary polynomial gn(z).

Lemma 2.2. Let the imaginary part of mk’s be given by a positive density as in
(4) and the polynomial gn(z) and the linear functional S(f) be given by (17) and
(18), respectively. Then,
(i) If f ̸= 0, then S(ff) ̸= 0.
(ii) If f(z) = (z − c1) · · · (z − ck), then f(z) = (z − c1) · · · (z − ck).
(iii) The auxiliary polynomial gn(z) given by (17) satisfies

S(gn(z)z
k) = 0, 0 ≤ k < n. (20)

Proof. (i) Let 0 ̸= f(z) =
∑l

i=0 fiz
i. Then, f(z)f(z) =

∑l
i,j=0 f ifjz

i+j . Therefore,

by Lemma 2.1(ii),

S(ff) =

l∑
i,j=0

f ifjmi+j = f
t
Hf ̸= 0,

where f = (f0, f1, · · · , fl)t.
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(ii) Let f(z) = (z − c1) · · · (z − ck) =
∑k

i=0 fiz
i. Then, the coefficients fi’s are

given by

fi =
∑
I∈Ai

(∏
j∈I

cj

)
,

where Ai is the collection of all index sets consists of k − i indices. Hence,

f i =
∑
I∈Ai

(∏
j∈I

cj

)
=
∑
I∈Ai

(∏
j∈I

cj

)
.

In other words f(z) = (z − c1) · · · (z − ck). The last claim (iii) is obtained by
comparing (16) and (17), i.e.,

S(gn(z)z
k) = mn+k −

n−1∑
j=0

ψjmj+k = 0, 0 ≤ k < n.

Lemma 2.3. Let the imaginary part of mk’s be given by a positive density as in
(4) and the polynomial gn(z) be given by (17). Then,
(i) If c ∈ C \R is a zero of gn(z), then its conjugate c̄ is not.
(ii) There is no real zero of gn(z) with multiplicity two or higher.
(iii) If αk = 0 for all k’s and ϱ0(x) ≥ 0 is non-trivial, then gn(z) has n-distinct
complex zeros.

Proof. (i) Suppose that c and its conjugate c̄ are zeros of the polynomial gn(z).
Then one may write

gn(z) = (z − c)(z − c̄)(z − c3) · · · (z − cn).

Let h(z) = (z − c)(z − c3) · · · (z − cn). Then,

gn(z)(z − c̄3) · · · (z − c̄n) = h̄(z)h(z).

The linearity of the operator S, given by (18), and Lemma 2.2(iii) imply that

S(gn(z)(z − c̄3) · · · (z − c̄n)) = 0.

However, Lemma 2.2(i) implies that S(h̄h) ̸= 0. Therefore, if a c ∈ C is a zero of
gn(z), then its conjugate c̄ is not.

(ii) Suppose that gn(z) has a real zero of multiplicity of two or higher, say a ∈ R.
Then we may write

gn(z) = (z − a)2(z − c3)(z − c4) · · · (z − cn).

Let h(z) = (z − a)(z − c3) · · · (z − cn). Then, since ā = a,

gn(z)(z − c̄3) · · · (z − c̄n) = h̄(z)h(z).

The arguments in the previous step derive the same contradiction. Therefore, gn(z)
has no real zero of multiplicity two or higher.

(iii) Suppose that c = a+ ib is a complex zero of gn(z) with multiplicity two or
higher. First, b ̸= 0 from (ii). Then we may write

gn(z) = ((z − a)− ib)2h(z), h(z) = (z − c3) · · · (z − cn).
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Since (z − a)h̄(z) is a polynomial of degree n − 1, the linearity of S and Lemma
2.2(iii) imply that S(gn(z)(z − a)h̄(z)) = 0. Since ak = 0 for all k, mk = iβk and
hence

S(gn(z)(z − a)h̄(z)) = i

∫
[(x− a)3 − b2(x− a)− 2ib(x− a)2]h̄(x)h(x)ϱ0(x)dx.

The real part gives ∫
2b(x− a)2h̄(x)h(x)ϱ0(x)dx = 0.

Since the integrand is non-negative, it contradicts to the assumption that ϱ0(x) ≥ 0
is non-trivial. Hence, there is no zero of multiplicity two or higher.

Theorem 2.4. Let a sequence αk ∈ R, 0 ≤ k < 2n, be given. Then, there exists a
positive density function ϱ0(x) ≥ 0 such that, for the complex sequence

mk := αk + iβk with βk :=

∫
xkϱ0(x)dx, 0 ≤ k < 2n,

the truncated complex moment problem,

n∑
i=1

ρic
k
i = mk, 0 ≤ k < 2n, (21)

has a solution set ρi, ci ∈ C which is unique up to reordering. Hence, αk =
Re(

∑n
i=1 ρic

k
i ) for 0 ≤ k < 2n.

Proof. First we show the following claim.
Claim: There exists a function ϱ0(x) ≥ 0 such that the auxiliary polynomial

gn(z) := zn −
∑n−1

i=0 ψiz
i has n-distinct zeros, where Ψ := (ψ0, · · · , ψn−1)

t is the
unique solution to (15):

Let f(x) ≥ 0 be a non-trivial nonnegative function and

γk(f, τ) = ταk + ifk, fk :=

∫
xkf(x)dx.

For a given τ ≥ 0, let gn(z; f, τ) be the auxiliary polynomial decided by the mo-
ments γk(f, τ). (Hence, gn(z) in the theorem can be written as gn(z; ϱ0, 1).) We
already know that gn(z; f, 0) has n-distinct zeros, Lemma 2.3(iii), and hence there
exists τ0 > 0 such that gn(z; f, τ0) also has n-distinct zeros by the continuity
argument or the implicit function theorem. Set ϱ0(x) := f(x)/τ0. Then, since
βk :=

∫
xkϱ0(x)dx = fk/τ0,

γk(f, τ0) = τ0αk + ifk = τ0(αk + iβk) =: τ0mk.

Therefore, the corresponding linear systems (15) to the two sequences γk(f, τ0) and
mk are identical and hence gn(z; ϱ0, 1) = gn(z; f, τ0), which completes the proof of
the claim.

Now we show the solvability of the complex moment problem (21). Let ci’s be the
n distinct zeros of the polynomial gn(z) for i = 1, · · · , n. Since ci’s are distinct, there
exists a unique solution that solves the first n equations in (21), i.e., for 0 ≤ k < n.
Now we complete the proof using inductive arguments. Let 0 ≤ l ≤ n − 1. We
will show that the equation in (21) holds for k = n + l under the assumption that
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the equations hold for all 0 ≤ k < n + l. First observe that, since ci’s are zeros of
zlgn(z), l ≥ 0,

cn+l
i =

n−1∑
j=0

ψjc
j+l
i for any 1 ≤ i ≤ n, k ≥ 0.

Using the relations (16) and (21) for k < n+ l, we obtain

mn+l =

n−1∑
j=0

ψjmj+l =

n−1∑
j=0

ψj

n∑
i=1

ρic
j+l
i =

n∑
i=1

ρi

n−1∑
j=0

ψjc
j+l
i =

n∑
i=1

ρic
n+l
i .

Hence, (21) holds for k = n+ l and hence for all 0 ≤ k < 2n by induction.

In Lemma 2.3(iii) the assumption αk = 0 was needed to show that gn(z) has
n-distinct zeros. If one may show it without this assumption, then the solvability
of the complex moment problem (21) is given for an arbitrary nontrivial imaginary
part ϱ0(x) ≥ 0.

3. Backward moments of solutions to the heat equation. Let w(z, t) be the
solution to the heat equation with a complex initial value, i.e.,

wt = wxx, w(x, 0) = w0(x), t > 0, x ∈ R, w ∈ C. (22)

It is assumed that the initial value w0(x) decays fast enough as |x| → ∞ to get its
k-th order moment γk(t) be well defined,

γk(t) =

∫ ∞

−∞
xkw(x, t)dx, k = 0, · · · , 2n− 1 (23)

at least for the initial time t = 0. One can easily show how these moments evolve
as the time t increases or decreases.

Lemma 3.1. Suppose that the initial value w0(x) has finite moments up to 2n-th
order, say x2nw0(x) ∈ L1(R). Then the moments of the solution w(x, t) at time
t ≥ 0 are given by

γ2k(t) =
∑k

l=0
(2k)!

(k−l)!(2l)! t
k−lγ2l(0),

γ2k+1(t) =
∑k

l=0
(2k+1)!

(k−l)!(2l+1)! t
k−lγ2l+1(0).

(24)

Furthermore, the summations in (24) are well defined for all t ∈ R and identical to
the moments of the solution to the backward heat equation if it is solvable up to the
given backward time.

Proof. Integrating by parts gives

γ′0(t) =

∫
wtdx =

∫
wxxdx =

[
wx

]∞
−∞ = 0,

γ′1(t) =

∫
xwtdx =

∫
xwxxdx =

[
xwx − w

]∞
−∞ = 0.
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Hence, γ0(t) = γ0(0) and γ1(t) = γ1(0) are constants which gives (24) for k = 0 and
1. For k ≥ 2,

γ′k(t) =

∫
xkwtdx =

∫
xkwxxdx

=
[
xkwx − kxk−1w

]∞
−∞ +

∫
k(k − 1)xk−2wdx

= k(k − 1)γk−2(t).

Hence, in summary, we have

d

dt
γk(t) =

{
0 , k = 0 or 1,

k(k − 1)γk−2(t), k ≥ 2.

This relation shows that the even ordered moments and the odd ordered ones evolve
independently and can be obtained inductively by integrating lower order moments.
The formulas in (24) can be easily verified in that manner.

Consider a column vector m2n(t) = (γ0(t), · · · , γ2n−1(t))
t and the 2n×2n matrix

A(t) that consists of the coefficients in (24). Then,

m2n(t) = A(t)m2n(0).

One may easily check that the matrix multiplication A(t)A(−t) gives the identity
matrix for all t > 0. Hence A(t) is non-singular and the last sentence of the lemma
is clear.

Remark 1. A heat distribution f(x) is called of age t0 ≥ 0 if t0 is the supremum
of τ ∈ R+ such that there exists a function w0(x), where the solution to the heat
equation,

wt = wxx, w(x, 0) = w0(x), t > 0, x ∈ R,

satisfies w(x, τ) = f(x). One may find an estimate of such an age for a positive
case from [21]. However, Lemma 3.1 indicates that moments of the solution to the
backward heat equation can be easily computed even if the backward problem itself
is not solvable. This is not strange at all. Since for any given t0 > 0 there may
exist W0(x) such that it has an age of t0 or older and shares the same moments up
to order 2n− 1 with w0(x). Then the backward moments can be considered as the
ones for the solution with W0(x) as its initial value.

4. Asymptotic approximation using backward moments. Let u(x, t) be the
solution to the heat equation with a real initial value u0(x) where x2nu0(x) is
integrable. Let αk(t) be the k-th order moments, i.e.,

αk(t) :=

∫
xku(x, t)dx, 0 ≤ k < 2n. (25)

Then, for any t0 > 0, the backward moment αk(−t0) is well defined by (24) (not
by (25) ). Let ϱ0(x) ≥ 0 be a density function in Theorem 2.4 corresponding to the
sequence αk := αk(−t0) and ϱ(x, t) be the solution of the heat equation

ϱt = ϱxx, ϱ(x,−t0) = ϱ0(x).

Then, Theorem 2.4 implies that, for

βk(t) :=

∫
xkϱ(x, t)dx, 0 ≤ k < 2n, (26)
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there exist ρi, ci ∈ C that satisfy

n∑
i=1

ρic
k
i = mk := αk(−t0) + iβk(−t0). (27)

Now we employ these ρi’s and ci’s to construct an approximation

Φn(z, t) ≡
n∑

i=1

ρi√
4π(t+ t0)

e−(z−ci)
2/4(t+t0). (28)

It is clear that this linear combination of complex heat kernels is also a solution to
the heat equation. Let

w(x, t) = u(x, t) + iϱ(x, t).

Then, due to the linearity of the heat equation, the complex valued function w(x, t)
is a solution to the heat equation

wt = wxx, w(x, 0) = u0(x) + iϱ(x, 0), t > 0, x ∈ R. (29)

Since Φn(z, t) →
∑n

i=1 ρiδ(z − ci) as t → −t0, the backward moments of Φn(x, t),
0 ≤ k < 2n, are given by

lim
t→−t0

∫
xkΦn(x, t)dx =

n∑
i=1

ρic
k
i = αk(−t0) + iβ(−t0). (30)

Therefore, from the relations (24), we may conclude that Φn(x, t) and w(x, t) share
the same moments up to order 2n− 1. If the real parts are compared, then∫

xku(x, t)dx =

∫
xkRe(w(x, t))dx =

∫
xkRe(Φn(x, t))dx,

and hence the solution u(x, t) and the real part of the approximation Re(Φn(x, t))
share the same moments up to order 2n− 1. Let

φn(x, t) := Re(Φn(x, t)).

Then φn(x, t) is the approximation of the solution u(x, t) which is our candidate to
replace the integral formula of the solution.

We summarize the results in the following theorem.

Theorem 4.1. Let u(x, t) be the solution to the heat equation with an initial value
u0(x) such that x2nu0(x) is integrable. Then, for any given t0 > 0, there exist
ρi, ci ∈ C such that∫

xkφn(x, t)dx =

∫
xku(x, t)dx, 0 ≤ k < 2n,

where

φn(x, t) := Re
( n∑

i=1

ρi√
4π(t+ t0)

e−(x−ci)
2/4(t+t0)

)
.

Note that u(x, t) and φn(x, t) share the same moments up to order 2n−1 all the
time and are getting similarly smeared as t increases. Hence, it is natural to expect
that φn(x, t) approaches to u(x, t) fast as t → ∞. The convergence order in this
situation has been obtained in [14, 19] using the agreement of moments, which is
the one in the following theorem. The proof is same as the ones in [19] and omitted
here.
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Theorem 4.2. Let u(x, t) and φn(x, t) be the ones in Theorem 4.1 under the same
conditions. Then, for 1 ≤ p ≤ ∞,

lim
t→∞

t
2n+1

2 − 1
2p ∥φn(t)− u(t)∥p =

∥∂mx (e
−x2

4 )∥p√
4π

∣∣∣ ∫ E2n(x)dx
∣∣∣ <∞, (31)

where

E0(x) := φn(x, 0)− u(x, 0)

and

Ek(x) :=

∫ x

−∞
Ek−1(y)dy, 0 < k ≤ 2n. (32)

This theorem gives a surprising conclusion. Even if the n × n Hankel matrix
of a real valued solution u(x, t) is singular, one may construct a complex valued
approximation Φn(z, t) defined on the complex plane by choosing an imaginary
part ϱ0(x). There are various ways to choose the imaginary part and a different
imaginary part gives a different approximation. However, all of them share the
same real part of the moments and show good behavior for t > 0 and n > 0 large.
It is natural to ask a criterion to choose the best imaginary part ϱ0(x) ≥ 0 in a
unique way. However, we do not have such a criterion.

5. Truncated moment problem without an imaginary part. In this section
we consider the complex moment problem with zero imaginary part ϱ0(x) = 0. In
other words we consider complex solutions ρi, ci ∈ C that solve

n∑
i=1

ρic
k
i = αk ∈ R, 0 ≤ k < 2n. (33)

It is well-known that, if αk’s are moments of a nonnegative function, this problem
has real solutions. Here we are interested in the case that αk’s are not necessarily
moments of a nonnegative function. This moment problem is not solvable in general
even if complex solutions are considered. In particular the Hankel A given in (13)
can be singular. In this section we consider the property of solutions of the moment
problem and the approximation solution

Φn(z, t) ≡
n∑

i=1

ρi√
4πt

e−(z−ci)
2/4t

for the case that (33) is solvable.

Theorem 5.1. Let αk’s be real numbers. Suppose that the n × nHankel matrix
A = (αi+j) is invertible and the auxiliary polynomial gn(z) has n distinct zeros. (i)
If ci is a complex zero of gn(z), then its conjugate ci is also a zero. (ii) If cj = ci,
then ρj = ρi. (iii) The restriction of Φn(z, t) to the real line is real valued.

Proof. (i) Since αk’s are real, the Hankel matrix A and the vector an in (13) are
real ones. Hence the solution Ψ to the linear problem AΨ = an consists of real
numbers and hence the polynomial gn(z) = zn −

∑n−1
k=0 ψkz

k is of real coefficients.
Hence if gn(z) has a complex zero, its conjugate is also a zero.

(ii) After reordering the sequence one may assume that c2j−1 = c2j for j =
1, · · · , l and ci’s are real numbers for j > 2l. Let

ak,2j−1 := ck−1
2j−1 + ck−1

2j , ak,2j := i(ck−1
2j−1 − ck−1

2j ).
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Then, since c2j−1 = c2j , these ak,i’s are real numbers for 0 < i ≤ 2l. We will
show that the solution ρi’s are given in the form of ρ2j−1 = x2j−1 + ix2j and
ρ2j = x2j−1 − ix2j with x2j , x2j−1 ∈ R for j = 1, · · · , l. If so and the first n
equations in (33) are written in terms of xi’s, then one obtains

a1,1 · · · a1,2l c02l+1 · · · c0n
... · · ·

...
... · · ·

...

a2l,1 · · · a2l,2l c2l−1
2l+1 · · · c2l−1

n

a2l+1,1 · · · a2l+1,2l c2l2l+1 · · · c2ln
... · · ·

...
... · · ·

...
an,1 · · · an,2l cn−1

2l+1 · · · cn−1
n





x1
...
x2l
ρ2l+1

...
ρn


=



α0

...
α2l−1

α2l

...
αn−1


. (34)

Furthermore, the solutions to (34) gives the solution to (33) by simply setting
ρ2j−1 = x2j−1 + ix2j and ρ2j = x2j−1 − ix2j for j = 1, · · · , l. Therefore, the
existence of such ρi’s is equivalent to the solvability of (34).

One may easily check that the real matrix is obtained from the n × n Vander-
monde matrix that gives the first n-equations in (33) by simply adding two columns
or subtracting one from another. (Remember that the ij-component of the Vander-
monde matrix is ci−1

j .) One may also easily show that the n × n matrix in (34) is
invertible since the Vandermonde is invertible. In other words there exist ρi’s and
ci’s satisfying the claims of the theorem. Since the solution to the moment problem
is unique, these are the ones.

(iii) Let x be a real number. Then

ρ√
4πt

e−(x−c)2/4t =
ρ√
4πt

e−(x−c)2/4t

Therefore,

ρ2j−1√
4πt

e−(x−c2j−1)
2/4t =

ρ2j√
4πt

e−(x−c2j)2/4t, 1 ≤ j ≤ l.

It is now clear that the restriction of Φn(z, t) to the real line is real valued.

Even if the moment problem (33) is not solvable in general, such a case is very
rare in the sense that it is of measure zero case. Hence it is important to include
complex solutions. In the approximation of a general function, the complex heat
kernel is used. The use of complex heat kernels makes the control of moments
possible. The extension of the heat equation to the complex field seems to be
natural to understand the mechanism well. Note that, even if ρi’s and ci’ are
complex numbers, the restriction of Φn(z, t) to the real numbers has real values.

6. Structure of the approximation. In this section we numerically investigate
the property of the approximation

φn(x, t) := Re
( n∑

i=1

ρi√
4π(t+ t0)

e−(z−ci)
2/4(t+t0)

)
,

which was constructed in previous sections. This approximation is uniquely given
after a choice of the backward time t0 and an imaginary part ϱ0(x). We do not have
a criterion to choose better t0 and ϱ0. In this section we just observe how these
choices may make a difference.
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6.1. Approximation using a single heat kernel. The case that clearly shows
the benefit of using the complex moment problem over the real one is the single
heat kernel case (n = 1). A fundamental solution is frequently considered as a
canonical solution of various problems. In many cases fundamental solutions are
given explicitly and play key roles in the analysis of general solutions. For the heat
equation case it is given by the Gaussian which is also called the heat kernel. The
real valued heat kernel is a signed function and hence it could not play as a canonical
solution for a sign-changing ones. In the following examples we will see how a single
heat kernel in the complex plane can show the behavior of sign-changing solutions.

The initial value of the first example is

u0(x) :=
1√
4π

e
−(x+1)2

4 − 1√
8π

e
−x2

8 . (35)

Then the first two moments of the solution u(x, t) are given by

α0(t) = 0, α1(t) = 1.

Since they are constants, the backward moments are also given by α0(−t0) = 0
and α1(−t0) = 1 for any backward time t0 > 0. For the case n = 1, the complex

function Φ1(z, t) = ρ1√
4π(t+t0)

e
−(z−c1)2

4(t+t0) is obtained by solving the following two

moment equations

ρ1 = 0, c1 ρ1 = 1.

However, in this case, the corresponding 1× 1 Hankel matrix A is the zero matrix
which is singular. It is clear that this moment problem is not solvable even if the
complex solutions are allowed. Therefore, one should introduce an imaginary part
to control two moments. Let w(x, t) be a complex valued solution to the heat
equation with an initial value

w0(x) := u0(x) + iϱ0(x), ϱ0(x) := ϕ(x+ 0.5, 1),

where ϕ(x, t) is the heat kernel. Then the real part of the complex solution w(x, t)
is just u(x, t) for any choice of the imaginary part ϱ0(x). However, the real part of
its approximation Φ1(x, t) depends on the choice of ϱ0(x). Under the above choice
of ϱ0(x), the first two moments are given by α0(t) = i and α1(t) = 1− 0.5i. Then
the corresponding moment equations are

ρ1 = i, c1 ρ1 = 1− 0.5i.

The solution of the moment problem is

ρ1 = i, c1 = −0.5− i.

Let φ1(x, t) be the restriction of the real part of the approximation Φ1(z, t) to

the real line, i.e., φ1(x, t) := Re( ρ1√
4π(t+t0)

e−(x−c1)
2/4(t+t0)). Then the optimal con-

vergence order is obtained even for the case that the corresponding Hankel matrix
is singular. The convergence order is written as

lim
t→∞

t(
3
2−

1
2p )∥u(t)− φ1(t)∥p =

∥∂2ξ (e−
1
4 ξ

2

)∥p√
4π

∣∣∣ ∫ ∞

−∞
E2(x)dx

∣∣∣ <∞,

where 1 ≤ p ≤ ∞ and

E2(x) =

∫ x

−∞

∫ y

−∞
[φ1(s, 0)− u0(s)]dsdy.
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0.4

0.2

0

8-8 -4 0 4

-0.2

0.6

(a) Initial approximation

0

105-10-15

0.05

0

0.1

-5 15

0.15

(b) Approximations at time t = 5

Figure 1. The exact solution is given in a line. Single heat kernel
using a real Gaussian is given in dots. However, the complex Gauss-
ian with an imaginary part, circles, gives a sign-changing behavior
and a better approximation.

If α0 ̸= 0, then the approximation of the optimal order can be obtained without
using an imaginary part. For the second example, consider such a case with an
initial value

u0(x) :=
4√
4π

e
−(x+1)2

4 − 3√
8π

e
−x2

8 . (36)

This initial value is given in Figure 1(a) with a solid line (red). Then, the zero-th
moment is α0 = 1 and hence the Hankel matrix A is non-singular. The approxima-
tion without the imaginary part has been computed using a backward time t0 = 1
which is given in Figure 1(a) in dots. In this case the real valued Gaussian is a
nonnegative function. On the other hand an approximation using the following
imaginary part,

ϱ0(x) = 4ϕ(x+ 0.5, 1)
(
=

4√
4π

e
−(x+0.5)2

4

)
,

is given in circles. Notice that, since the backward moments were used, the initial
approximations are not spiky and the initial difference is not so big even if only one
heat kernel is used. Furthermore, the case with an imaginary part, the behavior
of sign-change is also observed using only a single heat kernel. In Figure 1(b) the
evolution of the single heat kernels are given at time t = 5 with the exact solution.

6.2. Initial approximations using many heat kernels. The asymptotic con-
vergence order in Theorem 4.2 indicates that φn(x, t) is a good approximation of the
solution u(x, t) for t ≥ 0 large. In fact, a similar approximation showed an excellent
asymptotic behavior in numerical tests in [19]. If one also obtains a good initial
approximation using backward moments, then it will complete the approximation.
In the following tests we mostly consider the initial approximation using backward
moments at t0 > 0. Note that this initial approximation is not actually related to
the heat equation. One should consider it as a nonlocal approximation technique
based on a moment control.

6.2.1. Continuous initial values. Consider the smooth initial value in (36) as the
first example in this section. Using this initial value the backward heat equation can
be solved up to backward time t0 = 1. Hence one may say that the age of this initial
value is 1, and it seems that taking backward time t0 = 1 will give the best result.
In Figure 2(a) an approximation using backward moment with the backward time
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0.6

0.4

0

-0.2

4-4

0.2

80-8

(a) backward time t0 = 0.2

0.4

8

0

-0.2

-4

0.6

4

0.2

0-8

(b) backward time t0 = 0.4

Figure 2. Initial approximations with n = 10 agree very well if
the age of the initial heat distribution is not zero and the backward
time is relatively close to it. In this example the age of the initial
heat distribution (36) is 1.

1

0.5

-1

-1.5

-0.5

1-1 2

0

-2

0-2

(a) backward time t0 = 0.01

-1.5

-2

1

0

-0.5

-1

210-1-2

0.5

(b) backward time t0 = 2.0

Figure 3. The non-smooth initial value (37) is approximated us-
ing 10 heat kernels. This example is to compare a small and a large
backward time. t0 = 0.1 gives a better fit.

t0 = 0.2 and n = 10 is given. Its imaginary part was not taken in this example. One
may observe a little bit of wiggling in this case. If the backward time approaches to
the maximum backward time t0 = 1, then the approximation agrees with the initial
value completely. In Figure 2(b) an approximation with t0 = 0.4 is given. Even if
the backward time is increased to t0 = 4, the initial approximation gives a perfect
match.

The initial value for the second example is

u0(x) =

 2 sin(x) , −π
2 < x < 0,

sin(x) , 0 < x < π
2 ,

0 , otherwise,
(37)

which is continuous, but not differentiable. Graphs of the approximations are given
in Figure 3. The initial value u0(x) is given in solid (red) lines. Approximations
obtained from moment problem using the real Hankel matrixes are given in dots.
In Figure 3(a) a backward time t0 = 0.01 is used. One may observe certain os-
cillations in the smooth regions. However, this approximation gives pretty correct
approximation at the cusps.

In Figure 3(b) a bigger backward time, t0 = 2.0, is used. There is no oscillation
at all for this case. However, it gives a poor approximation for the cusps. This
approximation is too smooth to get it right. From this example, one may see that
some parts of the initial value requires small backward time and other parts larger
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(a) n = 10

0.2

0
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1
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(b) n = 20

0.2

0

0.8

0.6

0.4

1-1 2

1

0-2

(c) n = 40

Figure 4. Initial approximations of a discontinuous function show
oscillations. The backward time is t0 = 0.2. The size of the oscil-
lation is decreasing as n→ ∞.

1

1
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20-2

(a) t = 0.0025
-1

1

0.8

0.6

0.4

0.2

0
1 2-2 0

(b) t = 0.005

1

1

0.8

-1

0.6

0.4

0.2

0
20-2

(c) t = 0.01

Figure 5. The initial oscillations disappear quickly. In this com-
putation we set n = 40 and t0 = 0.2. The exact solution and its
approximation are given in lines and dots, respectively.

ones. Hence it seems desirable to develop a technique to take several backward time
(see Remark 5). Note that the figures are not to show the best fits. In fact the
backward time t0 = 0.1 gives a better fit.

6.2.2. Discontinuous initial values. Approximation of a discontinuous function gives
extra difficulties. In this section we consider a discontinuous initial value

u0(x) =

{
1 , −1 < x < 1,
0 , otherwise.

(38)

Then the exact solution u(x, t) is given by

u(x, t) =

∫ x

−∞
[ϕ(y + 1, t)− ϕ(y − 1, t)]dy. (39)

In Figure 4 one may observe that the initial approximation has an oscillating
behavior. In these examples a different kind of Gibb’s phenomenon is observed.
One can clearly see that the maximum error near the discontinuity is decreasing as
n increases. The pattern of the oscillation is also different. However, in Figure 5,
the oscillation disappears as time increases and the approximation agrees with the
exact solutions almost completely at t = 0.01. One can also say that, if the initial
value has regularity corresponding to the Figure 5(c), then the approximation using
corresponding backward time gives a perfect initial match.

An asymptotic convergence test is given in Table 1 that compares approximation
error for four cases doubling the time from t = 0.002 to t = 65.536. Two different
node numbers of n = 10 and n = 20 and two different backward times of t0 = 0.01
and t0 = 0.2 are tested. The errors are given in the uniform norm. One can clearly
observe the asymptotic convergence order given in Theorem 4.2. The convergence
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Table 1. An asymptotic convergence test is given with the initial
value (38). The errors are in the uniform norm. One may observe
the asymptotic convergence order given in Theorem 4.2.

n = 10, t0 = 0.01 n = 10, t0 = 0.2 n = 20, t0 = 0.01 n = 20, t0 = 0.2
t error order error order error order error order

0.002 1.33e-01 0.34 2.65e-01 0.23 3.21e-03 0.22 9.53e-02 0.23
0.004 8.31e-02 0.68 1.94e-01 0.45 1.22e-03 1.39 6.93e-02 0.46
0.008 3.17e-02 1.39 1.05e-01 0.88 7.78e-05 3.97 3.66e-02 0.92
0.016 4.79e-03 2.73 3.28e-02 1.68 3.05e-07 7.99 1.03e-02 1.83
0.032 1.86e-04 4.69 4.00e-03 3.03 6.00e-11 12.31 8.85e-04 3.54
0.064 1.79e-06 6.70 1.40e-04 4.84 1.12e-15 15.71 1.21e-05 6.19
0.128 5.86e-09 8.25 1.38e-06 6.66 4.57e-21 17.90 1.69e-08 9.49
0.256 9.59e-12 9.25 4.95e-09 8.13 7.91e-27 19.14 2.23e-12 12.89
0.512 1.05e-14 9.84 8.76e-12 9.14 8.64e-33 19.80 4.01e-17 15.76
1.024 9.16e-18 10.16 1.01e-14 9.76 7.44e-39 20.15 1.76e-22 17.80
2.048 7.14e-21 10.33 9.07e-18 10.12 5.67e-45 20.32 3.26e-28 19.04
4.096 5.24e-24 10.41 7.18e-21 10.30 4.06e-51 20.41 3.71e-34 19.74
8.192 3.73e-27 10.46 5.31e-24 10.40 2.83e-57 20.46 3.27e-40 20.11

16.384 2.61e-30 10.48 3.80e-27 10.45 1.94e-63 20.48 2.53e-46 20.30
32.768 1.82e-33 10.49 2.67e-30 10.47 1.32e-69 20.49 1.83e-52 20.40
65.536 1.26e-36 10.49 1.86e-33 10.49 8.90e-76 20.49 1.27e-58 20.45

order at time t > 0 is computed using the following relation:

asymptotic order ∼=
ln(∥u(t/2)− φn(t/2)∥∞/∥u(t)− φn(t)∥∞)

ln(1/2)
.

7. Discussions. In summary, the truncated moment problem has been generalized
in this paper to deal with complex measures. This extended theory helped us to
solve a truncated moment problem for any given real sequence by considering them
as the real parts of complex moments. The approximation theory for the solutions
to the heat equation is now completed for general sign-changing solutions using this
generalized theory. To obtain regularity in the initial approximation this method
has been developed by taking backward moments. As a result we have obtained
an approximation method for a function. There are several questions and issues
remaining related to this work. We discuss them in the following remarks.

Remark 2 (choice of the imaginary part ϱ0(x)). The construction of the asymptotic
approximation φn(x, t) depends on the choice of ϱ0(x). Theorem 2.4 gives the
existence of an imaginary part ϱ0(x) that allows the solvability of (21). On the
other hand it is clear that there are various choices of such an imaginary part.
However, we do not have any criterion to choose a better ϱ0(x).

Remark 3 (further theory for generalized moment problem). In this paper a gen-
eralized moment problem was introduced and only a minimum amount of its theory
was developed which was needed in the approximation technique. Certain analogies
of classical theory for the positive measure case should be developed. For example
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the solvability of (21) for an arbitrarily given non-trivial nonnegative imaginary
part is left conjectured.

Remark 4 (choice of the backward time t0 > 0). The construction of φn(x, t) also
depends on the choice of the backward time t0 > 0. The approximation

φn(x, t) := Re
( n∑

i=1

ρi√
4π(t+ t0)

e−(x−ci)
2/4(t+t0)

)
.

has some regularity even for the initial time t = 0 thanks to the backward time t0 >
0. This improves the initial approximation, in particular, if the initial value u0 is
smooth. It is natural to ask what is the optimal t0 to obtain the best approximation
result. One may consider the backward time t0 as an unknown and solve 2n + 1
equations

αk(−t0) = Re

(
n∑

i=1

ρic
k
i

)
, ρi, ci ∈ C, 0 ≤ k ≤ 2n.

The solvability of this highly nonlinear problem and the positivity of the back-
ward time t0 > 0 are interesting questions. The use of age of the initial profile is
introduced and used in [21, 27].

Remark 5 (distinct backward times ti ≥ 0). It is observed from Figure 3 that
certain regions of the initial approximation fit with small backward time and others
with larger ones. Hence one may give a freedom in choosing the backward time.
Consider

φn(x, t) := Re
( n∑

i=1

ρi√
4π(t+ ti)

e−(x−ci)
2/4(t+ti)

)
.

Here we have 3n freedom of choices in ρi’s, ci’s and ti’s. Hence it is natural to ask
if one may solve the following 3n equations:

lim
t→0

φn(x, t) = Re
( n∑

i=1

ρi√
4πti

e−(x−ci)
2/4ti

)
= αk, 0 ≤ k < 3n.

We do not have any clue to attack this problem. However, if this problem is solved,
then one might obtain an approximation that will fit both of smooth and non-
smooth regions.

Remark 6 (higher order asymptotics for nonlinear cases). The relation between
moments and asymptotic contraction order is well studied for the solutions to the
heat equation (see [14, 18, 19]). For nonlinear diffusion cases there is no such a
detailed results. However, asymptotic L1-contraction order of the similarity scale
and the order of O(t−1) have been obtained by setting the center of mass or tak-
ing a function space with finite second or higher order moments (see [5, 17]). One
challenging goal is to extend the higher asymptotic convergence order (31) to non-
linear problems. The Burgers equation is a special case that one may control the
moments using the Cole-Hopf transformation. In fact the same convergence order
corresponding to (31) has been obtained for the Burgers case in [6, 26]. Note that√
t is the similarity scale of the heat equation and the Burgers equation. It seems

that the agreement of an extra order of moment gives an extra asymptotic conver-
gence order of the similarity scale of the problem. A discussion about this relation
is given in [6].
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Remark 7. (heat equations in other forms) The heat equation on the whole real
line was considered and hence the moment problem of the Hamburger’s case has
been studied in this paper, i.e., K = R. The heat equation with a boundary can
be related to the moment problem of the Stieltjes or the Hausdorff cases. It seems
that the complex moment problem has a close relation to the heat equation on the
complex plane.
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