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ON THE COMPUTATION OF ROLL WAVES ∗
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Abstract. The phenomenon of roll waves occurs in a uniform open-channel flow down an incline,
when the Froude number is above two. The goal of this paper is to analyze the behavior of numerical
approximations to a model roll wave equation ut + uux = u, u(x, 0) = u0(x), which arises as a
weakly nonlinear approximation of the shallow water equations. The main difficulty associated with
the numerical approximation of this problem is its linear instability. Numerical round-off error can
easily overtake the numerical solution and yields false roll wave solution at the steady state. In this
paper, we first study the analytic behavior of the solution to the above model. We then discuss the
numerical difficulty, and introduce a numerical method that predicts precisely the evolution and steady
state of its solution. Various numerical experiments are performed to illustrate the numerical difficulty
and the effectiveness of the proposed numerical method.
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1. Introduction

The phenomenon of roll waves occurs in a uniform open-channel flow down an incline, when the Froude
number is above two. Such a physical problem is described by the river equations–the shallow water equations
with source terms modeling the balance between the slope and the friction of the river bottom. The two variables
are the depth h and the mean velocity v, solving the system

ht + (hv)x = 0 ,

(hv)t +
(
hv2 +

1
2
gh2
)
x

= ghS − Cfv2 , (1.1)

where g is the gravitational constant, S is the slope of the river bottom and Cf is the friction coefficient. It is
long known [26] that the initial value problem of the above system is linearly stable if

S < 4Cf , (1.2)

namely, when the model describes flow in a river bed where the slope S is usually small compared to the friction
coefficient Cf . When the system (1.1) is written in dimensionless form, the above inequality is equivalent to that
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the Froude number is smaller than 2. This condition may be violated for steep channels, where the uniform flow
eventually evolves to a series of breaking waves or bores that are separated by sections of gradually varying flow,
in a staircase pattern. Under suitable conditions these formations constitute discontinuous periodic traveling
waves, and are known as “roll waves” [25]. The phenomenon of roll waves has been actually observed (and
photographed!) in inclined spill ways and river beds, see Cornish [4].

The mechanism leading to the instability was revealed by Jeffreys [12] in an early study of roll waves. Dressler
constructed nonlinear periodic solutions that consist of piecewise smooth profiles separated by discontinuities
(shocks) using the river equations [6]. Novik [23] proposed to model the roll waves by a Burgers equation with
a source term. Continuous roll waves in the unstable regime were constructed by Needham and Merkin using
the river equations with a diffusive term in the momentum equation [22]. It was realized by Whitham [26],
and more recently explicitly formulated by Kranenburg [16], that one can obtain a weakly nonlinear asymptotic
approximation for (1.1), which turns out to be a Burger’s equation with a source term. Specifically, if one uses
the ansatz

h = h+ εh1(ξ, t) , v = v + εv1(ξ, t) , (1.3)

where h, v =
√
sgh/Cf are the equilibrium constants, ξ = (x− ct)/ε with c± = v ±

√
gh being the equilibrium

characteristic speeds, then the leading order approximation of (1.1) that corresponding to the wave speed c+
becomes (the readers are referred to the Appendix for details of this asymptotic result):

∂th1 +
3
2

√
g

h
h1∂xh1 =

√
g

h
s

(
1−

√
4Cf
s

)
h1 . (1.4)

The sign on the right hand side shows that, when the stability condition (1.2) is not satisfied, it induces
exponential growth, thus the linear instability of (1.4), just like the original system (1.1). However, the damping
mechanism of the nonlinear convection (known as the N-wave decay [20]) in the Burger’s equation provides a
competing force with the growth term, and under suitable conditions the solution does not tend to infinity.
For a periodic problem with zero total mass, it converges to the steady state “roll wave” solution which is a
bounded solution [16].

The model (1.4) arises not only in the river equations. It is the asymptotic approximation to general
hyperbolic systems with relaxations when some characteristic stability condition is violated. See [14] for details.
Theoretical justification of this asymptotic limit, with the addition of artificial viscosity, was made in [14].

Model (1.4), and its asymptotic origin, the river equations (1.1), are examples of hyperbolic systems with
geometrical source terms. In recent years there have been increasing interests in developing shock capturing
numerical methods for related problems that are able to capture the steady state solution with a better accuracy,
since it is known that a scheme that ignores the steady state structure of the equations will not produce accurate
steady state numerical solutions [10]. Several successful numerical approaches, which take into consideration of
the balance between the flux and the source term, exist in the literature [1–3,7,9,10,13,19,24]. All these methods
capture the steady state solutions either exactly or approximately with a formally second order accuracy.

Due to the instability of the roll wave, steady state preserving seems to be a necessary but not sufficient
condition for the computation of steady state roll waves using evolutional models such as (1.4) and (1.1), as
shown in Section 3. For such a physically unstable problem, the round-off errors, due to the finite precision
arithmetic, can easily build up and get amplified, which eventually destroys the long time and the steady state
structures of the roll wave solution. We have not found any report on the success of numerical computations of
the phenomena to be studied in this paper.



ON THE COMPUTATION OF ROLL WAVES 465

The goal of this paper is to analyze the behavior of numerical approximations to the model problem

ut + uux = u

u(x, 0) = u0(x), (1.5)

where x ∈ R, t ∈ R+, u0 ∈ L1 and u = u(x, t) ∈ R. We first study the analytic behavior of its solution in
Section 2. In Section 3 we discuss the numerical difficulty and introduce a numerical method that predicts
precisely the evolution and steady state of its solution. The key for the success of this new method is that it
preserves the zero mass over each period of the wave if odd number of cells is used over each period. More
numerical experiments are conducted in Section 4 and a few remarks are made to conclude the paper in Section 5.

2. Analytic behavior of the solution

2.1. General asymptotic behavior

We introduce the change of variables

s = et − 1, v = e−tu, (2.1)

then (1.5) is transformed to the inviscid Burgers equation,

vs + vvx = 0,

v(x, 0) = u0(x). (2.2)

The asymptotic behavior of inviscid problem has been studied in various contexts. It is well-known that a
classical solution does not exist in general, and hence weak solutions are considered in a distribution sense.
Since this kind of weak solutions are not unique, it is always considered with entropy condition which implies
the physically meaningful solution, [17].

Asymptotic behavior of the solution v(x, s) of (2.2) is determined by two invariant variables

p = − inf
x

∫ x

−∞
u0(y)dy, q = sup

x

∫ ∞
x

u0(y)dy, (2.3)

and an N-wave

Np,q(x, s) =

{
x/s, −√2ps < x <

√
2qs ,

0 , otherwise.
(2.4)

Note that if the initial total mass M =
∫∞
−∞ u0(y)dy and one of the two invariant constants are given, the other

one is obtained by

q = sup
x

∫ ∞
x

u0(y)dy = sup
x

(M −
∫ x

−∞
u0(y)dy) = M − p. (2.5)

We have an optimal estimate for the solutions of Burgers, (2.2), in Appendix B. If we translate it under the
change of variable (2.1) we get the following lemma.

Lemma 2.1. Let u(x, t) be the solution of (1.5). Suppose that the data have compact support supp(u0) ⊂ [A,B].
Then, for t > 0,

u(x, t) = 0, x < A−
√

2p(et − 1), x > B +
√

2q(et − 1), (2.6)
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and for B −
√

2p(et − 1) ≤ x ≤ A+
√

2q(et − 1)

A ≤ x− (1− e−t)u(x, t) ≤ B. (2.7)

In this lemma we can see that support of the solution of (1.5) expands exponentially and the solution has an
N-wave structure which can also be obtained from (2.4) after using the transformation (2.1). This gives

etNp,q(x, s(t)) =

{
x et

et−1 , −
√

2p(et − 1) < x <
√

2q(et − 1),

0, otherwise.

After neglecting the small terms in long time we get the following N-wave for (1.5)

Np,q(x, t) =

{
x, −

√
2p et/2 < x <

√
2q et/2,

0, otherwise,
(2.8)

which grows exponentially in time. Here we can clearly see that the invariance variables p, q for the Burgers
equation also play the key role in the asymptotic behavior of (1.5).

Remark 2.1. We are particularly interested in the case p = q = 0. In the case the N-wave (2.8) does not give
any information and hence we need more detailed analysis for the evolution of the solution. Nevertheless, the
lemma shows that the support of the solution is the same as the initial data. This implies that the solution has
no influence outside the initial support.

2.2. Emerging roll waves

In this section we prove that the solution of (1.5) converges to roll waves under certain conditions on the
initial data u0 ∈ L1

loc(R). The structure of emerging roll waves is decided by the structure of the initial data
and we can predict it from the initial data.

From the observation in Remark 2.1 it is natural to try to divide the domain of the initial data into sub-
domains on which the solution evolves independently. Here we introduce a natural concept for it. An interval
(ak, bk) is called self-contained if initial data satisfy

inf
ak<x<bk

∫ x

ak

u0(y)dy = 0, sup
ak<x<bk

∫ bk

x

u0(y)dy = 0. (H)

In the rest of the article we only consider initial data u0 ∈ L1
loc(R) which have a partition R = ∪k(ak, bk] that

consists of self-contained finite intervals. This condition is clearly satisfied by mean zero periodic functions.

Lemma 2.2. Let u0 ∈ L1
loc(R) be L-periodic and have mean zero, i.e.,

u0(x+ L) = u0(x),
∫ x+L

x

u0(y)dy = 0, x ∈ R.

Then there exists a partition R = ∪k(ak, bk] satisfying (H) for all k.

Proof. Let U0(x) =
∫ x

0
u0(y)dy. Since u0 has mean zero, U0 is also L-periodic. Since U0 is continuous, there

exists a ∈ [0, L] such that U0 attains its minimum at the point, x = a. Hence we get

inf
a<x<a+L

∫ x

a

u0(y)dy = 0, sup
a<x<a+L

∫ a+L

x

u0(y)dy = 0.

So we take the partition as ak = bk−1 = a+ kL.
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Suppose the initial data u0 ∈ L1
loc(R) have a partition satisfying (H). Let ψk(x, t) be the solution of (1.5)

with the initial data over an interval [ak, bk], i.e.,

ψk(x, 0) =

{
u0(x), ak < x < bk

0, otherwise.
(2.9)

Then one can easily check that u(x, t) =
∑
ψk(x, t) is the solution with initial data u0. This implies that

it suffices to consider the structure of the solution over each self-contained interval to determine the global
structure.

Convergence to roll waves has been studied in [21] when initial data are periodic and have mean zero and
the flux is strictly convex. We summarize some of the results we need in our context in the following lemma.

Lemma 2.3. Let u(x, t) be the solution of (1.5) with zero mean periodic initial data u0 ∈ C0(R) and let
Z(t) = {x ∈ R : u(x+, t) = u(x, t) = 0}. Then Z(t′) ⊂ Z(t) for all 0 < t < t′. If a, b ∈ Z(t) for all t > 0 and
there is no such a point between a and b, then the uniform convergence holds on [a, b],

u(x, t)→ Ra,b(x) =


x− a, a < x <

a+ b

2
,

x− b, a+ b

2
< x < b,

0 , otherwise,

as t→∞. (2.10)

The function Ra,b(x) is a steady state of (1.5). In fact all the functions given by
∑
Rai,bi(x) with ... ≤ ai <

bi ≤ ai+1 < ... are the steady states. Now we apply this result together with the previous observations to see
how the structure of the emerging roll waves is determined from its initial data.

Proposition 2.4. Let u(x, t) be the solution of (1.5) with continuous initial data u0 ∈ L1
loc(R) that has a

partition R = ∪k(ak, bk] consisting of self-contained intervals. Suppose that
∫ x
ak
u0(y)dy > 0 for all x ∈ (ak, bk)

and there are only finitely many number of zero points of u0 in (ak, bk). Then for all k, u(x, t)→ Rak,bk(x) as
t→∞ for x ∈ [ak, bk].

Proof. Let ψk(x, t) be the solution of (1.5) with initial data (2.9). Since suppψk ⊂ [ak, bk] for all k, the solution
u(x, t) over the interval (ak, bk) is same as the solution ū(x, t) of (1.5) with periodic initial data,

ū(x, 0) = u0(x), ak < x < bk, ū(x+ L, 0) = ū(x, 0),

where L = bk − ak. The generalized characteristics through the end points ak, bk are strait lines x = ak, x = bk
and they do not intersect any of the shock since p = q = 0. So ak, bk ∈ Z(t) for all t > 0.

Suppose that there exists ck ∈ (ak, bk) such that ck ∈ Z(t) for all t > 0 and there is no such a point between
ak and ck. Then Lemma 2.3 implies that u(x, t) → Rak,ck(x) for all x ∈ (ak, ck) and hence

∫ ck
ak
u(x, t)dx → 0.

On the other hand we have

d

dt

∫ ck

ak

u(x, t)dx =
∫ ck

ak

ut(x, t)dx =
∫ ck

ak

u(x, t)dx.

So
∫ ck
ak
u(x, t)dx = et

∫ ck
ak
u0(x)dx, which contradicts the fact

∫ ck
ak
u(x, t)dx→ 0. So there is no such a constant

ck and hence we get the convergence u(x, t)→ Rak,bk(x) for x ∈ [ak, bk].

With this proposition, we can determine the emerging roll waves from the initial data. In the following
example we consider a periodic initial data with mean zero.
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Example 2.5. Consider 1-periodic initial data,

u0(x) =

{
0.01 sin(8πx) + 0.001 sin(4πx), 0 < x < 0.5,

0.01 sin(8πx), 0.5 < x < 1.
(2.11)

We can easily check that
∫ x

0
u0(y)dy has minimum at x = 0, 1

2 ,
3
4 , 1 and hence (0, 1

2 ]∪ (1
2 ,

3
4 ]∪ (3

4 , 1] is a partition
of interval (0, 1] consists of self-contained intervals that satisfy the condition of Proposition 2.4. So for 0 < x < 1,
the solution converges to roll waves given by

u(x, t)→ R0, 12
(x) +R 1

2 ,
3
4
(x) +R 3

4 ,1
(x), as t→∞. (2.12)

2.3. Instability of roll waves

Variables

p(t) = − inf
x

∫ x

−∞
u(y, t)dy, q(t) = sup

x

∫ ∞
x

u(y, t)dy, (2.13)

are constants for the L1 solution u(x, t) of homogeneous conservation laws with convex flux, for example the
inviscid Burgers equation. So M(t) = q(t)− p(t) is also a constant. But for inhomogeneous problems like (1.5)
these are functions in time. One can easily check that the total mass M(t) satisfies

M ′(t) =
∫ ∞
−∞

ut(x, t)dx =
∫ ∞
−∞

u(x, t)dx = M(t),

and hence it grows exponentially. Suppose
∫ x
−∞ u(x, t)dx has infimum along a differentiable curve x = g(t),

then u(g(t), t) = 0, and hence

p′(t) = g′(t)u(g(t), t) +
∫ g(t)

−∞
ut(x, t)dx = p(t).

So we conclude that M,p, q are given by

M(t) = M(0)et, p(t) = p(0)et, q(t) = q(0)et. (2.14)

From (2.14) we can see that if p, q,M are initially zero,

p(0) = q(0) = M(0) = 0, (2.15)

these variables will remain zero all the time. However, if a small perturbation to the initial data makes (2.15)
be violated, then (2.14) shows exponential growth of this initial perturbation. This phenomenon contributes to
the numerical difficulty when solving the physically unstable problem, as will be shown in next section.

We can easily check the same kind of instability from periodic solutions. Suppose there is an partition
∪(ak, bk] of initial data u0 such that all the intervals are self-contained except one of them, say (a0, b0). Let
ψk(x, t) be the solution of (1.5) with initial data (2.9). Then we have suppψk ⊂ [ak, bk] except ψ0. According
to (2.14), ψ0(x, t) will grow exponentially, overtaking all of ψk(x, t) and diverging.

Remark 2.6. As we have seen in Lemma 2.2 condition
∫ x+L

x
u0(y)dy = 0 is enough for periodic initial data.

Then we can always find a partition consisting of self-contained intervals by taking the endpoints with infimum
points. In the rest of the article we always consider periodic initial data with the mean zero condition.
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3. Behavior of numerical solutions

In this section we consider the behavior of numerical schemes for the initial-boundary value problem of (1.5)
with initial data

u(x, 0) = − sin(πx), −1 < x < 1, (3.1)

and the periodic boundary condition. Since the initial data are periodic with zero mass, the solution should
remain periodic with zero mass for all time. In particular, the exact steady state solution to this problem, as
discussed in the previous section, is

Usteady state(x) = x− sign(x) , −1 < x < 1 . (3.2)

Our interest is to find a numerical method for such a problem that is able to capture the steady state roll
wave solution. The linear instability of the problem poses tremendous numerical challenges, and very careful
numerical computations are needed to obtain the correct solutions. As will be see later, in most of the cases,
numerical schemes do not converge to the steady state due to the numerical instability that is induced by the
physical instability. Even if they converge, they may converge to the wrong steady state solution.

We first introduce the notations. Consider a uniform mesh with mesh points xj+1/2 and width h, and a
uniform time step k, where j ∈ Z, n ∈ Z+. Let Uj(t) be the cell average approximation of u over the domain
[xj−1/2, xj+1/2], namely,

Uj(t) =
1
h

∫ xj+1/2

xj−1/2

u(x, t)dx, (3.3)

and Unj = Uj(tn). We also need Uj+1/2(t), approximation of u at xj+1/2:

Unj+1/2 ∼ u(xj+1/2, t), tn ≤ t < tn+1. (3.4)

Here Uj and Unj will be called the cell average of u, while Uj+1/2 and Unj+1/2 will be called interface value of u.
To derive a numerical discretization for (1.5), as in standard finite volume method, we integrating (1.5) over

the domain [xj−1/2, xj+1/2] to get

∂tUj +
1
h

((Uj+1/2)2 − (Uj−1/2)2) = Uj . (3.5)

When the time discretization is the forward Euler method, (3.5) is the Godunov method for the homogeneous
part, while the right hand side is the cell average of u. The fully discrete scheme takes the following form:

Un+1
j − Unj +

k

h
((Unj+1/2)2 − (Unj−1/2)2) = kUnj . (3.6)

This scheme will be called the cell-average method, since it uses the cell-average value of u in the source term.
Once the initial cell-average of u is given, (3.6) can be used after specifying the numerical flux Uj+1/2.

Different definition of the flux gives different shock capturing method, and we leave it unspecified until later on
in this section.
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Let us consider the evolution of the total mass

Mn = ΣjUnj (3.7)

in the above method. Summing over j on (3.6) one gets

Mn = (1 + k)Mn−1 = (1 + k)nM0. (3.8)

So if the initial total mass M0 of the numerical solution is not identically zero, the mass Mn will grow al-
gebraically and eventually becomes unbounded. Thus the success of a method for this problem depends on
whether the method preserves the zero mass.

We also consider another scheme, introduced in [13] for numerical capturing of the steady state of hyperbolic
systems with geometrical source terms:

Un+1
j − Unj +

k

h
((Unj+1/2)2 − (Unj−1/2)2) =

k

2
(Unj+1/2 + Unj−1/2). (3.9)

This scheme has the property of steady state preserving, namely, when the solution tends to steady state, (3.9)
becomes

1
h

((Unj+1/2)2 − (Unj−1/2)2) =
1
2

(Unj+1/2 + Unj−1/2) ,

or

Unj+1/2 − Unj−1/2 = 0 . (3.10)

(3.10) is clearly a second order approximation of the steady state solution (3.2) at cell [xj−1/2, xj+1/2]. This
method will be referred to as the interface method.

In order to define the numerical flux, we use the Roe method [18]:

Unj+1/2 =

{
Unj , if Unj + Unj+1 ≥ 0,

Unj+1 , if Unj + Unj+1 < 0,
(3.11a)

with the entropy fix

Unj+1/2 = 0 , if Unj < 0, Unj+1 > 0 . (3.11b)

We solve (1.5) with initial data being the cell average of (3.1):

u0
i =

1
π∆x

[
cos(xi +

∆x
2

)− cos(xi −
∆x
2

)
]

(3.12)

and use one ghost cell on each side of the domain. Periodic condition with period 2 is used to define the
cell-average values at the ghost cells. All computations are made using double precision arithmetic. We conduct
the following comparisons between the two schemes introduced above using different (even or odd) number of
cells.

In the first experiment, we use odd number (51) of cells (so in the middle cell of the domain u0 = 0) and
∆t = 0.02. In this set up, it is rather easy to shown that the interface method (3.9) along with the Godunov
flux (3.11) preserves the zero mass exactly, namely,

Mn = Mn−1 = M0 . (3.13)
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Table 3.1. Comparison of the interface method with the cell-average method using 51 cells.

Interface method Cell-average method

Time t T Mass M(tn) L1 error Mass M(tn) L1 error

0 –2.242130D-16 7.663521D-01 –2.242130D-16 7.663521D-01
5 –4.226220D-16 7.613592D-02 –4.876090D-14 2.111572D-01
10 –4.720616D-16 6.712015D-02 –6.869538D-12 2.129453D-01
15 –5.323432D-16 6.647604D-02 –9.704359D-10 2.129582D-01
20 –4.130810D-16 6.642417D-02 –1.370912D-07 2.129584D-01
25 –4.237062D-16 6.641996D-02 –1.936657D-05 2.129777D-01
30 –4.026726D-16 6.641962D-02 –2.735871D-03 2.156942D-01
35 –4.440892D-16 6.641959D-02 –0.386490D+00 5.643326D-01
36 –4.421376D-16 6.641959D-02 –1.040272D+00 1.154394D+00
37 –4.174178D-16 6.641959D-02 –2.799985D+00 2.827958D+00
37.4 –4.297777D-16 6.641959D-02 –4.160631D+00 6.270405D+00
37.44 –4.371503D-16 6.641959D-02 –4.328721D+00 3.454927D+03
37.50 –4.169841D-16 6.641959D-02 –8.579398D+12 1.428020D+30

However, due to the finite machine precision, the mass Mn calculated from (3.12) is not exactly zero. Rather
it is a none zero number in the order of machine precision. This is not a problem for the interface method
since for this method (3.13) holds, thus the mass Mn will remain at the level of machine precision. As a
result, the solution of the interface method converges (as t→∞) to the correct steady state. However, for the
the cell-average method, (3.8) indicates that the initial mass M0, which is a non-zero number in the order of
machine precision, will be amplified by a factor of 1 + k after each time step. Consequently, the solution of the
cell-average method eventually becomes unbounded and can never converge to the steady state solution.

In Table 3.1 the numerical behaviors of the two methods are compared at various times. The interface
method preserves the zero mass up to machine precision, and converges to the steady state solution with an
error in L1 norm in the order of the mesh size. The cell-average method, however, fails to preserve the zero mass
in the long time, due to the amplification and accumulation of the round-off errors. The numerical solution
eventually becomes unbounded. Although for 5 < t < 30 the solution stays fairly close to the exact steady
state, but this error eventually increases and the solution never converges to a steady state. Figure 3.1 shows
the differences between the exact steady state and the two methods at t = 20. The solution of the interface
method is a converged steady state, while that of the cell-average method is only a transient solution and are
much less accurate than the interface method at this time.

We then study the convergence of the interface method by reducing the mesh size. We use 51, 101, 201, 401, 801
and 1601 cells respectively, and the corresponding time steps are ∆t = 0.02 ∗ 50/(number of cells − 1). In all
these meshes u0 = 0 at the middle cell of the domain. The results are displayed in Table 3.2, which shows the
first order convergence in L1 norm of the method as the mesh size goes to zero.

We now compare the results using 50 cells, while other parameters in the numerical set up remain the same.
In this case, u = 0 is no longer in any cell, and the source operator of the interface method breaks the symmetry
at both sides of x = 0, yields an increase in the mass. Thus the zero mass condition cannot be preserved at
the machine precision level after just one time step, and very soon (around t = 5.86) the numerical solution
becomes unbounded. The behavior of the cell-average method is pretty much the same as in the previous case,
the amplification and accumulation of the round-off errors eventually destroy the zero mass condition. The
results of both method are documented in Table 3.3. The result of the cell-average method at t = 5.5, as which
time the error between the numerical solution and the exact steady state is minimum, is shown in Figure 3.2.
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Figure 3.1. Exact steady state solution (solid line) versus the numerical solutions by the
interface method (*) and by the cell-average method (+) at time t = 20. There are 51 cells in
the domain [−1, 1], so in the middle cell u0 = 0.

Table 3.2. Convergence study of the interface method.

Number of cells L1 error

51 6.641959D-02
101 2.148659D-02
201 1.173174D-02
401 1.500430D-02
801 2.571934D-03
1 601 1.305071D-03

One should be informed that this is not a converged steady state solution. The figure only shows how close the
numerical solution can be to the exact steady state.

In summary, we are able to capture the steady state roll wave solution with the interface method (3.8)
along with the Godunov flux (3.10), under the condition that there are odd number of spatial cells over the
period of the solution (so u = 0 is a cell in the middle of the domain). One important criterion is that the
method preserves the zero mass. This method fails when there are even number of cells in the period, so do the
cell-average method for any number of cells, since they do not preserve the zero mass.



ON THE COMPUTATION OF ROLL WAVES 473

Table 3.3. Comparison of the interface method with the cell-average method using 50 cells.

Interface method Cell-average method

Time t Mass M(tn) L1 error Mass M(tn) L1 error

0 –1.444157D-16 7.747934D-01 –1.444157D-16 7.747934D-01
0.02 5.01993D-05 7.693004D-01 –9.454242D-17 7.716586D-01
1 4.219994D-02 3.758393D-01 –2.675810D-16 4.157055D-01
2 9.463334D-02 2.196706D-01 –9.376180D-16 2.288907D-01
3 2.633120D-01 3.267345D-01 –2.224349D-15 1.917004D-01
4 7.157849D-01 7.505731D-01 –5.689893D-15 1.887776D-01
5 1.936042D+00 1.936042D+00 –1.554485D-14 1.905798D-01
5.5 3.176304D+00 3.176304D+00 –2.564875D-14 1.912405D-01
5.86 –8.541924D+00 4.467215D+14 –3.669980D-14 1.924447D-01
10 –2.287877D-12 1.924447D-01
20 –4.747947D-08 1.924588D-01
30 –9.951297D-04 1.914637D-01
39 –7.711095D+00 7.711095D+00
39.14 –8.863705D+00 6.004777D+06
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Figure 3.2. Exact steady state solution (solid line) versus the numerical solution of the cell-
average method (+) at time t = 5.5. There are 50 cells over the domain [−1, 1].
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Figure 4.1. Numerical solution of (1.5) by the interface method with Godunov flux. The
initial condition is given by (4.1). There are 204 cells over [0, 1].

4. More numerical experiments

We now solve the problems studied in [16]. This is again a periodic problem over the domain [0, 1], with the
initial condition

u(x, 0) = 0.01 sin(8πx) . (4.1)

The initial condition has four sine wave lengths over the domain [0, 1]. According to the analysis in Section 2,
the exact solution should have four roll waves over [0, 1] with slope one, peak value 0.125 with jumps at
x = 1/8, 3/8, 5/8 and 7/8. Therefore, in order to obtain the correct steady state, we need odd number of cells
in each of the wave length. Namely, the zero mass condition should be preserved at every period of the sine
wave. In this section we always use the interface method with the Godunov flux.

In the first run, we use 204 cells over [0, 1], thus each period of the sine wave is resolved by 51 cells. We take
∆t = 0.005 and display the numerical solution between 0 ≤ t ≤ 30 in Figure 4.1. One can see that in this case
the exact solution has been captured and the steady state is already reached around t = 5.

Next we use 202 cells. In this case there are odd number of cells in [0, 0.5] and [0.5, 1] respectively, however,
each sine wave length has even number of cells. The numerical method we use can preserve the zero mass over
[0, 0.5] and [0.5, 1], but not on every sine period. Thus the analysis and numerical experiment in the previous
sections indicate that the numerical steady state should be two roll waves. This is indeed the case and the
numerical results are shown in Figure 4.2. The steady state given in this run is clearly false.

Next we use 201 cells. In this case there are no odd number of cells on any of the period of the sine wave
except in the whole domain [0, 1]. Thus the only preserved zero mass is the total mass, and one should expect
only one roll wave at the steady state. This is confirmed numerically. See Figure 4.3. In this case, one again
obtains a false steady state solution.

If 200 cells are used, then neither the submass nor the total mass will be preserved so eventually the numerical
solution becomes unbounded and will never reach a steady state, just as studied in Section 3. We have observed
this in our numerical experiment but will not report the result here.
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Figure 4.2. Numerical solution of (1.5) by the interface method with Godunov flux. The
initial condition is given by (4.1). There are 202 cells over [0, 1].
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Figure 4.3. Numerical solution of (1.5) by the interface method with Godunov flux. The
initial condition is given by (4.1). There are 201 cells over [0, 1].
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Figure 4.4. Numerical solution of (1.5) by the interface method with Godunov flux. The
initial condition is given by (4.2). There are 201 cells over [0, 1].

The last experiment we conduct is the so-called biharmonic perturbation. We perturb the initial data with a
subharmonic disturbance

u(x, 0) = 0.01 sin(8πx) + 0.001 sin(2πx) . (4.2)

Since the only zero mass is the total mass, we need to use odd number of cells over the domain. Figure 4.4
shows the numerical solutions with 201 cells and ∆t = 0.005. One can see that the small perturbation basically
overtakes the original profile and the steady state solution is the same as if one starts the initial profile with
the perturbation. This can be justified using the analysis in Section 2.

5. Conclusions

In this paper, we studied the analytic and numerical issues associated with a model roll wave equation, which
arises as the weakly nonlinear asymptotic approximation of the shallow water equations when the Froude number
is bigger than two. The main difficulty for numerical approximation to this problem is its linear instability. The
numerical round-off error, due to the finite precision arithmetic, can easily build up and eventually destroys the
long time behavior of the roll wave solution. We utilize a numerical method introduced in [13], and show that
it preserves the zero mass condition if odd number of cells are used over each period of the roll wave. This
important property guarantees that the steady state roll wave will be captured numerically. Several numerical
examples are used to illustrate the numerical subtlety of the problem and the performance of the proposed
method.

Although the numerical study is on a simpler model problem, the study here sheds some lights on the river
equations, which will be the subject of future research by the authors. Increasing difficulty may arise there
when one wants to compute a moving periodic roll waves constructed by Dressler, since the preservation of a
constant mass, when the roll wave is moving, is a highly challenging numerical task.
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Appendix A

The weakly nonlinear approximation of the shallow water equations

For completeness, in this appendix, we derive the asymptotic approximation (1.4) from the shallow water
equations (1.1). This asymptotic was performed in [21] for the dimensionless form of the shallow water equations.
Below it is carried out for the dimensional form of the equations (1.1). Let

h = h+ εh1(ξ, t) , v = v + εv1(ξ, t) , (A.1)

where h, v =
√
sgh/Cf are the equilibrium constants, ξ = (x− ct)/ε with c± = v ±

√
gh being the equilibrium

characteristic speeds. Applying the ansatz (A.1) into (1.1), one obtains the equations for h1 and v1 as

(v − c)∂ξh1 + h∂ξv1 = −ε∂th1 − ε∂ξ(h1v1) ,

(−cv + (v)2 + gh)∂ξh1 + h(2v − c)∂ξv1 + ε(2v − c)∂ξ(h1v1) + εh∂ξ(v2
1)

+ ε2∂ξ(h1v
2
1) +

ε

2
g∂ξ(h2

1) + εh∂th1 + εh∂tv1 + ε2∂t(h1v1) = εgsh1 − 2εCfvv1 − ε2Cfv
2
1 . (A.2)

The leading order approximation of (A.2) is

(v − c)∂ξh1 + h∂ξv1 = 0

(−cv + (v)2 + gh)∂ξh1 + h(2v − c)∂ξv1 = 0. (A.3)

Multiplying (A.3a) by 2v − c, and then subtracting it by (A.3b), one gets an equation for c:

c2 − 2(v)c+ (v)2 − gh = 0 (A.4)

which gives

c± = v ±
√
gh . (A.5)

With this c, (A.3) gives

v1 =
c− v
h

h1. (A.6)

Now, multiplying (A.2a) by 2v − c, and then subtracting (A.2b), after ignoring the O(ε2) terms and some
manipulations, one gets

2(c− v)∂th1 +
[

(c− v)2

h
+

1
2
g

]
∂ξ(h2

1) =
[
gs− 2Cfv

h
(c− v)

]
h1 . (A.7)

For c = c+, this gives

∂th1 +
3
2

√
g

h
h1∂xh1 =

√
g

h
s

(
1−

√
4Cf
s

)
h1 . (A.8)
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Appendix B

An optimal estimate of inviscid burgers

We consider piecewise continuous BV-solutions of the initial-value problem of the inviscid Burgers equation

vs +
1
2
vvx = 0, v(x, 0) = v0(x), x ∈ R, s > 0. (B.1)

The Oleinik estimate ∂xv(x, s) ≤ 1/s implies that

v(x, s)− x

s
is decreasing in x for any s > 0. (B.2)

It is well known that following quantities are invariant,

p = − inf
x

∫ x

−∞
v(y, s)dy, q = sup

x

∫ ∞
x

v(y, s)dy, (B.3)

and that they play a key role in the evolution of the solution. Let v(x0, s) = v0 ≥ 0. Then

0 ≤
∫ x0

x0−sv0

v(y, s)− (
y − x0

s
+ v0)dy =

∫ x0

x0−sv0

v(y, s)dy − s

2
v2

0 .

So v0 is bounded by

v0 ≤
√

2
s

∫ x0

x0−sv0

v(y, s)dy. (B.4)

Note that for any a, b ∈ R we get∫ b

a

v(y, s)dy =
∫ b

−∞
vdy −

∫ a

−∞
vdy ≤ sup

η

∫ η

−∞
vdy + p.

Since the supremum of the right hand side is decreasing in time (maximum principle), (B.4) gives a uniform
upper bound. Similar arguments hold for v0 ≤ 0 and we get a uniform estimate,

|v(x, s)| ≤
√

2
s

(sup
η

∫ η

−∞
v(y, 0)dy + p) .

We apply the method of generalized characteristics. For a detailed theory we refer [5, Ch 11]. Let x =
ξ(s), 0 < s < ∞ be a generalized characteristic. We use the notation v±(s) = v(ξ(s)±, s) for simplification. A
characteristic ξ(·) on [a, b] is called genuine if v−(s) = v+(s) for almost all s ∈ [a, b] or shock if v−(s) > v+(s)
for all s ∈ (a, b). A genuine characteristic ξ(s), 0 ≤ s ≤ b is given by

ξ(s) = ξ(0) + v(0)s, 0 ≤ s ≤ b (B.5)

and a shock characteristic ξ(s) on [a, b), a > 0 is given by

ξ(s) = ξ(a) +
∫ t

a

1
2

(v+(s) + v−(s))ds. (B.6)
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Theorem B.1. Suppose that v0(x) has a compact support supp(v0) ⊂ [A,B]. Then the solution v(x, s) of (B.1)
satisfies

v(x, s) = 0, x < A−
√

2ps, x > B +
√

2qs, (B.7)

A ≤ x− sv(x, s) ≤ B, B −
√

2ps ≤ x ≤ A+
√

2qs. (B.8)

Proof. Let x = ξ2(s), 0 ≤ s ≤ ∞ be the generalized characteristic with ξ2(0) = B. Thus v(ξ2(s)+, s) = 0. Let
v2(s) = v(ξ2(s)−, s). Then, since v(x, s) = 0 for all x > ξ2,∫ ξ2

ξ2−v2

v(x, s)dx =
∫ ∞
ξ2−v2

v(x, s)dx ≤ q,

and hence (B.4) implies that

v(ξ(s)−, s) ≤
√

2q
s
·

Now ξ2(s) is easily estimated from (B.6),

ξ2(s) ≤ B +
∫ s

0

1
2

√
2q
τ

dτ = B +
√

2qs.

The characteristic x = ξ1(s) with ξ1(0) = A is similarly estimated and we get

A−
√

2ps ≤ ξ1(s), ξ2(s) ≤ B +
√

2qs. (B.9)

For a point ξ0 satisfying p = −
∫ ξ0
−∞ v(y, s)dy , one can easily check that v(ξ0±, s) = 0 and

p = −
∫ ξ0

−∞
v(y, s)dy, q =

∫ ∞
ξ0

v(y, s)dy.

Since v(y, s)− (y − ξ0)/s is decreasing in y, (B.2), with a zero point y = ξ0 ≤ ξ2,∫ ξ2

ξ0

v(y, s)− y − ξ0
s

dy = q − (ξ2 − ξ0)2/2s ≤ 0.

So ξ2 − ξ0 ≥
√

2qs. Similarly ξ0 − ξ1 ≥
√

2ps and, hence,√
2ps+

√
2qs ≤ ξ2(s)− ξ1(s). (B.10)

Using (B.9),(B.10) the estimate for the characteristics ξ1, ξ2 is completed by

A−
√

2ps ≤ξ1(s) ≤ B −
√

2ps,

A+
√

2qs ≤ξ2(s) ≤ B +
√

2qs. (B.11)

It is clear that v(x, s) = 0 for x 6∈ [ξ1(s), ξ2(s)], (B.7). It is enough to consider continuity points (x, s) to show
(B.8). From (B.11) the condition B−

√
2ps ≤ x ≤ A+

√
2qs simply implies ξ1(s) ≤ x ≤ ξ2(s). If u is continuous
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at the point (x, s), there exists a genuine characteristic ξ(τ), 0 < τ < s such that ξ(s) = x. From (B.5) we get

ξ(s)− sv(ξ(s), s) = ξ(0).

Since A = ξ1(0) ≤ ξ(0) ≤ ξ2(0) = B, we get (B.8).

If the initial data is given by a delta function, v0(x) = qδ(x), then all the corresponding constants A,B, p
are zero. In the case estimates of the theorem, (B.7-8), give the exact structure of the solution. In the sense
the estimates are optimal.
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