
Asymptotic agreement of moments and higher
order contraction in the Burgers equation ?

Jaywan Chung, Eugenia Kim and Yong-Jung Kim

Department of Mathematical Sciences, KAIST,
335 Gwahangno, Yuseong-gu, Daejeon, 305-701, Republic of Korea

Fax: +82-42-350-5710

emails:
jaywan.chung@gmail.com(Jaywan Chung)
kim107@math.berkeley.edu(Eugenia Kim)
yongkim@kaist.edu(Yong-Jung Kim)

Received: September 14, 2009 / Revised version: date

Abstract. The purpose of this paper is to investigate the relation
between the moments and the asymptotic behavior of solutions to the
Burgers equation. The Burgers equation is a special nonlinear prob-
lem that turns into a linear one after the Cole-Hopf transformation.
Our asymptotic analysis depends on this transformation. In this pa-
per an asymptotic approximate solution is constructed, which is given
by the inverse Cole-Hopf transformation of a summation of n heat
kernels. The k-th order moments of the exact and the approximate
solution are contracting with order O

(
(
√

t)k−2n−1+1/p) in Lp-norm
as t → ∞. This asymptotics indicates that the convergence order is
increased by a similarity scale whenever the order of controlled mo-
ments is increased by one. The theoretical asymptotic convergence
orders are tested numerically.
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1. Introduction

The main motivation of this paper is to investigate the relation be-
tween the agreement of moments and the asymptotic contraction or-
ders of solutions to convection-diffusion equations. Let u and ψ be
integrable real-valued solutions to

ut +∇x · (F (u,∇u)) = 0, (1)

where x ∈ Rd and F : R1+d → Rd. Then one may ask what decides
the asymptotic contraction order γ > 0, i.e.,

‖u(x, t)− ψ(x, t)‖r = O(t−γ) as t →∞, (2)

where ‖ · ‖r is the Lr-norm, r ≥ 1, over the space domain x ∈ Rd.
It is well-known that two solutions to the linear heat equation

share the same moments all the time if they do initially. Using this
property it has been shown that, if

∫
xk(u(x, 0)− ψ(x, 0))dx = 0, 0 ≤ k ≤ m,

the asymptotic contraction order in (2) is γ = m+2
2 − 1

2r (see [6,10,
13]). This one dimensional asymptotics is easily extended to multidi-
mensional ones. However, nonlinear problems do not have such a nice
property. For the porous medium equation (PME for brevity) case,
only the total mass and the center of mass have such a property (i.e.,
for k = 0, 1). For the p-Laplacian equation case, even the center of
mass do not have this property.

In this paper we consider bounded solutions to the (viscous) Burg-
ers equation in one space dimension,

ut + uux = µuxx, t > 0, x ∈ R,
u(x, 0) = u0(x), x ∈ R,

(3)

where µ > 0 is the viscosity coefficient and the initial value u0 is
bounded and has finite moments up to order 2n, i.e., x2nu0(x) ∈
L1(R). In this case the total mass (k = 0) is the only one that
the initial agreement gives a permanent one. The reason why the
Burgers equation is picked as an exemplary case is the Cole-Hopf
transformation (see [9]), which makes an rigorous analysis possible.
It is given by

Φ(x, t) = e
− 1

2µ

∫ x
−∞ u(y,t)dy − 1 =: H(u). (4)

For notational convenience, we denote its space derivative as

φ(x, t) := ∂xΦ(x, t) = − 1
2µ

u(x, t)e−
1
2µ

∫ x
−∞ u(y,t)dy

. (5)
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Then Φ and φ are solutions to the heat equation (11) and φ(x, t) has
finite moments up to order 2n, i.e., x2nφ(x, 0) ∈ L1(R). Its inverse
transformation is given by

u(x, t) = −2µ
φ(x, t)

1 + Φ(x, t)
=: H−1(Φ). (6)

If Φ is a Cole-Hope transformation of a function u(x), then

Φ(x, t) + 1 = e
− 1

2µ

∫ x
−∞ u(y)dy

> 0,

and hence H−1(Φ) is well-defined. However, for a general case, one
should show that the denominator 1+Φ(x, t) is strictly positive. The
main theorem of this paper is the following:

Theorem 1. Let u(x, t) be the solution to the Burgers equation (3)
with a bounded initial value u0(x) such that x2nu0(x) ∈ L1(R). Then,
for any t0 ≥ 0, there exist ρi, ci ∈ C and T ≥ 0 such that wn :=
H−1(Ψn) is well-defined for t ≥ T , and, for 1 ≤ r ≤ ∞ and k ≥ 0,

‖xk(u(x, t)− wn(x, t) )‖r = O
((√

t
)1/r−2n−1+k

)
as t →∞, (7)

where

Ψn(x, t) :=
∫ x

−∞
ψn(y, t)dy, (8)

ψn(x, t) := Re
( n∑

i=1

ρi√
4µπ(t + t0)

e
−(x−ci)

2

4µ(t+t0)

)
. (9)

It is clear that ψn(x, t) is a solution to the heat equation. The ρi’s
and ci’s are chosen to satisfy 2n equations of

∫
xkφ(x, t)dx−

∫
xkψn(x, t)dx = 0, 0 ≤ k < 2n. (10)

The construction of ψn(x, t) has been made in [13] for the positive
solutions with t0 = 0 using the classical truncated moment problem.
For the general case in the theorem, the classical theory is not enough.
However, we could construct ψn(x, t) using a generalized moment
problem in [10]. Using these techniques higher order convergence have
been obtained [10,13]. One may also control the moments using the
derivatives of the Gaussian as in (18). This technique has been used
in [6] and obtained higher order asymptotics.

The inverse transformation wn is a solution to the Burgers equa-
tion and valid for t ≥ T . For the case with t0 = 0 and u0 ≥ 0, it is
proved that T = 0. For the general case in the theorem, we only have
a numerical evidence for T = 0 which left conjectured. Note that,



4 Jaywan Chung, Eugenia Kim and Yong-Jung Kim

even if φ and ψn have same moments up to order 2n−1, their inverse
transformations do not, i.e.,

∫
xk

(
u(x, t)−wn(x, t)

)
dx 6= 0. However,

the asymptotic convergence order in (7) shows that they approach
to each other asymptotically. In other words the moment setting af-
ter the Cole-Hopf transformation actually gives asymptotic moments
agreement for the solutions to the Burgers equation and provides fine
asymptotics. The higher order contraction indicates that the solution
wn is an excellent asymptotic approximation of the solution u (the
case for k = 0).

The Cole-Hopf transformation has been a main tool to study the
large-time behavior of the Burgers equation. It allows one to study
the Burgers equation from the behavior of solutions to the heat equa-
tion ([12,14,16,20]). For general nonlinear problems there is no such
transformation. We only hope to glimpse the large-time behavior of
a general nonlinear problem from the study of the Burgers case.

The solution to the Burgers equation has been played a proto-
type role in many problems such as traffic or fluid flows (see [19]).
It has been shown that the asymptotic behavior of general systems
of hyperbolic conservations laws are given as a solution to the Burg-
ers equation ([4,5,15]). On the other hand asymptotic convergence
to similarity solutions has been done for general convection-diffusion
equations that may include the Burgers equation ([2,7,8,21]). Special
attention has been given to the study of asymptotics of the porous
medium equation (shortly PME), ut = (um)xx, m > 0, last two
decades (see[1]). One may find optimal convergence to the Baren-
blatt solution of similarity order O(t−1/(m+1)) (see [3,18]). The con-
vergence orders in (7) indicate that the contraction order in (2) will
be increased by the similarity scale if the order of asymptotically con-
verging moments increases. A brief discussion about this relation is
given in Section 4. There is a different kind of optimal convergence
order O(1/t) which was obtained for radially symmetric solutions or
for a very fast diffusion case (see [11,18]).

This paper is organized as the following. In Section 2, we construct
an approximate solution ψn(x, t) to the heat equation so that it share
the same 2n moments with φ(x, t) in (5). In this construction the
generalized moment problem for given backward moments is used.
The decay order of ‖xk(ψn(x, t)− φ(x, t)‖r as t →∞ is also derived.
In Section 3, we show that this decay rate is transferred to the Burgers
equation after the Cole-Hopf transformation and complete the proof
of Theorem 1. In Section 4, we briefly discuss the relation between
the asymptotic convergence order and the control of moments at t =
∞ for a general nonlinear problem. Finally, in Section 5 we provide
several numerical examples to numerically test the convergence orders
obtained in Section 3 and the role of the backward moments.
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2. Large-time asymptotics in the heat equation

Consider the heat equation with a bounded and integrable initial
value:

vt = µvxx, x ∈ R, t > 0,
v(x, 0) = v0(x), x ∈ R.

(11)

One usually sets the diffusion constant µ = 1 after the time rescaling
t → µt. However, we leave µ in the equation to observe the depen-
dency on the viscosity.

2.1. Approximate solutions to the heat equation

In this section, we decide the ρi’s and ci’s in Theorem 1 using a gen-
eralized truncated moment problem developed in [10]. A similar con-
struction for ψn(x, t) is given in [13] for positive solutions. We briefly
review this asymptotic approximation method based on a generalized
moment problem.

Note that the Cole-Hopf transformation Φ(x, t) and its space deriva-
tive φ(x, t) are solutions to the heat equation (11) and ψn(x, t) is con-
structed as an asymptotic approximation of φ(x, t). Set the moments
of the solution φ(x, t) as

αk(t) =
∫

xkφ(x, t)dx, k ≥ 0. (12)

One may easily check that the moments of a solution to the heat
equation (11) satisfy the following algebraic relations:

α2k(t) =
∑k

l=0
(2k)!

(k−l)!(2l)! t
k−lα2l(0),

α2k+1(t) =
∑k

l=0
(2k+1)!

(k−l)!(2l+1)! t
k−lα2l+1(0).

These relations are valid for all t ∈ R as long as its backward solution
exists. The first two moments, α0 and α1, are constant for all t ∈ R,
which are called the conservation of mass and its center. However,
for k ≥ 2, the moment αk(t) are not constant anymore.

It is shown that, for any given real sequence αk, there exists a real
sequence βk’s such that the following 2n equations

n∑

i=1

ρic
k
i = αk + iβk, 0 ≤ k < 2n (13)

have a solution set ρi, ci ∈ C, i = 1, · · · , n, which is unique up to
reordering. If one takes αk(−t0) in the place of αk’s for a given t0 > 0,
then

Re
( n∑

i=1

ρic
k
i

)
= αk(−t0), (14)
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where Re(·) takes the real part of a complex number. Note that ρi’s
and ci’s that satisfy (14) is not unique since they may depends on
the choice of βk’s. In the numerical tests in Section 5, we simply took
βk = 0 as long as (13) is numerically solvable.

Finally, we take the approximate solution ψn(x, t) as

ψn(x, t) ≡ Re
( n∑

i=1

ρi√
4µπ(t + t0)

e
−(x−ci)

2

4µ(t+t0)

)
, (15)

which is a solution to the heat equation (11). Then,

limt→−t0

∫
xkψn(x, t)dx = Re

(∑n
i=1 ρi

∫
xkδ(x− ci)dx

)

= Re
(∑n

i=1 ρic
k
i

)
= αk(−t0).

(16)

Therefore, ψn(x, t) and φ(x, t) have the same moments up to order
2n − 1 at the time t = −t0 and hence at all time t ∈ R. Hence,
ψn(x, t) in Theorem 1 satisfies for all t ∈ R that

∫
xk(φ(x, t)− ψn(x, t))dx = 0, 0 ≤ k < 2n− 1. (17)

Remark 1. Note that ρi’s and ci’s depend on the backward time t0 ≥
0. We do not have a criterion to choose t0 and left it as a free variable.
If one may find t0 that solves one more moment equation, i.e.,

n∑

i=1

ρic
2n
i = α2n(−t0) + iβ2n,

then one may obtain an extra asymptotic convergence order. Further-
more, more importantly, it will give a better initial approximation.
However, its solvability seems beyond the scope of this paper. For
the simplest case, n = 1, Miller and Bernoff [16] gave such an ap-
proximation for positive solutions. Using the complex heat kernel in
this paper and the generalized moment problem one may extend the
result for sign-changing solutions easily.

Remark 2. One can easily check that

ψ̃n(x, t) ≡
2n−1∑

k=0

(−1)kαk(0)
(k!)

√
4µπt

∂k
x(e

−x2

4µt ) (18)

is a solution to the heat equation (11) and satisfies the relation (17)
(see Duoandikoetxea and Zuazua [6]). Yanagisawa [20] applied this
kind of approximation to obtain the higher order asymptotics in the
Burgers equation. In the proof of Theorem 2, the choice of ψn does not
matter as far as (17) is satisfied. However, the constants and hence



Asymptotic agreement of moments in the Burgers equation 7

the proof of Theorem 1 may depend on its choice. Furthermore, even
if we obtain the same convergence order as t → ∞, the convergence
for n → ∞ may show a different behavior. In fact, one may easily
construct an example that ψ̃n(x, t) diverges as n →∞ (see [13]). One
may improve this approach using the backward moments as we did
in this paper, i.e.,

ψ̃n(x, t) ≡
2n−1∑

k=0

(−1)kαk(−t0)
(k!)

√
4µπ(t + t0)

∂k
x(e

−x2

4µ(t+t0) ). (19)

In this way one may obtain some initial regularity.

2.2. Contraction rates of moments

The agreement of the moments in (17) does not hold after the inverse
Cole-Hopf transformation. However, the key observation is that the
contraction order (21) in Lr-norm is transferred after the inverse
transformation. Since φ(x, t) and ψn(x, t) satisfies (17), they contract
to each other having order O(t

1
2r
− 2n+1

2 ) in Lr-norm as t → ∞ (see
[6,10,13]). This contraction property is extended to a contraction of
moments in this section.

Lemma 1. Let g ∈ L1(R) satisfy
∫

g(x) dx = 1 and gε(x) := ε−1g(x/ε).
Suppose that ||hf ||p < ∞ with 1 ≤ p < ∞ and ‖h(f − fη)‖p → 0 as
η → 0, where fη(x) := f(x− η) is a space shift. Then,

‖h(f ∗ gε)− hf‖p → 0 as ε → 0.

That is, ||h(f ∗ gε)||p → ||hf ||p as ε → 0.

Proof. The definition of the convolution and the Minkowski’s inequal-
ity in an integral form give

‖h(f ∗ gε)− hf‖p =
(∫ ∣∣∣∣

∫
h(x)f(x− y)gε(y) dy − h(x)f(x)

∣∣∣∣
p

dx

)1/p

=
(∫ ∣∣∣∣

∫
h(x)(f(x− y)− f(x))gε(y) dy

∣∣∣∣
p

dx

)1/p

≤
∫ (∫

|h(x)(f(x− y)− f(x))gε(y)|p dx

)1/p

dy

=
∫
‖h(·)(f(· − y)− f(·))‖p|gε(y)| dy

=
∫
‖h(·)(f(· − εy)− f(·))‖p|g(y)| dy.

The lemma follows from the dominated convergence theorem. ut
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Theorem 2. Let φ(x, t) and ψ(x, t) be solutions to the heat equation
(11). Suppose that φ(x, 0) is bounded, xqφ(x, 0) ∈ L1(R) and

∫
xk(φ(x, t)− ψ(x, t))dx = 0, k = 0, · · · , q − 1.

Then, there exists eq ∈ W q,1(R) that satisfies ∂q
xeq(x) = φ(x, 0) −

ψ(x, 0). Furthermore, for 1 ≤ r ≤ ∞ and 0 ≤ k,

lim
t→∞ t

q+1−k
2

− 1
2r ‖xk

(
φ(x, t)−ψ(x, t)

)‖r =
‖xk∂q

x(e
−x2

4µ )‖r√
4µπ

∣∣∣∣
∫

eq(x)dx

∣∣∣∣ .

(20)
In other words,

‖xk
(
φ(x, t)− ψ(x, t)

)‖r = O
(
t

1
2r
− q+1−k

2

)
as t →∞. (21)

Proof. The existence of such eq ∈ W q,1(R) is given in [6,13] and it
depends on the relation (17). Let eq(x, t) be the solution to the heat
equation with this initial value eq(x). Then, ∂q

xeq(x, t) is a solution
to the heat equation with initial value φ(x, 0) − ψ(x, 0) and hence
∂q

xeq(x, t) = φ(x, t) − ψ(x, t). The solution eq(x, t) can be explicitly
written as

eq(x, t) =
1√

4πµt

∫
e
− (x−y)2

4µt eq(y)dy.

An integrable solution to the heat equation has the similarity scale√
t, and

√
tu(
√

tx, t) converges to a nontrivial bounded function as
t →∞. Using the similarity variables

ξ = x/
√

t, ζ = y/
√

t,

the solution in similarity variable ẽq(ξ, t) =
√

t eq(
√

tξ, t) can be writ-
ten as

ẽq(ξ, t) =
1√
4µπ

∫
e
− (ξ−ζ)2

4µ eq(
√

tζ)dζ

and its q-th order derivative is given by

∂q
ξ ẽq(ξ, t) = ∂q

xeq(x, t)(∂ξx)q = ∂q
xeq(x, t)(

√
t)q.

Let Aq := | ∫ eq(z) dz| and suppose Aq 6= 0. Then

(
√

t)q+1−k|xk∂q
xeq(x, t)| = (

√
t)|ξk∂q

ξ ẽq(ξ, t)|

=
Aq√
4µπ

∣∣∣∣ξk

∫
f(ζ)gt(ξ − ζ) dζ

∣∣∣∣ , (22)

where f(ξ) := ∂q
ξ (e

−ξ2/4µ) is smooth and gt(ξ) :=
√

t eq(
√

tξ)/Aq

is a delta-sequence as t → ∞. Since f(ξ) decays exponentially as
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|ξ| → ∞, the assumptions in Lemma 1 are satisfied with h(ξ) = ξk

for any k > 0. Taking t →∞ limit to (22) gives

lim
t→∞(

√
t)q−k+1|xk∂q

xeq(x, t)| = Aq√
4µπ

|ξkf(ξ)|.

For r = ∞,

lim
t→∞(

√
t)q−k+1‖xk∂q

xeq(x, t)‖∞ =
Aq√
4µπ

‖ξkf(ξ)‖∞.

For 1 ≤ r < ∞,

(
√

t)q−k+1−1/r ‖ xk∂q
xeq(x, t)‖r

=
(∫

|(
√

t)q−k+1xk∂q
xeq(x, t)|r d

(
x√
t

))1/r

=
(∫

|
√

t ξk∂q
ξeq(ξ, t)|r dξ

)1/r

=
Aq√
4µπ

(∫ ∣∣∣∣ξk

∫
f(ζ)gt(ξ − ζ) dζ

∣∣∣∣
r

dξ

)1/r

=
Aq√
4µπ

‖ξk(f ∗ gt)(ξ)‖r.

Hence Lemma 1 gives

lim
t→∞ (

√
t)q−k+1−1/r‖xk∂q

xeq(t)‖r =
Aq√
4µπ

‖ξk∂q
ξ (e

− ξ2

4µ )‖r.

Now suppose Aq = 0. If e0 is nontrivial, then there exists l > q such
that

∫∞
−∞ el(x) = limx→∞ el+1(x) 6= 0 for some l > q (see [13]). Let

el(x, t) be the solution with initial value el(x). Then, since ∂l
xel(x) =

e0(x), we obtain for 1 ≤ r ≤ ∞

lim
t→∞ t

l−k+1
2

− 1
2r ‖xk∂q

xeq(t)‖r = lim
t→∞ t

l−k+1
2

− 1
2r ‖xk∂l

xel(t)‖r

=
Al√
4µπ

‖ξk∂l
ξ(e

− ξ2

4µ )‖r < ∞.

Therefore, the convergence order in (20) still holds. In fact the con-
vergence order is actually higher in this case. ut
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3. Large-time asymptotics in the Burgers equation

Let u(x, t) be the solution of the Burgers equation, i.e.,

ut + uux = µuxx, x ∈ R, t > 0,
u(x, 0) = u0(x), x ∈ R.

Then, the Cole-Hopf transformation and its partial derivative,

Φ(x, t) = e
− 1

2µ

∫ x
−∞ u(y,t)dy − 1 and φ(x, t) = Φx(x, t),

are solutions to the heat equation

vt = µvxx, x ∈ R, t > 0,
v(x, 0) = v0(x), x ∈ R.

The approximation ψn(x, t) in Theorem 1(9) has been given in
Section 2.1. Now consider an asymptotic approximate solution to the
Burgers equation given by

wn(x, t) := −2µ
ψn(x, t)

1 + Ψn(x, t)
= H−1(Ψn), (23)

where

Ψn(x, t) :=
∫ x

−∞
ψn(y, t) dy. (24)

It is needed to show that wn(x, t) is well defined since the denominator
1 + Ψn(x, t) can be zero. In the following lemma we will show that
there is a time T ≥ 0 such that this approximate solution wn(x, t) is
well defined for t ≥ T .

Lemma 2. Let M :=
∫

u0(x)dx and a := min{1, e
−M

2µ } > 0. Then
for any ε > 0, there exists T > 0 such that

1 + Ψn(x, t) ≥ a− ε for x ∈ R, t ≥ T. (25)

Proof. One can easily compare the boundary values at x = ±∞.
First,

lim
x→−∞

(
1 + Ψn(x, t)

)
= lim

x→−∞
(
1 + Φn(x, t)

)
= 1.

From the definition of the Cole-Hopf transformation (4) and the
agreement of zeroth moments between φ and ψn, we have

e
−M

2µ = lim
x→∞

(
1 + Φ(x, t)

)
= 1 +

∫ ∞

−∞
φ(x, t)dx

= 1 +
∫ ∞

−∞
ψn(x, t)dx = lim

x→∞
(
1 + Ψn(x, t)

)
.
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Therefore, for any fixed time T0 > 0, there exists L > 0 such that

(1 + Ψn)(x, T0) ≥ a− ε/2 for |x| > L

and 1√
4πµT0

∫ 0
−2L e

− y2

4µT0 dy ≥ 1/4. Let m := min
|x|≤L

(1 + Ψn)(x, T0) and

define

G(x, t) :=
4(|m|+ a)√

4πµt

∫ x+L

x−L
e
− y2

4µt dy.

Then, G(x, t) satisfies the heat equation,

G(−L, T0) = G(L, T0) =
4(|m|+ a)√

4πµT0

∫ 0

−2L
e
− y2

4µT0 dy ≥ |m|+ a,

and, hence,

(1 + Ψn + G)(x, T0) ≥ m + |m|+ a ≥ a for |x| ≤ L.

Therefore, the maximum principle (see [17]) gives

(1 + Ψn + G)(x, t) ≥ a− ε/2 for x ∈ R, t ≥ T0.

On the other hand, since G(x, t) is a bounded L1 solution to the heat
equation, there exists a large time T ≥ T0 such that

G(x, t) ≤ ε/2 for x ∈ R, t ≥ T.

Finally we obtain the conclusion

(1 + Ψn)(x, t) ≥ a− ε/2−G(x, t) ≥ a− ε for x ∈ R, t ≥ T. ut

Remark 3. Suppose that the initial value u0 is negative, u0(x) ≤ 0.
Then, φ(x, 0), which is given by (5), is positive. The truncated mo-
ment problem for a positive measure, without using backward mo-
ments (t0 = 0), implies that ρi > 0 for all i. Therefore, the denomi-
nator

1 + Ψn(x, 0) ≡ 1 +
∫ x

−∞

n∑

i=1

ρiδ(x− ci)dx

is monotone and hence 1 + Ψ(x, 0) > 0 for all x ∈ R. Therefore, one
may take T = 0 in Lemma 2. One may obtain the same conclusion if
u0 is positive. If the backward time is positive or if the initial value
is not signed, then 1 + Ψn(x, 0) is not monotone in general. However,
our numerical examples always give 1 + Ψn(x, 0) > 0, i.e., T = 0.
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Now we are ready to prove Theorem 1.
Proof of Theorem 1. The moment differences between u(x, t) and
wn(x, t) are estimated using (6) and (23) that is

|xk
(
u(x, t) − wn(x, t)

)| = 2µ

∣∣∣∣
xkφ(x, t)

1 + Φ(x, t)
− xkψn(x, t)

1 + Ψn(x, t)

∣∣∣∣ (26)

= 2µ

∣∣∣∣∣
xkφ(x, t) + xkφ(x, t)Ψn(x, t)− xkψn(x, t)

(
1 + Φ(x, t)

)

(1 + Φ(x, t))(1 + Ψn(x, t))

∣∣∣∣∣

≤ 2µ
|φ(x, t)| |xk

(
Φ(x, t)− Ψn(x, t)

)|
|1 + Φ(x, t)| |1 + Ψn(x, t)|

+2µ
|1 + Φ(x, t)| |xk

(
φ(x, t)− ψn(x, t)

)|
|1 + Φ(x, t)| |1 + Ψn(x, t)| .

Let U0(x) =
∫ x
−∞ u0(y)dy. Then, A = − infx U0(x) and B = supx U0(x)

are non-negative. Since 1 + Φ(x, t) is a solution to the heat equation,
the maximum principle gives uniform bounds

0 < e
− B

2µ ≤ 1 + Φ(x, t) ≤ e
A
2µ < ∞, t ≥ 0. (27)

Let T > 0 be the one in Lemma 2 and take ε = a/2, then we obtain
a uniform lower bound

1
2

min{1, e−M/2µ} ≤ 1 + Ψn(x, t), t ≥ T. (28)

Therefore, the denominators are uniformly bounded below away from
zero. Now we show the convergence order of nominators to obtain (7).
First, since φ is an L1 solution to the heat equation, we have

‖φ‖∞ = O(t−
1
2 ) as t →∞. (29)

The Lr-norm estimates of xk
(
ψn(x, t) − φ(x, t)

)
and xk

(
Ψn(x, t) −

Φ(x, t)
)

are obtained similarly using Theorem 2. Recall that

Ψn(x, t) =
∫ x

−∞
ψn(y, t) dy and Φ(x, t) =

∫ x

−∞
φ(y, t) dy.

The approximation ψn was constructed to satisfy

∫ ∞

−∞
xk(φ(x, 0)− ψn(x, 0))dx = 0, for 0 ≤ k ≤ 2n− 1.
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Then, for 0 ≤ k ≤ 2n− 2,
∫ ∞

−∞
xk(Φ(x, 0)− Ψn(x, 0))dx

=
∫ ∞

−∞

∫ x

−∞
xk(φ(y, 0)− ψn(y, 0)) dy dx

=
∫ ∞

−∞

∫ ∞

y
xk(φ(y, 0)− ψn(y, 0)) dx dy

= − 1
k + 1

∫ ∞

−∞
yk+1(φ(y, 0)− ψn(y, 0)) dy = 0.

Therefore, by Theorem 2, we obtain

‖xk(φ(x, t)− ψn(x, t))‖r = O(t
1
2r
− 2n+1−k

2 ) as t →∞, (30)

‖xk(Φ(x, t)− Ψn(x, t))‖r = O(t
1
2r
− 2n−k

2 ) as t →∞. (31)

Then, for 1 ≤ r ≤ ∞ and t ≥ T , taking the Lr-norm on (26) gives

‖xk(u(x, t)− wn(x, t))‖r ≤ C1‖φ(x, t)‖∞‖xk(Ψn(x, t)− Φ(x, t))‖r

+ C2‖xk(φ(x, t)− ψn(x, t))‖r,

where constants C1, C2 > 0 are from the uniform estimates (27) and
(28). Combining the asymptotic convergence orders in (29),(30) and
(31) gives

‖xk(u(t)− wn(t))‖r = O
(
t

1
2r
− 2n+1−k

2
)

as t →∞,

which completes the proof of Theorem 1. ut

4. Fine asymptotics and the similarity scale

There are many studies on the asymptotic analysis for various prob-
lems. The porous medium equation is one of the examples that such a
study has been done intensively. We start our discussion with a brief
review of it. Let m > 0 and u be a L1 solution one space dimension

ut = (um)xx, u(x, 0) = u0(x), (32)

where the initial value u0 is bounded and integrable. Let u(x, t) =
av(ax, am+1t). Then v satisfies the equation and preserves the L1-
norm of u. The invariance property under this specific dilation is
called the L1-similarity structure of the problem. Variables and so-
lutions that are also invariant under the dilation is called similarity
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variables and solutions, respectively. The Barenblatt solution, say
ρ(x, t), and variable ξ are the ones, where α = 1/(m + 1),

ρ(x, t) = t−α
(
A− m− 1

2m(m + 1)
(
xt−α

)2
) 1

m−1

+
and ξ = xt−α.

Note that the constant A is a free parameter that decides the total
mass and that the similarity variable ξ = xt−α show how the sup-
port of the solution expands asymptotically. We say that tα is the
asymptotic scale for space distribution of the solution.

If an equation contains more terms, say

ut + (uq)x = (um)xx + (|ux|p−2ux)x,

then the problems has no similarity structure anymore. However,
in general, there may exist an asymptotic scale tα that gives the
propagating speed of the solution distribution. In the last case the
asymptotic scale is given by α := max{1/q, 1/p, 1/(m + 1)}. Then,
tαu(tαx, t) converges to a L1 function as t → ∞. It seems that the
asymptotic scale exists for more general kind of problems.

In the literature, two kinds of optimal asymptotic convergence
rates appear. They actually correspond to the time and space shifts.
In L1-norm they can be written as, for t > 0 large,

‖ρ(x, t)− ρ(x− c, t)‖1 = O(t−α), (33)
‖ρ(x, t)− ρ(x, t + T )‖1 = O(t−1). (34)

The mechanism of these two asymptotics are different. The first one
in (33) is actually related to the convergence orders in Theorem 1.
This convergence order corresponds to the one with zeroth moment
agreement. The other one (34) is not actually related. In the following
we formally investigate the relation between the asymptotic conver-
gence orders and the control of moments at t = ∞. Even though we
do not have a rigorous proof, it seems reasonable to put this formal
arguments in this paper since the convergence order of moments in
Theorem 1 motivates them.

Let v be another solution with initial value v0. Set

e(x, t) := u(x, t)− v(x, t).

Suppose that

‖|x|Ne(x, t)‖1 =
∫
|x|N |e(x, t)|dx = O(1) as t →∞. (35)

We want to derive the decay rate of ‖e(x, t)‖1 as t →∞. Change the
space variable using

x = tβy, dx = tβdy.
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Then, ∫
|x|N |e(x, t)|dx = tNβ

∫
|y|N |e(tβy, t)|tβdy.

If one obtains two positive constants c and C that are independent
of the time t > 0 and satisfy

c

∫
|e(tβy, t)|tβdy ≤

∫
|y|N |e(tβy, t)|tβdy ≤ C

∫
|e(tβy, t)|tβdy,

(36)
then the correct convergence order for ‖e(x, t)‖1 is obtained. Suppose
that tα is the similarity scale or the asymptotic scale that gives the
propagating speed of the support of the solution. Then, if β > α, then
tβ|e(tβy, t)| behaves like a delta sequence and hence lower bound in
(36) should fail. Similarly, if β < α, then the support of tβ|e(tβy, t)|
expands as t →∞ and hence the upper bound of (36) is not expected.
Hence, β = α is the only case that one may obtain the correct con-
vergence order for ‖e(x, t)‖1. Then, there exists c∗ = c∗(t) > 0 such
that c ≤ c∗ ≤ C and

∫
|e(tβy, t)|tβdy = c∗

∫
|y|N |e(tβy, t)|tβdy.

Using these relations, one obtains

tNα‖e(x, t)‖1 = tNα

∫
|e(tαy, t)|tαdy

= c∗tNα

∫
|y|N |e(tβy, t)|tβdy = O(‖|x|Ne(x, t)‖1) = O(1)

as t → ∞. Hence, the decay of the N -th order moment at t = ∞ in
(35) gives

‖e(x, t)‖1 =
∫
|e(x, t)|dx = O(t−Nα) as t →∞. (37)

In summary, if one may show (36), then the following claim is
obtained.
Fine asymptotics and the similarity scale: Let u(x, t) and v(x, t)
be integrable solutions to a nonlinear problem given in (1) in one space
dimension. Suppose that e := u − v satisfies (35) and tα, α > 0, is
the asymptotic scale of the problem. Then, for 0 ≤ k ≤ N ,

‖|x|ke(x, t)‖r = O(t(k−N−1+1/r)α) as t →∞. (38)

This convergence order is the one corresponding to (7). One may
say that the convergence order (34) is not of this kind. However, the
one in (33) is this kind with N = 1.



16 Jaywan Chung, Eugenia Kim and Yong-Jung Kim

Remark 4. For the fast diffusion case, 0 < m < 1, the similarity scale
tα is with α = 1/(m+1) > 1/2. Hence, if ‖|x|2(ρ(x, t)−ρ(x, t+T ))‖1 =
O(1) as t →∞, then above discussion implies that ‖ρ(t)−ρ(t+T )‖1 =
O(t−2α). However, the order (34) is an optimal one and hence one
should expect that ‖|x|2(ρ(x, t) − ρ(x, t + T ))‖1 → ∞ as t → ∞. In
fact, this is true and one may check that using the explicit formula
of the Barenblatt solution.

5. Numerical Examples

In this section, we test the asymptotic convergence orders obtained in
Theorem 1 numerically. The effect of the backward moments is also
tested. Note that the convergence order in (7) is for t > 0 large and
hence one should wait certain amount of time to observe such a con-
vergence order. However, at that stage, the error ‖u(t)−wn(t)‖r can
be very small. Hence it is important to compute the exact solution,

u(x, t) = H−1
(∫ x

−∞

( 1√
4πt

∫
φ(y − z, 0)e−z2/4tdz

)
dy

)
,

with an error smaller than this asymptotic approximation error. How-
ever, it is unrealistic to do the required integrations with such a small
tolerance. Hence one should test the convergence order with a case
that an explicit solution exists. One easy way to do that is to set
φ(x, t) first (not u(x, t) ). Let

φ(x, t) := 5√
4πµ(t+2)

e
− (x+1.8)2

4µ(t+2) + 20√
4πµ(t+1)

e
− (x+0.5)2

4µ(t+1)

− 16√
4πµ(t+0.5)

e
− (x−0.5)2

4µ(t+0.5) − 9√
4πµ(t+2)

e
− (x−1.2)2

4µ(t+2) ,
(39)

and u(x, t) be the inverse Cole-Hopf transformation of

Φ(x, t) =
∫ x

−∞
φ(y, t)dy.

Remember that from the definition of the Cole-Hopf transformation,
∫ x

−∞
φ(y, 0) dy = Φ(x, 0) = e

− 1
2µ

∫ x
−∞ u0(y) dy − 1 > −1. (40)

Hence one should choose φ(x, 0) that satisfies (40) for all x ∈ R. The
one given in (39) satisfies it.

The numerical test in this section has two purposes. The first one is
to observe approximation properties of the method suggested in this
paper. In Figures 1 and 2 we have compared the approximations to
the exact one varying the backward time and the number of kernels.
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Fig. 1. The initial data u0 (solid line) and its approximation (dashed line) are
figured. The three figures in the first row show the convergence as n increases.
The backward time is fixed with t0 = 0.3. The three figures in the second row
show the role of the backward time t0. One may see that a better backward time
gives better results for a given n. In the example with the given initial value and
n = 8, the backward time t0 = 1.1 seems a limit. After this limit of backward
time the error of the approximation increases suddenly (see Table 1).
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Fig. 2. The solution to the Burgers equation at time t = 1 are given in solid lines.
Approximate solutions are given in dashed lines. The three figures in the first row
are without using backward moments t0 = 0. The others are with t0 = 0.3. In
both cases one may observe convergence as n increases.
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The graph of the initial value u(x, 0), which is the inverse Cole-Hopf
transformation of Φ(x, 0), is given in Figure 1 in solid lines. For a given
backward time t0 ≥ 0, the approximate solution ψn(x, t) to the heat
equation is given by (9). The approximation wn(x, t) in Theorem 1 is
the inverse Cole-Hopf transformation of Ψn(x, t) :=

∫ x
−∞ ψn(y, t)dy.

The initial approximation wn(x, 0) are given in Figure 1 in dashed
lines. The three figures in the first row show the convergence as n
increases with a fixed backward time t0 = 0.3. If the backward mo-
ments are not used, i.e., t0 = 0, then the approximation is just a
collection of delta distributions. Hence, initial convergence as n →∞
is not expected without using backward moments.

The three figures in the second row of Figure 1 show the role of the
backward time t0. One may see that a better backward time gives bet-
ter results for a fixed n. In this example, the backward time t0 = 1.1
seems the best. One should not be mislead that the approximation
converges as t0 →∞. In fact, the approximation error increases sud-
denly for t0 > 1.1. This behavior is related to the initial value u(x, 0)
given by (39) and the number of heat kernels n = 8. To verify this
property an error comparison is given in Table 1 for n = 2, 4, 8 and 16
as increasing t0. One may observe that the backward time improves
the approximation only up to certain limit and, after that, the per-
formance becomes poor suddenly. For a bigger n, the best backward
time becomes smaller. This property seems related to the age of the
initial heat distribution φ(x, 0) in (39). In this example, the age is
t = 0.5, and the best backward time t0 seems to approach to this
age as n →∞. However, we only have numerical experiments for this
argument.

In Figure 2, the solution to the Burgers equation at time t = 1
is given in solid lines. Approximate solutions are given in dashed
lines. The three figures in the first row are without using backward
moments, i.e., t0 = 0. The others are with t0 = 0.3. In both cases one
may observe convergence as n increases. One may also see that the
effects of the backward time t0 > 0 becomes smaller as t increases
(compare Tables 2 and 3).

The second purpose of this section is to test the asymptotic conver-
gence order in (7). In the followings we only test the zeroth moment
in the uniform norm, i.e., the L∞-contraction order between u and
wn. The convergence rate γn(t) is computed using the formula

γn(t) := ln
( ‖u(x, t)− wn(x, t)‖∞
‖u(x, t/2)− wn(x, t/2)‖∞

)
/ ln

(
1
2

)
. (41)

In Table 2 the error and the convergence rates are given in the uniform
norm. The approximate solutions wn are constructed for n = 2, 4, 8
and zero backward time t0 = 0. One may roughly observe that the
convergence order increases to n + 0.5 which is given by Theorem
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Table 1. Approximation errors en(t) := ‖u(t)−wn(t)‖∞ at time t = 0.1 are given
increasing the backward time t0 ≥ 0. The error decreases as t0 increases up to
certain limit and then it blows up suddenly. Errors in small font are invalid ones.

t0 e2(0.1) e4(0.1) e8(0.1) e16(0.1)

0 1.26e-00 8.72e-01 4.69e-01 2.73e-01
0.1 8.41e-01 5.41e-01 2.49e-01 1.08e-01
0.2 6.55e-01 3.95e-01 1.56e-01 4.61e-02
0.3 5.45e-01 3.07e-01 1.10e-01 1.98e-02
0.4 4.70e-01 2.47e-01 7.75e-02 7.97e-03
0.5 4.15e-01 2.03e-01 5.37e-02 2.97e-03
0.6 3.72e-01 1.69e-01 3.68e-02 1.40e-03
0.7 3.38e-01 1.42e-01 2.85e-02 7.13e-04
0.8 3.11e-01 1.20e-01 2.37e-02 9.44e-02

0.9 2.87e-01 1.02e-01 2.04e-02 4.74e-02

1.0 2.68e-01 8.73e-02 1.75e-02 6.82e-02

1.1 2.51e-01 7.52e-02 1.47e-02 6.56e-02

1.2 2.37e-01 6.52e-02 6.57e+02 7.10e-01

1.3 2.24e-01 5.69e-02 1.11e+03 7.82e-02

1.4 2.13e-01 5.00e-02 4.51e-01 5.62e+15

1.5 2.03e-01 4.42e-02 4.01e-02 3.32e+02

1.6 1.94e-01 2.35e+02 1.88e-01 2.20e+02

Table 2. Approximation error without backward moments, i.e., t0 = 0. The
numerical order γn(t) computed by (41) converges to the theoretical one as t →∞.

t e2(t) γ2(t) e4(t) γ4(t) e8(t) γ8(t)

0.125 1.11e-00 7.51e-01 3.89e-01
0.25 7.23e-01 0.62 4.47e-01 0.75 2.00e-01 0.96
0.5 4.48e-01 0.69 2.36e-01 0.92 8.95e-02 1.16
1 2.53e-01 0.82 1.05e-01 1.17 2.19e-02 2.03
2 1.23e-01 1.04 3.14e-02 1.74 2.12e-03 3.37
4 4.77e-02 1.37 5.71e-03 2.46 7.36e-05 4.85
8 1.41e-02 1.76 6.35e-04 3.17 1.04e-06 6.15
16 3.33e-03 2.08 4.78e-05 3.73 7.97e-09 7.03
32 6.81e-04 2.29 3.03e-06 3.98 4.07e-11 7.61
64 1.31e-04 2.38 1.72e-07 4.14 1.66e-13 7.94
128 2.46e-05 2.41 9.34e-09 4.20 6.18e-16 8.07

Table 3. Approximation error and contraction order with backward time t0 = 0.3.
The error in this case is smaller than the case with t0 = 0.

t e2(t) γ2(t) e4(t) γ4(t) e8(t) γ8(t)

0.125 5.22e-01 2.88e-01 1.02e-01
0.25 4.31e-01 0.28 2.15e-01 0.42 6.94e-02 0.56
0.5 3.19e-01 0.43 1.38e-01 0.64 3.26e-02 1.09
1 2.03e-01 0.65 6.69e-02 1.04 8.16e-03 2.00
2 1.06e-01 0.94 2.09e-02 1.68 8.42e-04 3.28
4 4.24e-02 1.32 4.00e-03 2.39 3.19e-05 4.72
8 1.25e-02 1.76 4.66e-04 3.10 4.95e-07 6.01
16 3.07e-03 2.03 3.58e-05 3.70 4.01e-09 6.95
32 6.39e-04 2.26 2.30e-06 3.96 2.14e-11 7.55
64 1.24e-04 2.37 1.33e-07 4.11 8.95e-14 7.90
128 2.38e-05 2.38 7.32e-09 4.18 3.54e-16 7.98
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1. In Table 3 the same comparisons are given for the approximate
solutions using backward moment t0 = 0.3. For a small time t > 0,
the result is considerably better if a backward time is used. However,
as t →∞, both of them become similar. The asymptotic convergence
order in (7) is for t > 0 large. In conclusion, the approximate solution
wn constructed in this paper well behaves for a small time, too. This
is partly due to the use of backward time. The approach using the
derivatives of Gaussian as in (18) can be also improved by using the
backward time as in (19).
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