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Abstract. The Newtonian potential is introduced in a relative sense
for radial functions. In this way one may treat the potential theory
for a larger class of functions in a unified manner for all dimensions
d ≥ 1. For example, Newton’s theorem is given in terms of relative
potentials, which is a simpler statement for all dimensions. This rela-
tive potential is then used to obtain the L1-convergence order O(t−1)
as t → ∞ for radially symmetric solutions to the porous medium and
fast diffusion equations. The technique is also applied to radial so-
lutions of the p-Laplacian equations to obtain the same convergence
order.

1. Introduction

The fundamental solution of Laplace equation in Rd has three differ-
ent shapes depending on the dimension. They are

Φ(x) :=


−1

(d−2)ωd
|x|2−d, d ≥ 3,

1
ωd

ln |x|, d = 2,
1
ωd
|x|2−d, d = 1,

(1)
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where ωd := 2πd/2/Γ(d/2) is the surface area of the unit sphere in
Rd. The Newtonian potential of a Radon measure v(x) is defined by

V (x) :=

∫
Rd

Φ(x− y)v(y)dy, (2)

which solves the Poisson equation ∆V = v. The fundamental solution
Φ itself is the Newtonian potential of the Dirac delta measureδ(x)
and ∆Φ = δ. Since Φ is locally integrable, the Newtonian potential is
well-defined if v(x) decays with order

|v(x)| = O(|x|−2−ϵ) as |x| → ∞. (3)

Due to the dimension dependency of the fundamental solution,
one should consider the Newtonian potential separately for the three
cases. Such a difference is an obstacle to obtain simple statements
that work for all dimensions and makes certain analysis lengthy and
complicated. The purpose of this paper is to propose a potential the-
ory in a relative sense, which brings the properties of the Newtonian
potential of dimensions d ≥ 3 to all dimensions d ≥ 1. We also give
two examples to show that the new theory provides a unified ap-
proach to all dimensions. The first example is the Newton’s theorem
itself, which is:

Newton’s Theorem(Theorem 9.7 in Lieb and Loss [24]) Let v(x) ≥
0 be a radial Radon measure satisfying the decay condition (3) with
total mass M =

∫
v(x)dx. Then, its Newtonian potential V satisfies

|V (x)| ≤ M |Φ(x)| for all x ∈ Rd. (4)

Furthermore, if the support of the measure v lies in a ball of radius
L > 0 centered at the origin, i.e., supp(v) ⊂ BL(0), then

V (x) = MΦ(x) if |x| > L. (5)

Considering the signs of Φ and V , the theorem gives three scenarios
depending on the dimension, which are given in the three diagrams
in Figure 1. For dimension d = 1, the fundamental solution is non-
negative and hence so is the Newtonian potential V given by (2).
Therefore the inequality (4) gives 0 ≤ V (x) ≤ MΦ(x). If d ≥ 3,
the situation is opposite; Φ is non-positive and MΦ(x) ≤ V (x) ≤ 0.
The case d = 2 is a mixture of these two cases. Since ln(1) = 0, the
inequality (4) forces V (x) = 0 if |x| = 1 and furthermore, MΦ(x) ≤
V (x) ≤ 0 for all |x| < 1 and 0 ≤ V (x) ≤ MΦ(x) for all |x| > 1.

The proof of the theorem should be completed by doing the three
cases separately, which is lengthy and complicate. In particular the
case d = 2 requires more work. Furthermore, the essence of the theo-
rem becomes less clear by those three different scenarios. In Section
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d = 1 d = 2 d ≥ 3

Fig. 1. These diagrams show the relation between the fundamental solution MΦ
(solid lines), and the Newtonian potential V of a Radon measure v ≥ 0 with mass
M > 0 (dashed lines) given by the Newton’s theorem.

2, we will observe that the source of this complication is to get the
Newtonian potential well-defined and it is not avoidable as long as
one wants to consider the potential itself. The key thing that one
should remember is that it is the potential difference but not the po-
tential itself that makes physics. For example, the electrical current is
produced by the voltage difference, but not by the voltage. Hence it is
desirable to define a potential in a relative sense from the beginning
and develop a theory based on it. The Newton’s theorem is also a
comparison between two Newtonian potentials, one for v ≥ 0 and the
other for Mδ, where they share the same mass under the assumption
M =

∫
v(x)dx.

In Section 2 the relative potential of two radial Radon measures,
say v1 and v2, is defined by

E(r; v1, v2) := −
∫ ∞

r

(
x1−d

∫ x

0
yd−1(v1(y)− v2(y)) dy

)
dx. (6)

For dimensions d ≥ 3, this relative potential is well-defined if |v1−v2|
has the order in (3) for |x| large. Even if the Newtonian potentials are
not well-defined for each one of v1 and v2, the relative potentials can
be well-defined. For dimensions d ≤ 2, this decay rate is not enough to
get it well-defined. However, if v1 and v2 share the same mass, then
it is. Therefore, if one compares two Radon measures of the same
mass, which is the case of the Newton’s theorem and of the potential
comparison technique, the decay rate in (3) for the difference |v1−v2|
is just enough. If the relative potential is well-defined, then, for all
dimensions d ≥ 1,

∆E(r; v1, v2)
(
≡ r1−d(rd−1E′(r; v1, v2))

′
)
= v1(r)− v2(r).

Now we can state our new version of the Newton’s theorem using
the relative Newtonian potential, which is proved in Section 2:

Theorem 1 (Newton’s theorem in relative potentials). Let
v(x) ≥ 0 be a radial Radon measure satisfying the decay condition
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(3) with M =
∫
v(x)dx. Then, the relative Newtonian potential E

satisfies
E(|x|;Mδ, v) ≤ 0 for |x| > 0. (7)

Furthermore, if supp(v) ⊂ BL(0), then

E(|x|;Mδ, v) = 0 for |x| > L. (8)

Let Φ(x) be the fundamental solution in (1) and V be the Newtonian
potential of v in (2). Then, for dimensions d ≥ 3,

E(|x|;Mδ, v) = MΦ(x)− V (x). (9)

In this new version of the Newton’s theorem, there is no complication
depending on the dimension and one may develop a potential theory
that works for all dimensions in a unified way. The equality (9) in-
dicates that the new theorem is identical to the original Newton’s
theorem for dimensions d ≥ 3.

The second example is a study of long time asymptotics in non-
linear diffusion equations. In Section 3, the relative potentials are
applied to obtain intermediate asymptotics of radial solutions to

ut = ∆(um), u(x, 0) = u0(x) ≥ 0, t > 0, x ∈ Rd, (10)

where the exponent m is a positive constant. If m < 1, then the
equation is called the fast diffusion equation, written here FDE for
brevity. If m > 1, it is called the porous medium equation (PME).
This equation is a nonlinear version of the heat equation with a tem-
perature depending conductivity mum−1. This model has been used
to describe various diffusion processes such as a gas flow through a
porous media, heat radiation in plasmas, groundwater flow, curvature
flow, and spreading species (see Chapter 2 in [29]).

One of the essential structures of the equation is the radial sym-
metry. For example, if the initial data u0 is radially symmetric, then
the solution keeps the symmetry all the time t > 0. If the initial
value is not radial, then the solution asymptotically converges to a
fundamental solution of the same mass which is radial. In fact, the
homogeneity of the problem allows a similarity structure and one may
find the fundamental solution explicitly. This fundamental solution
is called the Barenblatt solution and is given by

ρ(x, t) = t−dα(CM − k|xt−α|2)1/(m−1)
+ , (11)

where α = 1
d(m−1)+2 > 0, k = α(m−1)

2m , and CM > 0 is a con-

stant decided by the total mass
∫
ρ(x, t)dx = M . Here, we denote

f+ := max(f, 0). The restriction α > 0 indicates that we assume
m > (d− 2)+/d. In fact this is the mass conservative regime and the
explicit Barenblatt solution is valid only when the exponent m is in
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the regime. For the FDE regime m < 1, the coefficient k is negative
and hence the inside of the parenthesis in (11) is strictly positive for
all x ∈ R. Hence ρ(x, t) is strictly positive everywhere for all t > 0.
For the PME regime, the inside is positive only in a disc and hence
ρ is compactly supported.

In Section 4, the long time asymptotics of the p-Laplacian equation
(PLE) is considered. For a fixed p > 1, the equation is given by

ut = ∇ · (|∇u|p−2∇u), u(x, 0) = u0(x) ≥ 0, t > 0, x ∈ Rd. (12)

This problem also has a similarity structure and its fundamental so-
lution is explicitly given by

ρ(x, t) = t−dα(CM − k|xt−α|
p

p−1 )
p−1
p−2

+ , (13)

where α = 1
d(p−2)+p > 0, k = p−2

p α1/(p−1), and CM > 0 is a constant

decided by the total mass
∫
ρ(x, t)dx = M . This formula is valid for

the mass conservative regime p > 2d/(d+ 1). The solution is strictly
positive everywhere if p < 2 and is compactly supported if p > 2 by
the same mechanism of the earlier case.

Now we can state our second theorem of the paper, which is proved
in Sections 3 and 4 using relative Newtonian potentials.

Theorem 2. Let the initial value u0(x) ≥ 0 be radially symmetric,
compactly supported, and of mass M =

∫
u0(x)dx < ∞. Then the

solution u(x, t) to Eq. (10) with m > (d− 2)+/d satisfies

∥u(t)− ρ(t)∥1 = O(t−1) as t → ∞, (14)

where ρ(x, t) is the Barenblatt solution given by (11). If u(x, t) is the
solution to Eq. (12) with p > 2d/(d+ 1), then the same convergence
order holds with the Barenblatt-type solution ρ(x, t) given in (13).

Here we denote the L1-norm over the space variable as ∥ · ∥1. We will
prove this theorem using the relative Newtonian potential of a radial
solution u(x, t) respect to the Barenblatt solution ρ(x, t) in a unified
way for all dimensions d ≥ 1. The theorem is proved for the FDE and
PME case in Section 3 and then for PLE case in Section 4.

Long time asymptotic contraction to the Barenblatt solution has
been intensively studied for the FDE and PME cases. Vázquez has
shown that an L1-contraction order is not generally expected among
all L1(Rn) initial data even if they share the same mass (see [31]).
Hence extra restrictions such as finiteness of moments, entropy or
relative entropy has been imposed to obtain certain contraction order
throughout the literature (see [6,7]). There are two kinds of optimal
contraction rates. The first one is of the similarity scale of O(t−α) as
t → ∞, which is the order of a space translation ∥ρ(t)−ρx0(t)∥1 with
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ρx0(x, t) = ρ(x+x0, t). This rate has been shown for (d−1)/d < m < 2
in [7–9,11,27]. The contraction rates in other regimes obtained so far
are lower than this optimal rate. A complete spectrum analysis of
FDE was given by Denzler and McCann [13].

The other optimal contraction rate, which requires tuning the cen-
ter of mass, is O(t−1) as t → ∞. This is the one in the theorem.
Note that the center of mass is already tuned for a radial solutions
at the origin. This contraction rate is the one of a time translation
∥ρ(t) − ρ(t + T )∥1 for a fixed T > 0. This rate has been shown for
(d − 2)+/d < m ≤ d/(d + 2) in [19] and a similar rate O(t−1+ϵ) for
(d − 1)/d ≤ m < 1 in [26]. For radial solutions or for dimension one
such a contraction rate has been shown for all m > (d− 2)+/d using
a potential comparison or a mass concentration comparison [8,19,20,
30,31]. Therefore, the contraction rate in Theorem 2 is not new for
FDE and PME cases. However, the point is that the relative Newto-
nian potential gives a simple proof in a unified way for all dimensions
d ≥ 1 and all exponents m > (d− 2)+/d.

The PLE also has a similar story of the asymptotic convergence
in the conservative regime p > 2d/(d + 1). The case with p < 2
corresponds to the FDE and the other one corresponds to the PME.
However, the convergence order obtained is not optimal. Kamin and
Vázquez [15] obtained L1 contraction without an order. Del Pino and
Dolbeault [12] obtained a convergence order for (2d + 1)/(d + 1) ≤
p < d, Agueh [1] extended it to p > d, and Agueh, Blanchet and
Carrillo [2] filled the gap and included the whole conservative regime
p > 2d/(d+ 1).

The entropy dissipation method (see [5,9]) has been used to obtain
intermediate long time asymptotics. Even if the entropy of a solution
is not defined, the relative entropy can be defined by comparing it
with another solution. In this way the relative entropy theory has en-
larged the regime that the dissipation method is applicable. The rela-
tive Newtonian potential may do exactly the same role. Furthermore,
the relative Newtonian potential introduced in this paper provides a
unified approach for all dimensions d ≥ 1, which seems a more sig-
nificant contribution. Pierre [28] employed Newtonian potentials for
dimensions d ≥ 3 only. Kim and McCann [19] fully used them for all
dimensions d ≥ 1 case by case.

2. Relative potential of radial functions

Let V be the Newtonian potential of a Radon measure v ≥ 0. In
other words V satisfies ∆V = v in the sense of distributions. Under
the radial symmetry assumption for V and v, one may write the
relation as

∆V = r1−d(rd−1V ′(r))′ = v(r), r = |x|. (15)



Relative potential and L1-contraction rate 7

Then, a formal integration of (15) gives a natural candidate for the
potential,

V (r) =

∫ r

r0

(
x1−d

∫ x

0
yd−1v(y)dy

)
dx, 0 ≤ r0 ≤ ∞.

Since the fundamental solution is the case with v(y) = δ(y), one
may easily see that r0 = 0 if d = 1, r0 = 1 if d = 2 and r0 = ∞ if
d ≥ 3 to recover the fundamental solutions in (1). This explains the
three scenarios of the Newton’s theorem given in Figure 1. Therefore,
it is desirable to find a way to pick r0 = ∞ for all dimension, which
will unify the three scenarios.

Let V(r) be the mass concentration of v, which is the mass in
Br(0), a ball of radius r > 0 centered at x = 0. After setting r0 = ∞,
it seems reasonable to define

V (r) := − 1

ωd

∫ ∞

r
x1−dV(x)dx, V(x) = ωd

∫ x

0
yd−1v(y)dy. (16)

Notice the hierarchy of notations. A small letter v is a given measure,
a calibrated letter V is the mass concentration and a capital letter
V is the potential. Here we are sharing the same notation with the
original Newtonian potential (2), which will be justified by Theorem
1 and its proof.

Unfortunately, this definition is not well-defined in general. The
total mass M should be the limit limr→∞ V(r) = M . It is clear that,
if V(r) = O(rd−2−ϵ) for r > 0 large, then V is well-defined. Hence, if
d ≥ 3, the potential V is well-defined for any L1 measure v. If d ≤ 2,
then the potential V in (16) is not defined since the only non-negative
function that has the mass concentration of order V(r) = O(rd−2−ϵ)
for r > 0 large is the trivial one. That is why it is forced to choose
r0 = 0 for dimension d = 1. For dimension d = 2, neither one of
the two end points r0 = 0 or r0 = ∞ is not working and hence one
should choose an interior point, r0 = 1. Therefore, it is clear that, as
long as the potential itself is considered, the three different scenarios
in Figure 1 are not avoidable, even though they are basically talking
about the same phenomenon.

However, if one wants to compare two potentials of the same mass,
then the Newtonian potential of their difference can be considered
from the beginning. Then, if the difference decays fast enough for |x|
large, one may define its potential taking r0 = ∞ for all d ≥ 1. In
other words, as long as the potential is understood in a relative sense,
there is no difference depending on dimension.

Definition 1. Let v1(r) and v2(r) be non-negative radial Radon mea-
sures in Rd with d ≥ 1. The relative Newtonian potential E(r; v1, v2)
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between v1 and v2 is defined by

E(r; v1, v2) := −
∫ ∞

r

(
x1−d

∫ x

0
yd−1(v1(y)− v2(y)) dy

)
dx. (17)

This relative potential is well-defined if the relative mass concentra-
tion

E(r; v1, v2) := ωd

∫ r

0
yd−1(v1(y)− v2(y))dy (18)

in the ball of radius r > 0 has order

E(r; v1, v2) = O(rd−2−ϵ) as r → ∞. (19)

On the other hand, if the relative potential is well-defined, then the
relative mass concentration should satisfy

E(r; v1, v2) = o(rd−2) as r → ∞.

Therefore, when dimension d ≤ 2, the Radon measures v1 and v2
should have the same total mass, i.e., ∥v1∥1 = ∥v2∥1, to get their
relative potential to be well-defined.

From the definition we have

∆E(r; v1, v2) = v1 − v2, (20)

E(r; v1, v2) = −E(r; v2, v1). (21)

If the Radon measures v1, v2 are clearly given from the context, then
we simply denote the relative potential and relative mass concentra-
tion by E(r) and E(r), respectively.

Newton’s theorem is about a comparison between the fundamental
solution of Laplace equation and the Newtonian potential of a radial
function. One may consider it in terms of relative potentials in a
unified way for all dimensions d ≥ 1.

Lemma 1. Let vi, i = 1, 2, be non-negative radial Radon measures
such that

supp(vi) = [0, Li] with 0 < L1 < L2 < ∞, ωd

∫ Li

0
yd−1vi(y)dy = M,

and E(r)(≡ E(r; v1, v2) ) be the corresponding relative potential, i.e.,

E(r) := −
∫ ∞

r
x1−dk(x) dx, k(x) :=

∫ x

0
yd−1(v1(y)− v2(y)) dy.

Then,

E(r) ≤ 0 if L1 < r < L2, E(r) = 0 if L2 < r.
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Proof. Let

A(x) :=

∫ x

0
yd−1v1(y) dy, B(x) :=

∫ x

0
yd−1v2(y) dy.

Then, k(x) = A(x)−B(x). If x > L2, then A(x) = B(x) = M/ωd and
hence k(x) = 0. Therefore, E(r) = 0 for all r > L2. If L1 < x < L2,
then A(x) = M/ωd and B(x) < M/ωd. Hence, k(x) > 0. Therefore,

for L1 < r < L2, E(r) = −
∫ L2

r k(x)dx < 0. ⊓⊔

Newton’s theorem is a special case of Lemma 1 that v1 = Mδ.
However, the proof of the lemma was almost trivial. It is because of
the definition of the relative potential which is designed for radial
ones. The nontrivial part is to show that it is actually the original
one given in (2) at least for d ≥ 3. In the following proof, we will
show that part using the original Newton’s theorem.

Proof of Theorem 1. The first two parts of Theorem 1 are clear
from Lemma 1, where v1 is replaced by the Dirac delta measure
multiplied by M > 0. We show the last part (9). For a dimension
d ≥ 3, set

A(x) := MΦ(x)− E(|x|;Mδ, v).

Then,

∆A = M∆Φ−∆E = Mδ − (Mδ − v) = v = ∆V,

where V is the Newtonian potential given in (2). Therefore, A−V is
harmonic. The second part of the theorem (8) implies that A = MΦ
for all |x| > L. The original Newton’s theorem implies that V = MΦ
for all |x| > L. Therefore, A − V is a bounded harmonic function
with a compact support. The only such a harmonic function is a
trivial one, which shows A = V . ⊓⊔

Remark 1. In the proof of the theorem we actually showed that∫
Rd

Φ(x− y)v(y)dy = −
∫ ∞

r
x1−d

(∫ x

0
yd−1v(y)dy

)
dx,

where d ≥ 3 and the Radon measure v is radial, which justifies the
use of the same symbol in (2) and (16).

Remark 2. The definition of the relative Newtonian potential given
in this paper is for the radial case. In particular, at the origin, one
may write it as

E(0; v1, v2) = − 1

ωd

∫ ∞

0
r1−d

(∫
Br(0)

(v1(y)− v2(y))dy
)
dr.
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Therefore, for non-radial Radon measures, the relative Newtonian
potential can be defined in a unified way for all d ≥ 1 by

E(x; v1, v2) = − 1

ωd

∫ ∞

0
r1−d

(∫
Br(x)

(v1(y)− v2(y))dy
)
dr.

3. The porous medium and fast diffusion equation

In this section we prove Theorem 2 for the solutions to the PME
and FDE. Since the solution u(x, t) and the initial value u0(x) are
radially symmetric, one may rewrite the equation as

ut = r1−d(rd−1(um)r)r, u(r, 0) = u0(r) ≥ 0, ur(0, t) = 0, (22)

where r = |x|, m > (d− 2)+/d and d ≥ 1. Notice that we are slightly
abusing notation by writing u(x, t) = u(r, t), u0(x) = u0(r). The
initial value u0 is assumed to be compactly supported and has total
mass M , i.e.,∫

u0(x)dx = ωd

∫ ∞

0
rd−1u0(r)dr = M, supp(u0) ⊂ BL(0). (23)

The Barenblatt solution can be written in the radial variable r which
is

ρ(r, t) = t−dα(CM − k(rt−α)2)
1/(m−1)
+ , (24)

where α = 1/(d(m− 1) + 2) > 0 and k = α(m− 1)/(2m).

Lemma 2. Let u1(r, t) and u2(r, t) be solutions to (22) with com-
pactly supported initial values u01(r) and u02(r) of the same mass
M > 0. Then the corresponding relative Newtonian potential,

E(r, t) := −
∫ ∞

r

(
x1−d

∫ x

0
yd−1(u1(y, t)− u2(y, t)) dy

)
dx, (25)

is well-defined for all d ≥ 1, m > (d−2)+/d, and t > 0. Furthermore,

∂

∂t
E(r, t) = um1 (r, t)− um2 (r, t). (26)

Proof. For the PME regime, m > 1, the solutions are compactly sup-
ported and the mass concentration E(r, t) := ωd

∫ r
0 yd−1(u1(y, t) −

u2(y, t))dy becomes identically zero for r > 0 large. Hence, this rela-
tive potential is well-defined for all dimensions for the PME regime.
For the fast diffusion regime, (d − 2)+/d < m < 1, it is well known
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that the solution ui has the same decay rate for r large as the one of
the Barenblatt solution. Since E(r, t) → 0 as r → ∞, we have

|E(r, t)| = ωd

∣∣∣ ∫ r

0
yd−1(u1(y, t)− u2(y, t))dy

∣∣∣
= ωd

∣∣∣ ∫ ∞

r
yd−1(u1(y, t)− u2(y, t))dy

∣∣∣
≤ Cωd

∣∣∣ ∫ ∞

r
yd−1y

2
m−1dy

∣∣∣ = O(r
2+d(m−1)

m−1 )

as r → ∞. Since 2+d(m−1)
m−1 − (d−2) = 2m

m−1 < 0, the relative potential
is well-defined. If m = 1, then it is the heat equation case and one
may conclude the lemma easily using the exponential decay of the
solution as r → ∞.

A formal proof of (26) can be given as

Et = −
∫ ∞

r

(
x1−d

∫ x

0
yd−1(u1 − u2)t dy

)
dx

= −
∫ ∞

r

(
x1−d

∫ x

0
yd−1

(
y1−d(yd−1(um1 − um2 )y)y

)
dy

)
dx

= um1 − um2 .

For the PME case, m > 1, taking the derivative inside the integration
is simple since the integration is on a compact set. For the FDE case
with a dimension d ≥ 3, this relation is the one with the original
Newtonian potential, which was given in [19]. The FDE case with a
dimension d ≤ 2 can be similarly dealt as in the proof of Proposition
10 in [19]. ⊓⊔

It has been pointed out in [19] that the conservative regime of
the FDE is exactly the limit to get the Newtonian potential well-
defined. Therefore, it is no wonder that the well-definedness of the
relative Newtonian potential was obtained without a delicate tail
analysis. Since we always compare solutions with same initial mass
ωd

∫∞
0 rd−1u0(r) dr = M , we have

ωd

∫ ∞

0
rd−1u(r, t) dr = M for all t > 0 (27)

in the mass conservative regime. An application to the nonconser-
vative regime will provide an example that the relative Newtonian
potential really extends the potential theory.

Proposition 1 (Comparison Principle). Let u1(r, t) and u2(r, t)
be solutions to (22) with compactly supported initial values u01(r) and
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u02(r) of the same mass M > 0 and E(r, t;u1, u2) be their relative
Newtonian potential given by (25). If there exists t0 ≥ 0 such that

E(r, t0;u1, u2) ≥ 0 for all r > 0

then
E(r, t;u1, u2) ≥ 0 for all r > 0, t ≥ t0.

Proof. Using the relations in (20) and (26) one may write

Et = a(x, t)∆E, a(x, t) := (um1 − um2 )/(u1 − u2) ≥ 0. (28)

First consider the PME case m > 1. Then the relative potential E
is also compactly supported for all t > 0. Hence for a fixed time
T > 0, there exists a constant CT > 0 such that E(x, t) = 0 for all
|x| ≥ CT and t0 ≤ t ≤ T . Therefore, the maximum principle and the
assumption E(x, t0) ≥ 0 for all |x| > 0 imply that E(x, t) ≥ 0 for all
t0 ≤ t ≤ T and |x| < CT . Since we can take T and CT arbitrarily
large, the proof is done for the PME case. For the FDE case, (d −
2)+/d < m < 1, the solutions u1 and u2 become strictly positive
for all t > 0 and the equation (28) becomes uniformly parabolic.
Hence the maximum principle on the unbounded domain Rd× [t0, T ]
concludes the proposition. ⊓⊔

Let d ≥ 3. Then, the Newtonian potentials U1 and U2 of two
solutions u1 and u2 given by (16) obviously satisfy

E(r, t;u1, u2) = U1(r, t)− U2(r, t).

Hence, the proposition implies that U1(r, t) ≥ U2(r, t) for all r > 0
and t ≥ t0 if U1(r, t0) ≥ U2(r, t0) for all r > 0. Roughly speaking, the
next step is to sandwich the potential U(r, t) of the solution u(x, t)
by proving

R(r, t) ≤ U(r, t) ≤ R(r, T + t), (29)

where R is the potential of the Barenblatt solution ρ(x, t). In the
following lemma we show this estimate in terms of relative potentials
for all dimensions d ≥ 1.

Lemma 3. Let u(r, t) be the solution of (22) with compactly sup-
ported initial value and mass M > 0. Let ρ(r, t) be the Barenblatt
solution with the same mass. Then,
(i) The relative Newtonian potential satisfies

E(r, t; ρ, u) ≤ 0, r, t ≥ 0.

(ii) There exists T > 0 such that

E(r, t; ρT , u) ≥ 0, r, t ≥ 0,

where ρT (r, t) := ρ(r, t+ T ).
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Proof. (i) This estimate, which corresponds to the lower estimate in
(29), comes from Theorem 1 and the comparison principle.

(ii) We claim that there exist T > 0 such that for all r ≥ 0,

−E(r, 0; ρT , u) =

∫ ∞

r

(
x1−d

∫ x

0
yd−1(ρ(y, T )− u0(y)) dy

)
dx ≤ 0.

Let supp(u0) ⊂ [0, L]. Then, for l ≥ r ≥ L, it holds that∫ l

r

(
x1−d

∫ x

0
yd−1ρ(y, t) dy

)
dx ≤

∫ l

r
x1−d M

ωd
dx

=

∫ l

r

(
x1−d

∫ x

0
yd−1u0(y) dy

)
dx.

Hence the above claim holds for r ≥ L with any T > 0. Now consider
the case 0 < r < L with 2L ≤ l. Let

ϵ0 :=

∫ 2L

L

(
x1−d

∫ x

0
yd−1u0(y) dy

)
dx =

M

ωd

∫ 2L

L
x1−ddx.

Since the Barenblatt solution ρ(y, t) converges to zero uniformly,
there exists a large time T > 0 such that ρ(y, t) ≤ (dϵ0)/(2L

2) for all
t ≥ T and y > 0. Then, for t ≥ T , 0 < r < L and l ≥ 2L,∫ l

r

(
x1−d

∫ x

0
yd−1ρ(y, t) dy

)
dx

≤
∫ 2L

0

(
x1−d

∫ x

0
yd−1ρ(y, t) dy

)
dx+

∫ l

2L

(
x1−d

∫ x

0
yd−1ρ(y, t) dy

)
dx

≤ ϵ0 +

∫ l

2L
x1−d M

ωd
dx

(
because ρ(y, t) ≤ dϵ0

2L2

)
=

∫ 2L

L

(
x1−d

∫ x

0
yd−1u0(y) dy

)
dx+

∫ l

2L

(
x1−d

∫ x

0
yd−1u0(y) dy

)
dx

≤
∫ l

r

(
x1−d

∫ x

0
yd−1u0(y) dy

)
dx.

Hence the claim is proved. Finally the potential comparison principle
gives E(r, t; ρT , u) ≥ 0 for all r, t ≥ 0. ⊓⊔

Lemma 4. Let ρ(x, t) be the Barenblatt solution given in (11). Then,
there exists a constant C > 0 such that, for any given t, T > 0,

∥ρ(t)− ρ(t+ T )∥1 ≤
CT

t
.
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Proof. Since the Barenblatt solution is explicit, one may explicitly
compute this contraction order. However, in the following, we show
the lemma in a relatively general way. The Barenblatt solution in the
radial variable is in the form of ρ(r, t) = t−dαf(rt−α) for α > 0. then,

ρt(r, t) = −t−1
(
dαt−dαf(rt−α) + αt−dαf ′(rt−α)rt−α

)
.

Therefore, using the similarity variable ζ = rt−α, one can see that∫ ∞

0
rd−1|ρt(r, t)|dr ≤ α

t

∫ ∞

0
ζd−1(df(ζ) + ζ|f ′(ζ)|)dζ =

C

ωdt
,

where C = ωdα
∫∞
0 ζd−1(df(ζ) + ζ|f ′(ζ)|)dζ. Similarly, for all s > t,∫∞

0 rd−1|ρt(r, s)|dr ≤ C
ωds

≤ C
ωdt

. Finally, for any T > 0,

1

ωd
∥ρ(t)− ρ(t+ T )∥1 =

∫ ∞

0
rd−1 |ρ(r, t)− ρ(r, t+ T )| dr

=

∫ ∞

0
rd−1

∣∣∣ ∫ t+T

t
ρt(r, s) ds

∣∣∣ dr
≤

∫ t+T

t

∫ ∞

0
rd−1|ρt(r, s)| dr ds

≤
∫ t+T

t

C

ωdt
ds =

CT

ωdt
,

which completes the proof. ⊓⊔

The proof of Theorem 2 employs the well known zero-set theory
(see [3,25]). For example, Theorem B in [3] says that the number of
zeros of the solution e to

et = a(x, t)exx + b(x, t)ex + c(x, t)e, e(x, 0) = e0(x)

decreases in t if a > 0 and a, a−1, at, ax, axx, b, bx, c are bounded.
Let u and v be radial solutions of a parabolic problem with radial
symmetry. Then, one may view a intersection point between u and
v as a zero point of e = u − v. In many cases the difference e or
its regularized version can be written in the above form and one may
obtain the decrease of number of intersection points. (For more details
readers are referred to [18].)This property holds for the nonlinear
diffusion equations such as the PME or PLE and it has been applied
to obtain intermediate asymptotics (see Corollary 15.10 in [29]). Since
the Barenblatt solution is a delta sequence as t → 0, there exists
exactly one intersection point between ρ(r, t) and u(r, t) for r > 0. In
other words, there exists a unique point r = β(t) such that

(0, β(t)) = {r > 0 : ρ(r, t) > u(r, t)}.
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a) β(t) < γ(t) b) γ(t) < β(t)

Fig. 2. These diagrams show the relation among ρ, u and ρT . For the FDE case
the supports are unbounded.

We reserve the notation β(t) for this unique intersection point be-
tween ρ and u.

First proof of Theorem 2 for PME and FDE. Let T > 0 be
the one given in Lemma 3(ii). It is well-known that there exists a
finite time t0 > 0 such that the pressure p(u(t0)) = m

m−1u
m−1(t0)

becomes concave (see [4,21–23]). Hence, by taking larger T > 0 if
needed, there exists a unique intersection point between ρ(r, t0 + T )
and u(r, t0). Hence the zero set theory implies that ρ(r, t), u(r, t) and
ρ(r, t + T ) intersect each other exactly once for all t > t0. Let γ(t)
be the intersection point between ρ(·, t) and ρ(·, t+T ). Now we show
that, for t > t0,

ρ(0, t+ T ) < u(0, t) < ρ(0, t). (30)

First we show the first inequality ρ(0, t+T ) < u(0, t). If ρ(0, t+T ) =
u(0, t) for for a time t > t0, then r = 0 is the only intersection
point between u(t) and ρ(t + T ). Since ρ(t + T ) and u(t) are non-
negative functions that share the same mass, ρ(t+T ) and u(t) should
be identical, which is a contradiction. Suppose that ρ(0, t + T ) >
u(0, t) for a time t > t0 and α(t) is the unique intersection point.
Then, after the intersection point, x > α(t), the order is reversed,
i.e., ρ(x, t+ T ) < u(x, t). Therefore, for r > α(t),

E(r, t; ρT , u) = −
∫ ∞

r

(
x1−d

∫ x

0
yd−1(ρ(y, t+ T )− u(y, t)) dy

)
dx

=

∫ ∞

r

(
x1−d

∫ ∞

x
yd−1(ρ(y, t+ T )− u(y, t)) dy

)
dx < 0,

which contradicts Lemma 3(ii). Therefore, we have ρ(0, t + T ) <
u(0, t). The other inequality in (30) is also similarly obtained.
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Now suppose that β(t) ≤ γ(t). One may see that (c.f., Figure 2a)∫ β(t)

0
rd−1|ρ(r, t)− u(r, t)|dr ≤

∫ γ(t)

0
rd−1|ρ(r, t)− ρ(r, t+ T )|dr.

Since u, ρ and ρT share the same mass, the positive and the negative
mass of their differences should be identical. Furthermore, since they
intersect to each other at a single point, we have

∥u(t)− ρ(t)∥1 = 2ωd

∫ β(t)

0
rd−1|u(r, t)− ρ(r, t)|dr,

∥ρ(t)− ρT (t)∥1 = 2ωd

∫ γ(t)

0
rd−1|ρ(r, t)− ρ(r, t+ T )|dr.

Therefore, by Lemma 4,

∥u(t)− ρ(t)∥1 ≤ ∥ρ(t)− ρ(t+ T )∥1 = O(t−1) as t → ∞. (31)

Now suppose that γ(t) ≤ β(t). One may similarly see that (c.f.,
Figure 2b)∫ ∞

β(t)
rd−1|ρ(r, t)− u(r, t)|dr ≤

∫ ∞

γ(t)
rd−1|ρ(r, t)− ρ(r, t+ T )|dr.

Since

∥u(t)− ρ(t)∥1 = 2ωd

∫ ∞

β(t)
rd−1|u(r, t)− ρ(r, t)|dr,

∥ρ(t)− ρT (t)∥1 = 2ωd

∫ ∞

γ(t)
rd−1|ρ(r, t)− ρ(r, t+ T )|dr,

one obtains (31) again. ⊓⊔
In the following we provide another proof which is based on a

scaling method that has been used to find intermediate asymptotics
for various cases (see sections 3 and 4 of [31]). This method has been
used for the FDE case in [19]. Hence we consider the PME case in
the following. From the explicit formula of the Barenblatt solution in
(11), one may easily observe the following.

Lemma 5. The Barenblatt solution ρ and the intersection point β(t)
between ρ and a L1-solution u satisfy that

∥ρm(·, t)∥∞ = O
(
t−dmα

)
as t → ∞,

β(t) ≤ ζ(t) = O (tα) as t → ∞,

where α := 1
d(m−1)+2 and ζ(t) > 0 denotes the positive interface of

the Barenblatt solution, that is, ζ(t) := sup{r > 0 : ρ(r, t) > 0}.
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Proposition 2 (L∞-distance between potentials). Let u(r, t) be
the solution of (22) with a compactly supported initial value and a
finite total mass M > 0. Let ρ(r, t) be the Barenblatt solution of the
same mass. Then, the relative potential has the order

∥E(·, t;u, ρ)∥∞ = O
(
t−dmα

)
as t → ∞.

Proof. Let T > 0 be the one in Lemma 3(ii). For any r, t ≥ 0,

E(r, t; ρT , ρ) = E(r, t; ρT , u) + E(r, t;u, ρ) ≥ E(r, t;u, ρ) ≥ 0.

Therefore, we have

0 ≤ E(r, t;u, ρ) ≤ E(r, t; ρT , ρ)

=
∣∣∣ ∫ ∞

r

(
x1−d

∫ x

0
yd−1(ρ(y, t)− ρ(y, t+ T )) dy

)
dx

∣∣∣
=

∣∣∣ ∫ ∞

r

(
x1−d

∫ x

0
yd−1Tρt(y, τ(y)) dy

)
dx

∣∣∣
≤ sup

τ∈(t,t+T )
T |ρm(r, τ)| ≤ T∥ρm(t)∥∞,

where τ = τ(y) ∈ (t, t+ T ). Using Lemma 5, we conclude that

∥E(·, t;u, ρ)∥∞ ≤ T∥ρm(t)∥∞ = O
(
t−dmα

)
as t → ∞.

⊓⊔

Now we are ready to provide the second proof of Theorem 2 for
the solutions of PME by translating the above uniform estimate of
the relative potential to the required L1-convergence order. The same
proof was given for the FDE case in [19]. We now apply the technique
to the PME case. To complete the mission we need an additional
information on the intersection point β(t), which is

β(t)

tα
→

√
2CMmd as t → ∞.

This kind of estimate of intersection hypersurface is of independent
interest (see the first author’s Ph.D. thesis [10]). Note that the tail
analysis was enough for the FDE case in [19] since the solution is
positive everywhere.

Second proof of Theorem 2 for PME. First a family of rescaled
solutions is introduced:

uλ(r, t) := λdαu(λαr, λt), λ > 0.
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The Barenblatt solution is unchanged by this scaling, i.e., ρ = ρλ.
Then changes of variables yield that

E(r, t; ρλ, uλ) = λ(d−2)αE(λαr, λt; ρ, u).

Hence by Proposition 2,

∥E(r, t; ρλ, uλ)∥∞ = O
(
λ(d−2)αλ−dmαt−dmα

)
= O(λ−1t−dmα).

This verifies that λE(r, t; ρλ, uλ) is uniformly bounded on λ. There-
fore, by virtue of an a priori estimate (minutely explained in [19]),
their Laplacians are uniformly bounded in a region in which the
Barenblatt solution ρ is strictly positive:

|∆λE(r, t; ρλ, uλ)| = |λ(uλ − ρ)(r, t)| ≤ CK , for λ > 0, |r| ≤ K.

When t ≈ 1, K is a fixed constant which is strictly smaller than√
CM/k; this condition assures that the Barenblatt solution ρ is

strictly positive in the region |r| ≤ K. Fixing t = 1 and replacing
λ by λt in the above inequality, we obtain

CK ≥ λt|(uλt − ρ)(r, 1)|
= λt · tdα|(uλ − ρ)(tαr, t)| for all λ > 0 and |r| ≤ K.

On the other hand, since

ρ(tαK, t) = t−dα(CM − kK2)
1/(m−1)
+ ,

we have

|(uλ − ρ)(tαr, t)| ≤ CK

λt
t−dα ≤ C̃K

λt
ρ(tαK, t)

≤ C̃K

λt
ρ(tαr, t) for all |r| ≤ K

for some constant C̃K which depends only on K. Substituting λ = 1,
we can deduce the inequality

|(u− ρ)(r, t)| ≤ C̃K

t
ρ(r, t) for all

|r|
tα

≤ K.

Choose a constant K satisfying

√
2CMmd < K <

√
CM/k =

√
2CMm

d(m− 1) + 2

m− 1
.
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Assume β(t)/tα is strictly smaller than K in a finite time so that

|(u− ρ)(r, t)| ≤ C̃K

t
ρ(r, t) for all |r| ≤ β(t).

Then integration of the above inequality gives us

∥ρ(·, t)− u(·, t)∥1 = 2ωd

∫ β(t)

0
rd−1(ρ− u)(r, t) dr

≤ C̃K

t
· 2ωd

∫ β(t)

0
rd−1ρ(r, t) dr

≤ 2C̃KM

t
= O(1/t) as t → ∞,

which completes the proof. ⊓⊔

4. The p-Laplacian Equation

In this section we show Theorem 2 for the solutions to the PLE
given in (12). Since the solution u(x, t) and the initial value u0(x)
are radially symmetric, we may rewrite the problem as

ut = r1−d(rd−1|ur|p−2ur)r, u(r, 0) = u0(r) ≥ 0, ur(0, t) = 0, r, t > 0.
(32)

The initial value u0 ≥ 0 is assumed to be compactly supported. The
proof is based on the potential comparison technique. First observe
that the radial PLE (32) is easily transformed to the radial PME (22)
for the case d = 1. Let ν := ur. Then, after differentiating (32) with
respect to r once, one obtains

νt = (sign(ν)|ν|p−1)rr, ν(x, 0) = ∂r(u
0(r)), ν(0, t) = 0, r, t > 0.

(33)
In other words, the PME and PLE has an equivalence relation for
the one space dimension given by

ν = ur, m = p− 1. (34)

It seems that this equivalence relation is of independent interest.
Note that, for the case of dimension one, the Newtonian potential

of ν := ur is simply the antiderivative of the solution u, which gives
the mass concentration of the solution. (This antiderivative success-
fully played the role of a potential for a convection problem in [16,
17].) In fact, for all dimensions d ≥ 1, we take the mass concentration,

U(r, t) := ωd

∫ r

0
xd−1u(x, t) dx, r, t ≥ 0,
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in the place of the Newtonian potential. Since we are considering L1-
solutions, the concept of relative potential is not needed. However,
for a situation without integrability, the relative mass in (18) can be
useful. In any case, one can see that only the mass difference plays a
role in the following asymptotic analysis.

The Barenblatt-type solution ρ(r, t) of the PLE given in (13) can
be written in the radial variable,

ρ(r, t) = t−dα(CM − k(rt−α)
p

p−1 )
p−1
p−2

+ , (35)

where α = 1
d(p−2)+p , k = p−2

p α1/(p−1). Let R(r, t) be the mass con-

centration of ρ(r, t). Then the mass conservation gives

M = lim
r→∞

U(r, t) = lim
r→∞

R(r, t), t > 0. (36)

Proposition 3 (Comparison Principle). Let u1 and u2 be two
bounded solutions of the radial p-Laplacian equation (32) and U1 and
U2 be their mass concentrations, respectively. If there exists t0 > 0
such that

U1(r, t0)− U2(r, t0) ≥ 0 for all r > 0,

then, if t > t0,

U1(r, t)− U2(r, t) ≥ 0 for all r > 0.

Proof. Let E := U1 − U2 be the relative mass concentration. Then,
the initial condition gives E(r, t0) ≥ 0 for all r > 0, and we will show
E(r, t) ≥ 0 for all r > 0 if t > t0. Consider the relations

Ut = ωdr
d−1|ur|p−2ur,

ωdur =
1

rd−1
Urr −

d− 1

rd
Ur,

Et = a(r, t)Err −
(d− 1)a(r, t)

r
Er,

where

a(r, t) :=
|u1r|p−2u1r − |u2r|p−2u2r

u1r − u2r
≥ 0 for p > 1.

If 2d
d+1 < p < 2, the solutions are supported on the whole space

and the diffusion is non-degenerate. Hence the maximum principle
gives E(r, t) ≥ 0 for all r > 0 if t > t0. For p > 2, the solutions
are compactly supported and the diffusion is degenerate at the zero
points. Then, for a fixed large time T > t0, there exists a radius CT

such that E(r, t) = 0 for all r ≥ CT and t0 ≤ t ≤ T . So we can
apply the maximum principle in [1/n,CT ] × [t0, T ] for any n > 0.
Assume E has a negative value, say −ϵ < 0, in {x0} × [t0, T ]. Then
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the minimum in {1/n} × [t0, T ] for all 1/n < x0 must be less than
or equal to −ϵ by the maximum principle. However, this contradicts
the facts E(0, t) = 0 for t0 ≤ t ≤ T and E is continuous. Therefore,
E(r, t) ≥ 0 for all r > 0 if t > t0. ⊓⊔

Now we sandwich the mass concentration of a solution between
those of the Barenblatt solution and of its time delay.

Lemma 6 (Sandwiched). There exist t0, T > 0 such that

R(r, t+ T ) ≤ U(r, t) ≤ R(r, t), r > 0, t > t0. (37)

Proof. We first check the second inequality. From the explicit for-
mula, we can easily verify that ρ(x, t) = t−dαρ(xt−α, 1) for any x ≥ 0
and t ≥ 0. Hence for any r ≥ 0, we have

R(r, t) = ωd

∫ r

0
xd−1ρ(x, t) dx

= ωd

∫ r

0
(xt−α)d−1ρ(xt−α, 1) t−αdx

= ωd

∫ rt−α

0
yd−1ρ(y, 1) dy = R(rt−α, 1).

Therefore for any r > 0, it holds that

lim
t→0+

R(r, t) = lim
t→0+

R(rt−α, 1) = M ≥ U(r, 0),

which implies R(r, 0) ≥ U(r, 0) for every r ≥ 0. The second inequality
follows from Proposition 3, the comparison principle.

Since ∥u(t) − ρ(t)∥∞ → 0 as t → ∞ and the solution u becomes
strictly positive at the origin in a finite time, there exist positive
numbers t0, ϵ and δ such that

u(r, t0) ≥ ϵ > 0 for all |r| ≤ δ.

Let L(t) be the outside boundary of the support of the solution u at
time t, that is,

L(t) := sup(supp(u(·, t))).
Then obviously L(t0) ≥ δ. Now pick a number T > 0 such that
ϵ(δ/L(t0))

d ≥ ρ(r, t0 + T ) for all r ∈ R. In this setting we consider
three different cases according to the intervals.

1. If |r| ≤ δ, U(r, t0) ≥ ωd

∫ |r|
0 xd−1ϵ(δ/L(t0))

d dx ≥ R(r, t0 + T ).
2. If δ ≤ |r| ≤ L(t0), then

U(r, t0) ≥ U(δ, t0) ≥ ωd
ϵ

d
δd

= ωd

∫ L(t0)

0
xd−1ϵ

(
δ

L(t0)

)d

dx ≥ R(r, t0 + T )
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3. If |r| ≥ L(t0), then U(r, t0) = M ≥ R(r, t0 + T ).

Therefore, R(r, t0 +T ) ≤ U(r, t0). Hence Proposition 3 gives the rest
of the proof. ⊓⊔

Lemma 7. The fundamental solution ρ of PLE satisfies

∥rd−1|ρr|p−1∥∞ = O(t−1) as t → ∞.

Proof. The Barenblatt-type solution is

ρ(r, t) = t−dα(CM − k(rt−α)
p

p−1 )
p−1
p−2

+ ,

where α = 1
d(p−2)+p , k = p−2

p α1/(p−1), and CM is the positive constant

that sets the total mass to the solution to be M > 0. Consider the
case p > 2. Then, |r|d−1|ρr|p−1 has the maximum at the interface of
ρ and the interface is of order tα. Therefore, it suffices to consider

ρ̄(r, t) := t−dα(rt−α)
p

p−2

to obtain the order of ∥rd−1|ρr|p−1∥∞. Now compute

rd−1|ρ̄r|p−1
∣∣∣
r=tα

= t(d−1)α

(
p

p− 2
t
−dα− pα

p−2
+ 2α

p−2

)p−1

=

(
p

p− 2

)p−1

t(d−1)α · t−(d+1)(p−1)α

= O(t−1) as t → ∞.

If p < 2, then the Barenblatt-type solution is differentiable every-
where and one may easily obtain the same result. ⊓⊔

Proof of Theorem 2 for PLE. We have obtained from Lemma 6
that there exist T > t0 > 0 such that

R(r, t+ T ) ≤ U(r, t) ≤ R(r, t) for all r > 0, t ≥ t0.

Therefore for all t ≥ t0, we have

|R(r, t)− U(r, t)| ≤ |R(r, t)−R(r, t+ T )|
≤ sup

c∈(t,t+T )
T |Rt(r, c)|

≤ Tωd∥rd−1|ρr(r, t)|p−1∥∞.

Hence ∥R(·, t)−U(·, t)∥∞ ≤ ωdT∥rd−1|ρr|p−1∥∞ = O(1/t) as t → ∞.
Finally by virtue of the fact that the Barenblatt-type solution ρ and
a solution u have the only one positive intersection point β(t), we
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can translate this L∞-distance between mass concentration to the
required L1-convergence order:

1

ωd
∥ρ(t)− u(t)∥1 =

∫ ∞

0
rd−1|ρ(r, t)− u(r, t)| dr

= 2

∫ β(t)

0
rd−1(ρ(r, t)− u(r, t)) dr

=
2

ωd
∥R(·, t)− U(·, t)∥∞

= O(1/t) as t → ∞,

which completes the proof. ⊓⊔

Epilogue

YJK presented one dimensional results related to this paper in a BIRS
workshop which was held April 15-20, 2006. J.L. Vázquez pointed
out during the talk that an extension to a radial case would not be
simple due to its geometric property. This paper is in fact about
such an extension. Vázquez himself also subsequently submitted [14]
a radial version of the equivalence relation (32)-(34), where this one
dimensional version was also presented in the talk. YJK would like to
thank Banff International Research Station for hosting the workshop
and participants of the workshop for valuable comments. Authors
would like to thank anonymous reviewers, whose comments improved
this presentation considerably.
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