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Abstract. The purpose of this article is to introduce a diffusion
model for biological organisms that increase their motility when food
or other resource is insufficient. It is shown in this paper that Fick’s
diffusion law does not explain such a starvation driven diffusion cor-
rectly. The diffusion model for non-uniform Brownian motion in [16]
is employed in this paper and a Fokker-Planck type diffusion law is
obtained. Lotka-Volterra type competition systems with spatial het-
erogeneity are tested, where one species follows the starvation driven
diffusion and the other follows the linear diffusion. In heterogeneous
environments the starvation driven diffusion turns out to be a bet-
ter survival strategy than the linear one. Various issues such as the
global asymptotic stability, convergence to an ideal free distribution,
the extinction and coexistence of competing species are discussed.

Key words. cross-diffusion, fitness, Lotka-Volterra competition sys-
tems, non-uniform random walk, random dispersal, spatial hetero-
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Introduction

In nature, species exist in heterogeneous environments and migrate to
adjust to such environments. From bacteria to animals all organisms
tend to move toward and aggregate around food. Even the stationary
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organisms like plants change their habitat of the next generation by
the dispersal of their pollens or seeds. There is no doubt that dispersal
played a critical role in the evolution of species since the search for
food and a mate is the reason of the dispersal which are the key
determinants for survival of species.

How should we model the migration behavior of animals? If a
species does not know the direction where food is, then a possible
dispersal strategy will be a random movement. Diffusion is widely
used for such a random animal dispersal (see [28] for examples of
other diffusion models). In many cases, diffusivity is assumed to be
constant so that a simple diffusion model for two competing species
with a population growth term can be written as

ut = d∆u+ u(m− u− v), x ∈ Ω, t > 0, (1)

where ∆ =
∑n

i=1
∂2

∂x2
i
is the Laplace operator, Ω ⊂ Rn is the domain

of habitat, m = m(x) ≥ 0 is a resource distribution and u = u(x, t)
is the population density of a biological species that has a constant
diffusivity d > 0. The last unknown v = v(x, t) is the population den-
sity of a competing species and its model equation will be developed
throughout the rest of the paper. It is hard to imagine that animals
migrate at a constant rate. Animals slow down their migration when
food resources are abundant and start to move diligently again when
food is consumed. In other words, even if the species moves randomly,
enthusiasm for migration is not uniform and such a non-uniformity
produces a certain directed movement. The purpose of this paper
is to develop a diffusion model for such a random but non-uniform
behavior derived from the need for food or other resources. Such
non-uniform biological behavior is very closely related to the thermal
diffusion of non-biological particles. Brownian particles move more
actively when temperature is high and will slow down if temperature
decreases. This is the same dispersal situation of biological organisms
we want to model.

Fick’s law is a widely accepted diffusion model for a nonconstant
diffusivity case:

vt = ∇ · (d∇v), (2)

where ∇ = ( ∂
∂x1

, · · · , ∂
∂xn

) is the gradient operator and the popu-
lation dynamics is dropped for now. However, such a diffusion law
does not explain a separation behavior of the Ludwig-Soret effect in
thermal diffusion. Some would consider a separation phenomenon as
a directed movement by including an advection term. In chemotaxis,
advection is used to model bacterial movement toward the attrac-
tant (see [34,35]). However, the movement of bacteria is more like
a random walk than going straight to the attractant (see [2,20,33]).
Therefore, it is often very confusing whether the directed movement
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that we observe is really a result of pure advection or a result of a
random walk process with spatial heterogeneity. In this paper, we will
consider diffusion as the only migration strategy in the model. The
goal is to develop a diffusion process that is based on the physics of
heterogeneous dispersal phenomena of biological species.

The macroscopic scale diffusion phenomenon is decided by two
microscopic scale quantities, which are the mean free path ∆x and
the mean collision time ∆t (the notation ∆ in these two is to denote
the smallness of the quantities and is not the Laplace operator). If
temperature is not constant, then neither ∆x nor ∆t is expected to
be constant. In the appendix section, a diffusion equation for non-
constant ∆x and ∆t is derived:

vt = ∇ ·
(D
S
∇
(
Sv

))
, D =

|∆x|2

2n∆t
, S =

∆x

∆t
. (3)

A detailed discussion on the model and its comparison with Monte-
Carlo simulations can be found from [16].

The role of the particle speed S is particularly important since
it decides steady states. In biological diffusion models, this particle
speed can be easily interpreted as the speed of a species. However,
the other coefficient D

S

(
= ∆x

2n

)
does not change the steady states

but controls the speed of evolution. In our model we will focus only
on the effect of the walk speed and a motility function γ basically
represents the walk speed, i.e., γ ∼= S. It is assumed that the motility
γ increases if food is insufficient. The corresponding diffusion model
is written as

vt = ∆(γv), (4)

where other coefficients are forgotten or scaled out.
This Fokker-Plank type diffusion law has been used by many au-

thors in various contexts. Chapman [4,5] suggested a diffusion law
vt = ∆(Dv) with a nonconstant diffusivity D to explain the thermal
diffusion phenomenon. However, this law fails to explain non-uniform
random walks (see [16]). In competition models with two species, a
diffusion model with γ = c1+ c2u+ c3v has been used, where ci’s are
constants (see [18,23,24,26,32] for related studies). If the probability
of a random walk depends on the departure point, then the diffusion
is given by (4) with the probability distribution in the place of the
motility γ (see §5 of [28]).

Experimental measurements of the motility variation of a species
is hard to obtain in many cases. Our plan at this stage is to construct
the basic hypothesis required for the motility function γ and study the
basic feature of the nonlinear diffusion model. First we assume that
the motility is a function of a satisfaction measure to the environment,
γ = γ(s), where the satisfaction measure

s :=
food supply

food demand
=

m

u+ v
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is used for the competition situation in (1). Second, we assume that
γ is a decreasing function as in (25). Then, the motility increases
with starvation and hence we will call it a starvation driven diffusion
(or simply SDD). These two basic hypotheses for a motility function
are key ingredients of starvation driven diffusion and give key esti-
mates such as uniform parabolicity. We will consider two examples
of motility functions,

γ0(s) :=

{
h, 0 ≤ s < 1,
l, 1 ≤ s < ∞,

γ1(s) :=

{
sl + (1− s)h, 0 ≤ s < 1,

l, 1 ≤ s < ∞,

throughout this paper. For the regularity of the problem we consider
a smooth motility function γεi , i = 0, 1, such that γεi → γi as ε → 0.

It is natural to expect that the chance of survival of a species
would increase if the species increases its motility to move to other
places when food is consumed. We model the situation using the
above motility functions and consider

vt = ∆(γiv) + v(m− u− v), i = 0, 1, x ∈ Ω, t > 0. (5)

The competition model (1) versus (5) has been numerically tested
for several cases. For fixed l < h it is observed that there exist 0 ≤
d1 < d2 such that u prevails if 0 < d < d1, u and v may coexist if
d1 < d < d2 and v prevails if d2 < d (see Figures 3 and 6). For a
case d = l < h the linear diffuser u always becomes extinct, Figures

7 and 8, and it is conjectured that d2 ≤ l. If h
l > maxx m(x)

minx m(x) and

the motility function is given by γ0, then it is shown that d1 = 0 and
hence v always survives (see [17, Theorem 1]). Related conjectures are
given in Section 12. Analysis techniques for linear diffusion models
has been extended to prove this numerically observed behavior in two
companion papers [17,18] under additional technical assumptions.
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Part I: Slower diffuser prevails

We will start this article by reviewing the population modeling
theory from fundamentals. In this way we may rediscover the meaning
of the model. Then, we will develop a starvation driven diffusion.

1. Logistic equation

The logistic equation is commonly used to model population dynam-
ics. Let P (t) be the total population at time t and r be the natural
growth rate. However, the resource is usually limited and there exists
a maximum population K > 0 that can be supported by the environ-
ment, which is called the carrying capacity. Then the total population
is modeled by the logistic equation

d

dt
P = rP

(
1− P

K

)
= rP − r

K
P 2, P (0) = C0, (6)

where C0 is the initial population. The first term rP is the natural
growth and the second term −rP 2/K is the negative effect caused
by the intra-species competition with limited resources. Using non-
dimensional quantities,

u = P/K and c0 = C0/K, (7)

one may obtain a normalized logistic equation,

d

dt
u = ru(1− u), u(0) = c0. (8)

This logistic equation has two steady states. The trivial one u = 0 is
unstable and the other one u = 1 is stable. Therefore, for any initial
value c0 > 0, the solution u(t) converges to u = 1 as t → ∞, i.e., the
stable steady state u = 1 is globally asymptotically stable among all
nontrivial and nonnegative solutions.

2. Spatial heterogeneity and migration

The ordinary differential equation (8) models the dynamics of the
total population in the absence of spatial heterogeneity. The environ-
ment and the initial population distribution are two main sources of
spatial heterogeneity. Consider a reaction equation,

ut = ru(m− u), x ∈ Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(9)
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where u = u(x, t) ≥ 0 is the population density, u0(x) ≥ 0 is the
initial distribution, m = m(x) is the resource (or food supply) dis-
tribution and ut :=

∂
∂tu. Here, we consider a case where the resource

distribution is time independent, i.e., m = m(x). Then, for each fixed
x ∈ Ω, the system becomes an ODE and one can easily see that,

u(x, t) →
{

0, if 0 = u0(x),
m(x), if 0 < u0(x),

as t → ∞.

In other words, population grows monotonically in time to the local
carrying capacity if the initial population is not zero at that place.
However, the population remains zero if it is so initially and hence it is
clear that the migration of species is an essential ingredient to obtain
an ecology model with a spatial heterogeneity. Notice that the above
reaction equation is not exactly in the form of the logistic equation
(6). The natural growth rate in the logistic equation is independent of
a change of carrying capacity K. However, the resource function m in
(9) plays both roles. A reaction model closer to the logistic equation
is ut = ru(1− u

m), which depends on a satisfaction measure.
Two kinds of migration strategies are widely used. Advection is

one with directional information. In some cases organisms sense the
gradient of food or other signals and move to that direction. Such a
dynamics is sometimes modeled by a flux f = cu∇m with a scaling
coefficient c > 0. If this flux is added to the system, the equation
becomes

ut = −∇ · (cu∇m) + ru(m− u). (10)

The other migration strategy is diffusion which has no directional in-
formation. The migration by diffusion is characterized by the random-
ness of a Brownian motion like behavior. In this case the migration
flux is usually given by f = −d∇u with a diffusivity constant d > 0.
In many cases diffusion and advection may coexist. The Keller-Segel
model in chemotaxis [15] is a typical example. However, we will focus
on diffusion in this article and develop a diffusion model that even
explains advection phenomena.

If the diffusion flux is added to the system with constant diffusiv-
ity d > 0, then the population model (9) turns into a second order
parabolic PDE,

ut = d∆u+ u(m− u), t > 0, x ∈ Ω,
0 ≤ u(x, 0) = u0(x), x ∈ Ω,
0 = n · ∇u, x ∈ ∂Ω, t > 0,

(11)

where n is the unit normal vector to the boundary ∂Ω. Notice that we
have set the growth rate r = 1, which is possible after a re-scaling of
the time variable and the diffusivity coefficient. Hence the diffusivity
d above is actually the ratio of original diffusivity over the growth
rate. The Neumann boundary condition is assumed, which indicates
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that there is no diffusion flux across the boundary. We always use
this boundary condition in this paper without mentioning it again.

It is well known that there exists a unique globally asymptotically
stable steady state and we will denote it by θd,m. In other words,
no matter what the initial value 0 ≤ u0 ̸≡ 0 is, the solution u(x, t)
converges to θd,m(x) as t → ∞. Furthermore, it is also well known
that

θd,m(x) → m(x) as d → 0, θd,m(x) → m as d → ∞, (12)

where m = 1
|Ω|

∫
Ω m(x)dx (see [22]).

3. Dispersal is essential but not selected (a paradox)

Consider a Lotka-Volterra competition model of two species with
identical population dynamics:{

ut = d1∆u+ u(m− u− v),
vt = d2∆v + v(m− u− v),

d1 < d2, x ∈ Ω, t > 0. (13)

The initial values are nontrivial and nonnegative:

0 ≤ u(x, 0) = u0(x) ̸≡ 0, 0 ≤ v(x, 0) = v0(x) ̸≡ 0, x ∈ Ω. (14)

We will call the solution u a slower diffuser since it has a smaller
diffusivity. It will be denoted by lines in the figures of numerical
simulations. The other one v will be denoted by dots in figures.

Now we are ready to ask an interesting question. Is having a bigger
diffusion rate advantageous in this competition? The answer for this
question is rather surprising.

Theorem 1 (Slower diffuser prevails, Dockery et al. [9]). Sup-
pose that d1 < d2 and m is nonnegative and nonconstant. There are
two nontrivial steady states of the competition system (13–14). One
is (0, θd2,m), which is unstable, and the other is (θd1,m, 0), which is
globally asymptotically stable among positive solutions.

This theorem implies that, for any initial value, the faster diffuser
becomes extinct and the solution (u(t), v(t)) converges to (θd1,m, 0)
as t → ∞. In fact it is well accepted that the spatial variation of
resources reduces dispersal rates of linear models (see [8,12,14,25]
for more examples). This result is paradoxical. We have seen in the
previous section that the dispersal is an essential ingredient in the
ecological evolution and, however, this theorem implies that the dis-
persal should be as small as possible for the survival. This paradox
is an indication that the dispersal for biological organisms should be
more than a diffusion with a constant diffusivity.
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(a) small time population dynamics
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(b) large time population dynamics

Fig. 1. Numerical simulation for (13–14). Faster diffuser has an advantage for
a while. However, the slower one prevails eventually. (Here, m = sin(πx)π/2,
u(x, 0) = v(x, 0) = 0 for 0.02 < x, u(x, 0) = v(x, 0) = 0.5m(x) for x < 0.02,
d1 = 0.001 and d2 = 0.002.)

A numerical simulation is given in Figure 1 with the following
specifications. The domain is the unit interval, Ω = (0, 1), the re-
source function is m(x) = sin(πx)π/2, and the diffusivity constants
are d1 = 0.001 and d2 = 0.002. The initial values are u(x, 0) =
v(x, 0) = 0 for x > 0.02 and u(x, 0) = v(x, 0) = 0.5m(x) for x < 0.02.
In this situation the total capacity of the habitat is

∫
Ω m(x)dx = 1

and the initial total population is small. The evolution of the total
population of the two species u and v is given in Figure 1(a). In this
first stage of a population growth, the faster diffuser looks like to pre-
vail. This is a stage that the diffusion plays a positive role and helps
species to arrive a new place earlier and gives a chance to grow with-
out competition. This state looks stable for a while. However, this is
only a meta-stable state that holds only in a short time scale. In fact,
in a longer time scale, the slower diffuser eventually prevails as in
Figure 1(b). In this second stage the diffusion plays a negative role.
This is an example of a meta-stable phenomenon and one may find
recent studies on meta-stable phenomena from [1,19] and references
therein.

The constant diffusivity in (11) models uniform random move-
ments of species. However, biological organisms in a place with abun-
dant food may decrease their motility to stay at the favorable place.
On the other hand, organisms in an environment with insufficient
food may increase their motility to find food even if they do not
know where food is. The constant dispersal rate of biological organ-
isms seems too restrictive to study the role of dispersal as a survival
strategy, which is one of the reasons for the paradox. The essence of
biological diffusion as a survival strategy can be its adaptability to
the change of environmental conditions.
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4. Dispersal increase with starvation (biological examples)

Is a migration with a constant motility realistic in nature? In most
cases, lack of food resource causes a change of migration speed and
such phenomena can be found from all level of animals. Dictyostelium,
social ameobae, is a classical example that shows a very distinct life
cycle depending on food availability (see [3]). This free-moving single-
celled organisms undergo a dramatic change when food is limited.
They aggregate to form a fruiting body that is a stalk-like structure.
The organisms on the top of this fruiting body become spores that
can be easily dispersed. The organisms that consist the stalk are there
only to help the spores to disperse and are destined to die.

It is clear that motility is beneficial to find food. A similar be-
havior of motility increase is also observed in much more complex
multicellular organisms such as Caenorhabditis elegans. Caenorhab-
ditis elegans is a small nematode with body length of 1 millimeter.
When food is depleted, this species undergoes an extreme transition
and enter the stage called dauer instead of a normal development.
These dauer larvae halt the normal development state and can survive
about 10 times longer without food. If these daure larvae encounter
favorable environment, they would reenter the normal development
and become a normal animal. These dauer larvae show a very inter-
esting behavior called nictation, which is only recently understood as
a dispersal behavior (see [21]). It has been shown that the nictation
behavior is a method that helps the dauer larvae to ride on vehicles
such as flies. Flies may carry these nematodes to a new environment
where they may have a chance to meet food and therefore, to sur-
vive. This behavior produces a huge leap on the rate of diffusion and
this dramatic change of diffusion is their survival strategy in a harsh
environment.

The desert locust is another example. When locust numbers in-
crease and food sources dwindle, solitary locusts are forced to come
together, be social and rub against each other. This behavior gives
a signal to locust and makes them molt. After such a series of pro-
cedures the solitary desert locusts become social and obtain a body
which is appropriate for a long distance travel. Finally, they migrate
together through out the continent consuming all the grasses on their
path. Such a locust swarming happens during years of drought and
gives a better chance to find food (see [6]). In particular, it was re-
cently announced that the molecular signals that trigger such a tran-
sition are related to metabolism (see [29]) which supports that such
a dramatic change is really to find food.

The migration of human race out of Africa is another example.
Historically, famine or war was one of main reasons of a migration of
human race. The recent famine of North Korea is making millions of
people leave their country. Seasonal drought in Africa makes herds
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of animals migrate for water and food. Some of the migrations are
guided by experiences or instincts, which are not exactly a diffusion.
However, in many cases, although there is a clear intension for the
migration, animals and even human beings do not know which way
to go until they find something. This is very similar to the diffusion
process and the order of dispersal rate is decided by the intention of
movement which may depend on the environmental condition.

A dramatic jump of motility is not limited to a case with limited
food resources. There are many other reasons such as temperature,
weather and mating. However, even though the reasons are different,
the non-uniformity in motility is the common physics of the behavior.
It is the motility change to adapt the environmental conditions that
plays the key role in the survival of species but not simply the motility
itself.

5. Starvation driven diffusivity? (by Fick’s law)

The linear diffusion in (11) models a random walk like migration
strategy. Therefore, the predominance of the slower diffuser seems
not that wrong since the faster diffuser is being so just randomly.
In fact such a triumph by the slower diffuser is related to the time
independence of its environment, i.e.,m = m(x). The maximum point
of m is the place with most population. Hence the faster diffuser is
more willing to leave this better place and this is why the slower
diffuser can prevail. However, a life form usually changes its migration
strategy for various reasons and we will develop a diffusion model
that counts such a non-uniform behavior. In many cases, even if life
forms do not know where food is, they at least feel hungry when
food is insufficient and, if so, it is natural to expect that they will
increase their motility to find food. Such a starvation induced increase
of locomotor activity is experimentally confirmed in common model
organisms such as fruit fly, mouse and rat (see [11,30,31]). On the
other hand, life forms may stay in their place if they are satisfied with
the environment.

We define a satisfaction measure ‘s’ by

s :=
food supply

food demand
. (15)

In the system (13), the functionm(x) is interpreted as the food supply
and sum of populations u+v as the food demand. Hence the satisfac-
tion measure becomes s = m/(u+v). If a single species model (11) is
considered, then the satisfaction measure is s = m/u. This ratio is a
simple way to measure the satisfaction on the environment. If 1 < s,
then the food supply bigger than the food demand and the reaction
term becomes positive. Hence everybody is happy and the population
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grows. If s = 0.5, then the reaction term becomes negative and the
population decreases. In this situation only the half of the population
are fed or the whole population take only the half of the amount they
need. Hence the species will increase their motility.

The first example of a motility function in this paper is a discon-
tinuous one defined by

γ0(s) :=

{
h for 0 ≤ s < 1,
l for 1 < s < ∞,

(16)

where 0 < l < h < ∞. If the satisfaction is smaller than 1, then the
species increases its motility to the highest level, ‘h’. If the satisfaction
is bigger than 1, then the motility is decreased to the lowest level,
‘l’. Since this motility function is discontinuous, one might want to
consider a convolution

γε0 := γ0 ∗ ηε (17)

as its smooth approximation, where ηε is a typical smooth mollifier
with its support in a ball of radius ε > 0 centered at the origin.

Then what is the correct diffusion model for this situation? We
will first consider a model based on Fick’s diffusion law. The diffusion
flux of Fick’s law is given by f = −γ0∇v, where the γ0 is considered as
a nonconstant diffusivity. Then, the corresponding diffusion equation
is vt = ∇· (γ0∇v). Therefore, the competition system obtained using
this diffusion law is{

ut = d∆u + u(m− (u+ v)),
vt = ∇ · (γ0∇v) + v(m− (u+ v)),

x ∈ Ω, t > 0, (18)

where the satisfaction measure s is

s(x, t) =
m(x)

u(x, t) + v(x, t)
.

A numerical simulation for the system (18) is given in Figure 2
with the following specifications. First d and l are fixed with d = l =
0.002. The domain is Ω = (0, 1) and the resource function is

m(x) =

{
A , 1

4 < x < 3
4 ,

2−A, otherwise,
(19)

where we set A = 0 for this example and then will change it in the
following examples. We consider the phenomenon that corresponds
to the second stage in Figure 1(b) by starting with an initial value

u(x, 0) = v(x, 0) = 0.5×m(x).

In Figures 2(a,b), two cases of d = l < h are given. Hence, the linear
diffuser u is a slower one and the nonlinear diffuser v is a faster one
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Fig. 2. [x-axis: competition time, y-axis: total population]. Numerical simulations
for the system (18–19) with A = 0 and d = l = 0.002 fixed. The slower diffuser
prevails even if the nonlinear diffuser increases its diffusivity only if the food is
not enough.

in these two cases. In the case with h = 0.004, the nonlinear diffuser
v becomes extinct as in Figures 2(a). If h is even more increased to
h = 0.01, the nonlinear diffuser v becomes extinct even earlier. In
these example, the advantage of changing diffusivity is not observed.
In the last example, Figure 2(c), we set h = 0.001. In this case the
nonlinear diffuser v reduces its motility and stays in the region where
food is insufficient and hence v is now the slower diffuser. It seems
that such a behavior will risk the survival of the species. However, the
numerical simulation shows that v prevails and u becomes extinct.
In the above examples slower diffuser still prevails. Indeed these re-
sults are predicted by a corollary of the theorem, where the same
arguments of the proof of the theorem are applicable.

Corollary 1. Let d = l < h. Then the competition system (18–19)
has two critical solutions and (θd,m, 0) is globally asymptotically stable
among positive solutions.

These observations violate our common sense that one should look
for food for survival. There are two possibilities: (i) our common sense
is incorrect or (ii) the diffusion model based on Fick’s law does not
explain the situation that biological organisms increase their motility
to find food when food is insufficient. We will see that it is the second
case and find a corrected diffusion model.

6. Diffusion in a heterogeneous environment

The diffusion in the second equation of (18) is by Fick’s diffusion law.
The original Fick’s law is for a homogeneous case that the diffusivity
is constant. Its application to a heterogeneous case is widely used
without a justification. Einstein’s random walk theory says that if
the mean free path ∆x and mean collision time ∆t of a Brownian

motion are constant, the diffusivity is given by D := |∆x|2
2n|∆t| .
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A dispersal strategy that a species migrates with a different motil-
ity can be modeled using a non-uniform Brownian motion or equiv-
alently a random walk system. In the appendix section, the diffusion
model in (3) is derived using a non-uniform random walk system.
However, in biological situations, there can be other delicate issues
depending on the character of species. Let ζ be the emigration rate of
species from a habitat that depends on the satisfaction to the environ-
ment. The emigration rate plays the same role as the departure point
depending probability in a random walk model (see §5 of Okubo and
Levin [28]), which gives a diffusion model “vt = ∆(ζv)”. Combining
it with (3) gives

vt = ∇ ·
(D
S
∇(ζSv)

)
, D :=

|∆x|2

2n∆t
, S :=

∆x

∆t
, (20)

where S and D are called the walk speed and diffusivity, respectively.
Notice that the steady state of the equation (20) is reversely pro-
portional to ζS, i.e., v ∝ (ζS)−1 as t → ∞. On the other hand,
the coefficient D

S

(
≡ ∆x

2n

)
has no influence in deciding steady states.

Biological interpretation of ∆x is controversial. For example, it has
been observed that a ladybug changes direction less frequently if it
is hungry (see [13]) and hence the walk length ∆x increases when
food is insufficient. On the other hand, Escherichia coli increases its
tumbling frequency if the density of attractant is low (see [27]), i.e.,
∆x decreases when attractant density is low. In other words, the two
species show an opposite behavior in terms of walk length when food
is insufficient. It seems that the physical interpretation of the walk
length requires a more detailed study which is beyond the scope of
this paper.

We will focus on the role of ζS that decides the steady state and
is more important in our context. However, the role of D

S can be more
crucial for temporally fluctuating environments. Consider

vt = ∆(γv), (21)

where the motility function γ models ζS. This diffusion model is the
one we are going to use later on and the property of γ will be specified
in Section 8.

7. Linear dispersal versus starvation driven dispersal

Consider a competition between a linear diffuser and a starvation
driven diffuser with a Neumann boundary condition:{

ut = d∆u + u(m− (u+ v)),
vt = ∆(γv) + v(m− (u+ v)),

x ∈ Ω, t > 0, (22)

0 = n · ∇u = n · ∇(γv), x ∈ ∂Ω, t > 0. (23)
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Fig. 3. [x-axis: competition time, y-axis: total population]. Numerical simulations
for the system (22). The resource function is given by (19) with A = 0. The
motility function is γ0 in (16) with h = 0.004 and l = 0.002.

This competition model is used in the rest of this paper to compare
the linear diffusion and the starvation driven diffusion. Since the pop-
ulation dynamics of the two species are identical, such comparisons
will clarify the difference of the two diffusions.

Numerical simulations for the system (22)-(23) are given in Figure
3 with the following specifications. The domain is Ω = (0, 1), the
resource function is in (19) with A = 0, and the initial value is

u(x, 0) = v(x, 0) = 0.5×m(x). (24)

The motility function is γ = γ0 in (16) with h = 0.004 and l =
0.002. In Figure 3(a) an evolution of total population is given with
d = 0.0005, where the linear diffuser still prevails. In this case the
diffusivity d is too small for the other species to overcome. In Figure
3(b) the diffusivity is increased to d = 0.001 and the two species
coexist. In Figure 3(c) the diffusivity is d = 0.0015 and the species
with a motility change prevails. These numerical simulations indicate
that there are constants, 0 < d1 < d2, such that, the linear diffuser
prevails if d < d1, the two species may coexist if d1 < d < d2, and
the starvation driven diffuser prevails if d > d2. According to the
numerical simulations in Figure 3 it is expected that 0.0005 < d1 <
0.001 and 0.001 < d2 < 0.0015 (see [17, Theorem 2]). Since d2 < l,
the starvation driven diffuser is still a faster diffuser everywhere and,
however, it may prevail due to the motility increase when there is no
enough food. We may conclude that a motility increase on starvation
is beneficial for survival of species and the diffusion model in (21)
explains such a behavior (see Section 8).

Part II: Starvation driven diffuser prevails

The transition from a linear diffuser predominance regime to a
motility changing diffuser predominance one and the existence of a
coexistence regime in Figure 3 leave us many questions. In the rest of
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the paper we formulate the starvation driven diffusion and investigate
its property.

8. Hypothesis for a motility function

Biological organisms may change their motility for several reasons.
For example, it is well known that German cockroaches (Blattela
germanica) change their motility depending on the density of the ag-
gregation pheromone. If the pheromone concentration is low, their
motility increases, whereas they become less active if the concen-
tration is high (see [10]). Therefore, the motility measure γ can be
modeled accordingly in such a case and the pheromone density can
play the role of the satisfaction measure. In this paper we focus on
the diffusion related to food.

There are two kinds of responses of biological organisms when al-
most all the food is consumed. The first one is changing the metabolism
so that it can reduce the use of energy and wait for a better envi-
ronment. The second response is increasing the motility in order to
find a place with food. We are going to consider the second case.
In the followings we will develop the minimum requirements that a
motility function should satisfy in a general situation. First, the speed
S = ∆x/∆t of individuals is a decreasing function of the satisfaction
measure, s := m

v . The emigration rate ζ also decreases if the sat-
isfaction increases. Hence it is natural to assume that the motility
function γ(s) := ζ(s)S(s) is a decreasing function of the satisfaction
measure s. For the boundedness and the parabolicity, we also assume
that there exist positive values l and h such that

γ(s) ↑ h as s ↓ 0, γ(s) ↓ l as s ↑ ∞. (25)

This hypothesis makes the diffusion equation (21) parabolic and
hence the solution v with nonnegative initial value 0 ≤ v(x, 0) ̸≡ 0
becomes strictly positive for all t > 0 and hence the satisfaction
measure s = m/v is well defined for all t > 0. Notice that the meaning
of the diffusion could be clearer if a starvation measure, say s̃ = v/m,
is used instead of the satisfaction measure. However, in that case, if
m = 0 or m has a sign change, then v/m is not defined. That is why
we are using the satisfaction measure s with a decreasing motility
function γ for 0 ≤ s.

9. Fitness by starvation driven diffusion without reaction

In nature the population density of species is higher in richer regions
and such a phenomenon is called fitness. One may ask if the fitness
is an effect of the migration or of the population growth. The an-
swer could be both. In the section we study the fitness property of
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the starvation driven diffusion. Since the migration by Fick’s diffu-
sion law does not produce any advection, this fitness phenomenon
in the diffusion reaction equation (11) is purely from the population
dynamics. Therefore, one might add an advection term and obtain

vt = ∇ · (d∇v − cv∇m). (26)

Then, one may obtain such a phenomenon without population dy-
namics. However, it is still a mystery if the added advection has a
physical meaning and if it is in a correct form. It is well known that
adding such an advection term is not always beneficial in competition
models (see [7]). On the other hand, the starvation driven diffusion in
(21) gives a separation behavior without adding an advection term.
First, the product and the quotient rule for the gradient ∇(γ(s)v)
gives

∇(γv) = γ∇v + vγ′∇s = γ∇v + vγ′
v∇m−m∇v

v2
.

Therefore, the new diffusion equation is written as

vt = ∆(γv) = ∇ ·
(
(γ − sγ′)∇v + γ′∇m

)
, (27)

which contains an advection term toward richer regions. This diffu-
sion will be called a starvation driven diffusion or simply SDD when
the motility function γ satisfies the hypothesis (25). Let us compare
(27) with the advection-diffusion equation (26). The nonconstant dif-
fusivity d corresponds to γ(s) − γ′(s)s which is positive since γ is a
decreasing function. Therefore, this diffusion equation is uniformly
parabolic. The coefficient of the advection term is γ′(s) which is non-

positive and hence the coefficient c in (26) corresponds to −γ′(s)
v .

This advection disappears in regions γ′(s) = 0 and, otherwise, the
advection is heading to the regions where the resource distribution m
increases. For example, if the motility function γε0 in (17) is applied,
a strong advection exists in the region |s− 1| ≤ ε. This advection is
produced as a result of a nonuniform motility without the assumption
that the individuals can sense the resource gradient.

The function γ0 in (16) and its regularization γε0 in (17) satisfy
(25). These motility functions are extreme cases where the whole
population increase their motility to the highest level simultaneously
even if the resourcem is slightly smaller than the demand v. It is more
realistic in many cases to assume that only 10% of the population
increase their motility when s = 0.9. If so, the corresponding motility
is a continuous function

γ1(s) :=

{
sl + (1− s)h, 0 ≤ s < 1,

l, 1 ≤ s < ∞.
(28)
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Fig. 4. [x-axis: space, y-axis: concentration density]. Numerical simulations for
(29). (a) If A = 0, two motility functions γ0 and γ1 provide identical steady states.
(b) If A = 0.5, they are different. In this example, the steady state given by γ0 is
same as the resource function m. Here, h = 0.05 and l = 0.01

The first step to study the starvation driven diffusion is to consider
steady states. Consider a positive steady state of

0 = ∆(γ(s)v), x ∈ Ω, t > 0,
0 = n · ∇(γ(s)v), x ∈ ∂Ω, t > 0.

(29)

Let the domain be Ω = (0, 1) and the resource distribution m be
defined by (19). A steady state or an equilibrium solution ve of (29)
is not unique and we are looking for the one that has the same total
population as the total carrying capacity, i.e.,∫

Ω
ve(x)dx =

∫
Ω
m(x)dx = 1. (30)

The steady state solution has constant diffusion pressure, γ(m/v)v =
constant, which is proved in [18, Theorem 1]. One can easily find
steady states of (29) explicitly by solving the relation thanks to the
simplicity in m. For example, let A = 0, h = 0.05, l = 0.01 and

ve(x) =

{
1/3, 1

4 < x < 3
4 ,

5/3, otherwise.

Then, s = 0 if 1
4 < x < 3

4 and s = 6
5 if x < 1

4 or 3
4 < x. Therefore,

γ0(s)v
e = γ1(s)v

e = 0.05
3 for all 0 < x < 1 and hence ve is a steady

state for both motility functions, γ0 and γ1. These steady states are
given in Figure 4(a) with resource distribution m. In this example,
the population density in the region with food is 5 times bigger than
the one in the region without food, which is the same ratio as h/l.
Remember that the steady state under Fick’s diffusion is a constant
state.
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The next example is the case with A = 0.5, h = 0.05 and l = 0.01.
Let

ve(x) =

{
0.7, 1

4 < x < 3
4 ,

1.3, otherwise.

Then, one can similarly check that ve is the steady state when the
motility function is γ1. However, if the motility function is γ0, we
may show that the resource distribution m itself is a steady state.
Of course, if v = m, then s = 1 and, due to the discontinuity of γ0
at s = 1, one should clarify the meaning of the steady state. In the
following proposition we will see that v = m is the steady state in
the limiting sense of a regularly perturbed problem. Notice that the
following proof is possible since the motility ratio is bigger than the
resource ratio, i.e.,

maxxm(x)

minxm(x)
=

1.5

0.5
= 3 <

h

l
=

0.05

0.01
= 5. (31)

Proposition 1. Let the motility function be γ = γε0 given by (17)
with h = 0.05, l = 0.01 and the resource function m be by (19) with
A = 0.5. If vε is the steady state of (29) with the unit total population
in (30), then vε(x) → m(x) as ε → 0 except the discontinuity points
of m.

Proof. Let ε > 0 be small, 0 < a < 2, and

v(x) =

{
a , 1

4 < x < 3
4 ,

2− a, otherwise.

Then, the diffusion pressure in the region 1
4 < x < 3

4 is γ(0.5/a)a and
is an increasing function of a, i.e.,

d

da

[
γ
(0.5

a

)
a
]
= γ

(0.5
a

)
a− 0.5γ′

(0.5
a

)
a−1 > 0.

Similarly, the diffusion pressure in the other region is γ( 1.5
2−a)(2 − a)

and is a decreasing function of a.
If 1 + ε < 0.5

a , then it is easy to check that the diffusion pressure

in the region 1
4 < x < 3

4 is lower than the one in the other region.

Suppose that 0.5
a < 1− 3ε. Then, a series of computations give

0.5 < (1− 3ε)a ⇒ −0.5 > −a+ 3εa

⇒ 1.5 > 2− a+ 3aε ⇒ 1.5

2− a
> 1 +

3a

2− a
ε.

Since 3a > 2− a, we have 1.5
2−a > 1 + ε and hence

γ(0.5/a)a = ha = l5a > l(2− a) > γ(1.5/(2− a))(2− a).
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In other words, the diffusion pressure in the region 1
4 < x < 3

4 is higher
than the other region. Therefore, by the monotonicity of the diffusion
pressure on a, there should exist aε such that 1 − 3ε < 0.5

aε < 1 + ε
and

vε(x) =

{
aε , 1

4 < x < 3
4 ,

2− aε, otherwise

is the steady state with the unit mass. One can easily see that vε → m
as ε → 0 except the discontinuity points of m. ⊓⊔

Notice that this proposition holds because of the relation (31). For
example a relation ‘5a > 2−a’ has been used in the proof which is re-
lated to this relation. A general case is proved in [18, Theorem 5] that
v = m(x) is a steady state of (29) if the motility function is γ0 and
maxx m(x)
minx m(x) ≤ h

l is satisfied. More or less, the proof of the proposition

shows the dynamics behind an optimal selection phenomenon.

Remark 1. The Turing instability explains a pattern formation when
there is a big diffusivity difference between two species. The example
in Figure 4 shows that a pattern formation can be obtained even in
a single species case if there is a motility jump spatially.

10. Starvation driven diffusion with population dynamics

Now we consider the starvation driven diffusion with the population
reaction term for a single species model,

vt = ∆(γv) + v(m− v), t > 0, x ∈ Ω,
v(x, 0) = v0(x) ≥ 0, x ∈ Ω.

(32)

In this case, the satisfaction measure is given by s = m
v and the

equation can be rewritten as

vt = ∇ ·
(
(γ(s)− γ′(s)s)∇v + γ′(s)∇m

)
+ v(m− v). (33)

Since the motility function γ = γ0 has a discontinuity at s = 1, its
derivative contains a delta measure. One may consider a regularized
problem by replacing γ0 with γε0 to avoid such a situation. In this
equation we have all the three different dynamics, advection, diffusion
and reaction.

The problem (32) has been studied in [18]. It is shown that, if the
motility function γ satisfies (25) and an extra condition

γ(s)− s(s− 1)γ′(s) > 0 for 0 < s < 1, (34)

then a unique steady state θγ,m(x) exists and is globally asymptoti-
cally stable [18, Theorem 2]. This steady state depends on the motility
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function γ and the resource distribution m. The motility functions
in this paper satisfy this extra condition. However, it seems that the
global asymptotic stability should hold true without this technical
hypothesis.

If the steady state is identical to the resource function, i.e., θγ,m =
m, then the phenomenon is called an optimal habitat selection. Under
an assumption

maxxm(x)

minxm(x)
<

h

l
, (35)

it has been shown that θ = m(x) is a steady state of the problem
(32) without the reaction term if the motility function is γ = γ0
in (16) (see Proposition 1 and [18, Theorem 5]). Furthermore, since
the population reaction term forces the solution to fit the resource
distribution m, it is natural to expect that the resource distribution
m itself is the globally asymptotically stable solution even with the
reaction term and hence

θγ0,m(x) = m(x).

In fact such a global stability has been shown [18, Theorem 6] under
an extra condition

lmax
Ω̄

m(x) <
h+ l

2
min
Ω̄

m(x) <
h+ l

2
max
Ω̄

m(x) < hmin
Ω̄

m(x).

(36)
It is expected that the optimal habitat selection phenomenon should
hold true only with (35) but without the technical condition (36).

In Figure 5 four examples of steady states are given. In these
figures l is fixed at l = 0.002 and four different cases are tested with
h = 0.002, 0.004, 0.01 and h = 0.04. One can clearly see that the
steady states becomes steeper if the diffusivity h increases. This is an
example that a diffusion may make edges even in a single equation
case if a heterogeneity is allowed. One can also observe that the steady
states converges to the resource function m as the motility ratio h/l
increases.

11. Starvation driven diffusion in a competition

Now we return to the competition system (22–24). A natural satis-
faction measure of this model is

s =
m

u+ v
.

Then, the equation for v in (22) can be rewritten as

vt = ∇·
(
γ∇v− sγ′

u+ v
v∇v− sγ′

u+ v
v∇u+

γ′

u+ v
v∇m

)
+v(m−u−v).

(37)
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Fig. 5. [x-axis: space, y-axis: concentration]. Steady states of (32) with γ0 in (16)
are given with a resource m in (19) with A = 0. If h is increased with a fixed l,
the steady state converges to m and the edges becomes sharper.

There are three kinds of dynamics in this diffusion. The first term

γ(s)∇v is Fick’s diffusion and the second term − sγ′(s)
u+v v∇v is self-

diffusion. These two are trivialization processes that produce a flux
in the direction that v decreases and hence make the distribution of
v flat. The third term − sγ′(s)

u+v v∇u is cross-diffusion that produces a
flux in the direction that u decreases. Therefore, this cross diffusion
guides v to a region with less u and hence u and v are separated.

The fourth term γ′(s)
u+v v∇m is advection in the direction that m in-

creases. Hence this last term make the species fit to the resource
distribution. All these dispersal dynamics disappear in the region
that γ′(s) = 0 except Fick’s law type diffusion. Hence the effect of
starvation driven diffusion appears across the region of satisfaction
that motility γ changes.

Let γ = c1 + c2u + c3v, where ci’s are coefficients to control the
weight of each term (see [23,24,26,32]). This case was designed to
obtain a separation phenomenon. If one adds an extra advection term
−c4v∇m, the second equation of (22) turns into

vt = ∇·
(
(c1+c2u)∇v+2c3v∇v+c2v∇u−c4v∇m

)
+v(m−u−v). (38)

The first term (c1 + c2u)∇v is Fick’s diffusion and the second term
2c3v∇v is self-diffusion. The third term c2v∇u is cross diffusion and

one may compare the coefficient “c2” with “− sγ′(s)
u+v ” in (37). The

fourth term is advection that may give v a fitness to the resource

distribution and the coefficient “−c4” corresponds to “γ′(s)
u+v ”.
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Fig. 6. [x-axis: competition time, y-axis: total population]. Numerical simulations
for the system (22). The resource function is given by (19) with A = 0. The
motility function is γ0 in (16) with h = 0.004 and l = 0.002.

12. Regimes for coexistence and extinction (conjectures)

The numerical simulations in Figure 3 are repeated in Figure 6 using
the continuous motility function γ1 in (28). One can find the exactly
same behavior as the discontinuous motility function case. As one
increases the diffusivity d starting from zero, one may observe an
extinction of v, coexistence of u and v and extinction of u in that
order. The diffusivity regimes for each case can be different if a dif-
ferent motility function γ is chosen. However, one may expect the
following:

Conjecture 1. Let the motility function γ satisfy (25) with l < h and
let m ≥ 0 be nonconstant. Then there exist 0 ≤ d1 < d2 such that
(0, θγ,m) is the globally asymptotically stable steady state of (22)-
(23) if d > d2. The other semi-trivial solution (θd,m, 0) is globally
asymptotically stable if 0 < d < d1. If d1 < d < d2, then u and v may
coexist.

Remember that d1 and d2 in the conjecture depend on the choice
ofm and γ. There are two more questions motivated by the conjecture
and computational observations:

1. Is it possible to have d1 = 0? If so, the starvation driven diffuser
v is guaranteed to survive even if the slower diffuser is extremely
slow.

2. Can we guarantee d2 < l for all choices of h and l within a class of
motility functions? If so, by choosing l = d, the starvation driven
diffusion may drive out the linear diffuser to extinction.

13. Resource variation versus motility variation

In this section we will consider the effect of resource variation maxx m(x)
minx m(x)

and motility variation h
l in the competition of two species. We will
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Fig. 7. [x-axis: competition time, y-axis: total population]. Numerical simulations
for (22–24) with the discontinuous motility function γ0 in (16) and l = d = 0.002
fixed.

consider the two motility functions given in (16) and (28) and the re-
source function given in (19). In the numerical simulations of Figures
7 and 8, we fix

d = l = 0.002,

and then test several cases of A and h to observe the effect of the
resource and the motility variations.

13.1. Discontinuous motility function

We first consider the discontinuous motility function γ0 given in (16).
A numerical simulation for the system (22–24) with h = 0.01 and
A = 0 is given in Figure 7(a) . In this example the linear diffuser
u becomes extinct. In this case the motility variation h

l = 5 is less

than the resource variation maxx m(x)
minx m(x) = 2

0 = ∞. In Figure 7(b) the

motility variation has been increased by using h = 0.1 and hence the
ratio is h

l = 50. The extinction time and the evolution profile are
similar as the ones of Figure 7(a). However, 50 is still less than ∞
and u similarly becomes extinct. The total population of v at the final
time is less than the one of Figure 7(a). One can see that the case of
Figure 7(b) gives a better fitness than the case Figure 7(a) does (see
Figure 5) and hence the total population of Figure 7(b) should be
closer to the total resource, which is one. Remember that these two
cases do not satisfy the relation (35).
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In Figures 7(c,d), we consider two cases that (35) is satisfied.
In these two cases the total population approaches to a state that
both species survive for a while. However, after a certain amount of
time, the solution suddenly converges to a semi-trivial solution. Fig-
ure 7(c) is for the case with A = 0.5 and h = 0.01, where h

l = 5

and maxx m(x)
minx m(x) = 1.5

0.5 = 3. The intermediate state for the time interval

200 < t < 1100 is the following steady state of (22):

ue(x) = 0.25, ve(x) = m(x)− ue(x) =

{
0.25, 1

4 < x < 3
4 ,

1.25, otherwise.
(39)

One may easily check that this is a steady state. Clearly, the popu-
lation dynamics becomes zero and ∆ue = 0. We have already shown
in Proposition 1 that ∆(γ0v

e) = 0. Hence (ue, ve) in (39) is a steady
state. In the numerical simulation, the solution u(x, t) converges to
ue from the above as t → 1100. However, as soon as u(x, t) < ue

it suddenly converges to zero. This behavior of numerical solution is
a mystery to authors. In fact, there are many more steady states of
this type. For example, for any constant state 0 ≤ ue < 0.25, a pair
(ue, ve) with ve := m− ue is a steady state. A special feature of the
one in (39) is that the variation of ve is same as the motility variation,
i.e.,

maxx v
e(x)

minx ve(x)
=

h

l
. (40)

Since ve = m − ue is two valued piecewise constant function, this
situation is very similar to the evolutionary stable strategy of a two-
patches problem that the migration ratio is exactly the reverse of
the carrying capacity ratio. It seems that this numerical simulation
shows a possible appearance of the evolutionary stable strategy and
its connection to the starvation driven diffusion somehow. The hidden
structure of the phenomenon requires a further survey.

The fourth case is A = 0.5 and h = 0.1. In this case the relation
(35) still holds true and allows a similar steady state that satisfies
(40), which is

ue(x) = 47/98, ve(x) = m(x)− ue(x).

A numerical simulation for this case is given in Figure 7(d). We can
observe the same phenomenon as in the previous case.

13.2. Continuous motility function

We now consider numerical simulations for (22)–(24) with the con-
tinuous motility γ1 given in (28). The simulation specifications are
exactly same as the case of Figure 7. In Figure 8(a) a simulation is
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(c) A = 0.5, h = 0.01

Fig. 8. [x-axis: competition time, y-axis: total population]. Numerical simulations
for (22–24) with the continuous motility function γ1 in (28). l = d = 0.002 are
fixed.

given with h = 0.01, l = d = 0.002 and A = 0. This simulation re-
sult is similar as the discontinuous motility case, Figure 7(a), and the
linear diffuser with constant diffusivity d(= l) becomes extinct in a
similar time scale. The second simulation, Figure 8(b), is with A = 0
and h = 0.1. In this case the increase of motility ratio to h/l = 50
does not make a difference in the extinction time. However, the final
total population is less than the one of (a), which indicates a better
fitness as the discontinuous motility function case. A notable differ-
ence in compare with the discontinuous motility function case is the
case with A = 0.5. In Figure 8(c) the linear diffuser becomes extinct
without an intermediate steady state. In this case the extinction time
is longer than case (a), but shorter than the case in Figure 7(c).

In the previous two examples, Figures 7 and 8, we considered cases
with d = l and u always becomes extinct. This indicates that d2 in
Conjecture 1 is less than or equal to l and it has been shown in [17,
Theorem 2]) for the case with γ0. We have seen that the relation

between h
l and maxx m(x)

minx m(x) plays a key role in the evolution. It is shown

in [17, Theorem 1] that the steady state solution (θd,m, 0) is not stable
for any d > 0 if (35) is satisfied and γ = γ0. Hence we may conclude
d1 = 0 in the case.

14. Conclusions

Inter-species and intra-species competitions take place constantly.
Then, how does the dispersal strategy influence the survival of the
individuals or species in a competing environment? Only limited ex-
perimental methods exist. Modeling the competition among individ-
uals with different diffusion rates is important to understand how
diffusion affects the selection. In biological models linear diffusions
have been mostly used (see [28] for examples). The linear diffusion is
a useful tool to study the ecological evolution as a migration strategy.
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However, it is a simplified model and, if we want to conclude some-
thing more subtle, the model may lead us to wrong impressions. For
example, it is well known that a slower diffuser prevails over a faster
one when the diffusivity coefficients are constant. One may conclude
from this theory that the evolutional selection favors slower diffuser,
which violates very basic evolutionary observations. To answer such a
subtle question, one should consider a more realistic diffusion and the
starvation driven diffusion of this paper is designed for that purpose.

The main contribution of this article is to add a nonuniform struc-
ture to the random dispersal that species increase their motility when
food is not enough. To obtain such a starvation driven diffusion the
authors have employed the thermal diffusion developed in [16] and
the corresponding diffusion model obtained is (21), where the motil-
ity function γ is a decreasing function on the satisfaction measure
s := (food suply)/(food demand). From numerical computations we
observed that the species that increases its motility when food is
insufficient has an advantage in the competition.

A model based on Fick’s diffusion law has been compared with the
one based on starvation driven diffusion in this paper. This compari-
son shows that Fick’s diffusion law does not explain a heterogeneous
dispersal behavior. The starvation driven diffusion introduced in this
paper seems the preferable choice. Some mathematical analysis of this
model has been done in [17,18], which shows that classical theoreti-
cal tools for linear diffusion models can be applied to these nonlinear
models.

15. Appendix: Derivation of non-isothermal diffusion

Let {xi : i ∈ Z} be mesh grids and xi+1/2 := (xi + xi+1)/2 be the
middle point between two adjacent grids. Let V (xi) be the number
of particles at xi, which jump randomly to one of two adjacent grids
every time interval ∆t(xi). Define the walk length by ∆x(xi+1/2) :=

xi+1 − xi and let ∆x(xi) := xi+1/2 − xi−1/2.

Then, the particle flux that crosses the a mid point xi+1/2 from
left to right is V

2∆t

∣∣
x=xi and the one from right to left is V

2∆t

∣∣
x=xi+1 .

Notice that the particle density is given by v = V
∆x and hence the net

flux is

f(xi+
1
2 ) =

∆xv

2∆t

∣∣∣
xi
− ∆xv

2∆t

∣∣∣
xi+1

= −
∆x

∣∣
xi+1

2

2

 ∆x
∆t v

∣∣∣
xi
− ∆x

∆t v
∣∣∣
xi+1

xi − xi+1

 .

(41)
If the Brownian motion or the random walk is in a homogeneous

environment, we may assume the mean free path ∆x and the collision
time ∆t are constant and hence ∆x

∆t in the parenthesis of (41) can be
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taken out. However, if the temperature is not spatially constant, for
example, they depend on the space variable and should stay inside.
In conclusion, the diffusion flux for a non-isothermal case in n space
dimension is given by

f = −D

S
∇
(
Sv

)
, D :=

|∆x|2

2n∆t
, S :=

∆x

∆t
, (42)

where S and D are called walk speed and diffusivity, respectively.
Notice that the walk length is given by |∆x| = 2nD/S. Therefore,
the corresponding non-isothermal diffusion equation is

vt = ∇ ·
(D
S
∇
(
Sv

))
. (3)

One might numerically check that this diffusion model gives the cor-
rect behavior of non-uniform random walks with nonconstant ∆x
and ∆t. The numerical solutions of this diffusion model have been
compared with Monte-Carlo simulations in [16].
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