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Abstract. We study a logistic model with a nonlinear random diffu-
sion in a Fokker-Planck type law, but not in Fick’s law. In the model
individuals are assumed to increase their motility if they starve. Any
directional information to resource is not assumed in this starva-
tion driven diffusion and individuals disperse in a random walk style
strategy. However, the non-uniformity in the motility produces an
advection toward surplus resource. Several basic properties of the
model are obtained including the global asymptotic stability and the
acquisition of the ideal free distribution.

Key words. ecological diffusion, global asymptotic stability, ideal
free distribution, starvation induced motility

1. Introduction

The dispersal strategies of biological organisms are key ingredients in
their ecological evolution. In this paper we show the global asymptotic
stability and the optimal habitat selection phenomenon of a logistic
model with a non-uniform random dispersal in a Fokker-Planck type
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Korea (No. 2009-0077987). The third author was supported by Chinese NSF
(No. 11201148), China Postdoctoral Science Foundation (No. 2012M510108) and
ECNU Foundation (No. 78210164).
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law,

ut = ∆(γ(s)u) + κu(m(x)− u), 0 < t, x ∈ Ω, (1)

0 = ∇[γ(s)u] · n, 0 < t, x ∈ ∂Ω, (2)

0 < u(x, 0) = u0(x), x ∈ Ω, (3)

which was introduced by Cho and Kim [9]. Here, Ω ⊂ R
n is a

bounded domain of habitat and n is the outward unit normal vector
to the smooth boundary ∂Ω. The unknown function u(x, t) is the
population density of a species at time t > 0 and position x ∈ Ω that
satisfies the zero-flux boundary condition (2) and the initial condi-
tion (3). The given function m : Ω → R

+ could be understood as a
time independent resource or food supply distribution and κ > 0 is
the growth rate.

The main feature of this model is in the diffusion, where the motil-
ity γ = γ(s) is decided by a measure of the fitness of the population,

s :=
m

u
. (4)

The study of fitness has been one of main issues in ecology and one
can find a discussion related to fitness measure given by differences
in [10] and references therein. One may interpret this ratio ‘s’ as a
satisfaction measure to the habitat from the side of individuals and
we will call it so. For example, if the food supply m is bigger than
the food demand u, i.e., s > 1, then all biological organisms in the
habitat will have enough food and be satisfied with the environment.
Therefore, the logistic term in the model (1) became positive, i.e.,
κu(m(x) − u) > 0, and the population will grow. Therefore, we may
expect that they will decrease their motility to stay in the habitat.
However, if the food supply is less than the demand, i.e., s < 1,
then the organisms starve and hence they will increase their motility
to leave their habitat. Therefore, the motility γ is assumed to be a
decreasing function on s > 0. We assume that there exist 0 < l <
h <∞ such that

γ(s) ↑ h as s ↓ 0, γ(s) ↓ l as s ↑ ∞, γ′(s) ≤ 0. (5)

It is clear that the motility of biological organisms should be bounded
even if there is no food at all, i.e., s = 0. The lower bound l > 0 is
necessary to make the system uniformly parabolic.

One might want to model the satisfaction measure as a function
of the leftover, s := m− u, which is an example of a fitness measure.
However, this quantity cannot be used as a satisfaction measure since
individuals cannot feel it. For example, individuals should be hungrier
in the case of ‘m = 1, u = 2’ than in the case of ‘m = 9, u = 10’
even though m − u = −1 in both cases. In fact, as long as re-scaled
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quantities are used in the model, the two cases, ‘m = 1, u = 2’ and
‘m = 10, u = 20’, can not be distinguished.

The above hypotheses are for an ecological situation and hence
the starvation driven diffusion can be considered as an example of
ecological diffusion. For the simplicity in our analysis we will assume
C2 smoothness of the motility and the resource distribution, i.e.,

γ ∈ C2(R+) and m ∈ C2(Ω), m ≥ 0. (6)

We also assume that there exists M > 0 such that

|s γ′(s)| < M, s > 0. (7)

Fick [15] found that the concentration diffusion in a homogeneous
environment has an analogy with the heat conduction for a homoge-
neous case and modeled the diffusion flux and the diffusion equation
using

J = −d∇u, ut = −div(J) = d∆u,

where the diffusivity d is a constant depending on the property of the
material. Such a linear diffusion has been used to model the random
dispersal strategy of biological organisms, which leads the logistic
model to

ut = div(d∇u) + κu(m(x) − u), t > 0, x ∈ Ω. (8)

This logistic model is well understood and used as a building block
for various ecological systems (see [14,21,28,31,36]).

However, under an external temperature gradient, Fick’s law fails
and the phenomenon is called thermal diffusion. Recently, the third
author [27] explained such a heterogeneous diffusion process using a
non-uniform random walk which is given by

ut = div

(

d

S
∇ (Su)

)

, (9)

where S is the instantaneous particle speed1 (see [32]).
Skellam [46] has emphasized the importance of a realistic biolog-

ical diffusion model to overcome the limitations that a random walk
model has (see [40, §5]). Animal response to environment, interference
between individuals and non-uniformity of the use of space and time
are examples to be considered. Let ζ(x) be the rate of individuals who
want to leave the habitat. (One might consider it as the departing
probability depending on departure location as in [40, §5.4].) Then
the diffusion model (9) turns into

ut = div

(

d

S
∇ (ζSu)

)

, (10)

1 If ∆x is the walk length and ∆t is the jumping time, then d = |∆x|2

2n∆t
and

S = ∆x
∆t

. Hence d
S
= ∆x

2n
, where n is the space dimension.
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which has been derived in [9]. Even though the speed of a Brown-
ian particle is hard to be measured (see [32]), the speed S and the
diffusivity d of biological organisms can be measured experimentally
(see [1]). The probability measure ζ can be decided by comparing
the model with actual diffusion phenomenon. The coefficient d/S is a
walk length in a random walk model. The motility γ of the diffusion
operator in (1) is now viewed as the product of the speed S and the
emigration rate ζ, i.e., γ ≈ ζS. Therefore, the name of motility for γ
is justifiable, which can be also called the emigration rate. In this pa-
per, we will focus on the heterogeneity of the motility and disregard
d/S for simplicity. Notice that the motility γ decides the steady state
of (10) and the diffusivity d controls the speed to arrive the steady
state.

The product rule splits the diffusion operator ∆(γ(s)u) in (1) into
three parts,

∆(γ(s)u) = div
(

γ(s)∇u− γ′(s)s∇u+ γ′(s)∇m). (11)

The first term, γ(s)∇u, is the diffusion of Fick’s law that counts
the interference between individuals. Remember that γ is a decreas-
ing function on the satisfaction measure s and hence the diffusivity
γ(s) = γ(m/u) increases as u increases. The second term, −γ′(s)s∇u,
behaves similarly. One might consider the two terms as self-diffusion
since the diffusivity of a species increases as its own population in-
creases. The last term, γ′(s)∇m, gives an advection toward the re-
source, which shows the response to environment. These two mech-
anisms in the starvation driven diffusion produce a flow heading to
the place with less population and more resources, respectively.

The Fokker-Planck type diffusion operator ∆(γ(s)u) in (1) has
been used in ecology models in several contexts. For example, a dif-
fusion operator derived from a random walk process is written in
this form, where γ(x) is the probability for a particle to depart the
place x (see §5.4 of [40]). It is observed and believed that the in-
dividuals do not move around uniformly but show a spatial aggre-
gation around food or separation from other species (see §4.2.3 of
[47]). Separation phenomenon has been successfully obtained by us-
ing γ(x) = c1 + c2u + c3v with constant ci’s and the density of the
competing species v. Then, the three terms in the operator ∆(γ(x)u)
give the linear diffusion, the self-diffusion and the cross-diffusion in
that order and it is the cross-diffusion that gives a spatial segrega-
tion. Such a system has been intensively studied by many authors
(see [33,34,37,45]). However, one cannot add an aggregation effect in
this way. On the other hand, the third advection term in (11) gives
an aggregation effect toward more food.

One might find a similar idea from preytaxis models (see [26,13]).
Kareiva and Odell obtained the Fokker-Planck type diffusion in (1)
when predators restrict the area of their search to a place with more
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preys and change their direction of movement more often with more
food. In that case the corresponding motility was a decreasing func-
tion of the density of prey, i.e., γ = γ(m) with ∂ γ

∂m
≤ 0 in our notation.

Another interesting example is the dispersal phenomenon of a species
when the species swaps its motility level between the activated state
and the deactivated one. Such a case has been modeled using the
Fokker-Planck type diffusion by M. Mimura et al. [18,23].

The goal of this paper is to analyze the influence of the starvation
driven diffusion in the logistic model (1) and compare it with the lin-
ear diffusion case. The study will be on two main issues of analytical
ecology models. The first one is the global asymptotic stability, which
has been well studied for the linear model (8) and Lotka-Volterra
competition models. To do that we will study the long time asymp-
totics and zero-diffusion and zero-reaction limits. In this analysis the
linear diffusion theory is extended to the nonlinear diffusion one with
appropriate modifications. (Readers are referred to [39] for an expos-
itory presentation with linear diffusion, where proofs of this paper
are based on.) However, we could not obtain fully generalized results
and a genuine improvement from the linear theory seems needed.

The second issue is obtaining the optimal habitat selection or
the ideal free distribution which has been one of main topics in
ODE patch models (see [17,16,6,22,38]). A population distribution
is called ideal free if each individual has the same fitness to environ-
ment at equilibrium. Therefore, if the total population in each patch
is identical to the capacity and there is no net migration between
patches, then it is the ideal free distribution, which is also called the
optimal habitat selection.

In PDE models, the corresponding equilibrium is u = m(x). Much
effort has been devoted in this direction by adding an appropriate
advection term. Then, the logistic model (8) became

ut = div(d∇u− cu∇P ) + κu(m(x)− u), 0 < t, x ∈ Ω, (12)

where 0 < c is a scaling coefficient. The advection term, −cu∇P ,
models the migration of the organisms toward food. The case with
‘P = m’ has been intensively studied and it is shown that having
such an advection is advantageous in a competition if 0 < c is small.
However, if 0 < c is large, the population became concentrated only
near the maximum points of m, which may give an disadvantage in a
competition (see [3,4,12,29]). A species is always advantageous if the
advection is given with ‘P = m − u’ and the steady state converges
to the ideal free distribution u = m as c → ∞, where the ideal
free distribution is obtained only in this limiting sense (see [7,10]).
If the advection term is given with ‘P = lnm’, then the steady state
becomes ideal free distribution u = m and this is the evolutionarily
stable strategy (see [2,8,11]).
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A key question related to the convergence to the ideal free distri-
bution is: Is it possible for a local dispersal to produce a global ideal
free distribution without knowing the whole distribution m? We will
see that the dispersal in (1) has such a property if certain assumptions
are imposed on the mobility function γ(s). In fact, we will see that
u = m(x) is an equilibrium solution of (1) if the motility function is
given by

γ0(s) =

{

h if 0 ≤ s < 1,
l if 1 ≤ s <∞,

(13)

and maxxm(x)
minxm(x) <

h
l
, where 0 < l < h < ∞ are constants. One might

interpret this motility as that, if the food supply is not enough to
support the population and hence the organisms are not satisfied with
the environment, i.e., s < 1, then the species increase their motility
to the highest level h. On the other hand, if they are satisfied with
the environment, i.e., 1 < s, then they decrease their motility to the
lowest level l.

The motility function γ0 in (13) is an extreme case that the whole
population increase their motility to the highest level simultaneously.
It is more realistic in a certain case that only 50% of the popula-
tion increase their motility if the food supply supports only 50% of
the population, i.e., if s = 0.5. In that situation, the corresponding
motility is

γ1(s) =

{

sl+ (1− s)h, 0 ≤ s < 1,
l, 1 ≤ s <∞.

(14)

Note that this motility has a similarity to the one in Mimura et al. [18,
23], which has a motility depending on the density of pheromone. One
might design various motility functions depending on the character
of species or on field data.

The property (5) is a basic requirement for any motility function.
The ones in (6) and (7) are technical requirements for the analysis in
this paper. Since the motility in the previous two examples are not
smooth, one may consider its regularized perturbation

γǫi := γi ∗ η
ǫ,

where ηǫ is a typical smooth mollifier with its support in (−ǫ, ǫ).
The rest of this paper is organized as follows. In Section 2, the

influence of the starvation driven diffusion is analyzed without the
logistic reaction. It is shown in Theorem 1 that it is not the popu-
lation density but the diffusion pressure, U = γu, that tends to a
constant asymptotically. The global asymptotic stability of the sys-
tem (1)–(3) is obtained in Theorem 2, Section 3, under an extra
technical assumption (30) on the motility function γ. This assump-
tion is satisfied by the ones in (13) and (14) after a regularization. If
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the resource function m(x) satisfies one of the two conditions in The-
orem 3, we can also obtain the global asymptotic stability without
(30). Both conditions in Theorem 3 indicate that the spatial concen-
tration of resources is not large. In Section 4, the zero-diffusion and
the zero-reaction limits of the globally asymptotically stable solution
are obtained. The zero-diffusion limit of the population density is the
resource distribution m(x), which extends the linear diffusion the-
ory. However, the zero-reaction limit of the density is not a constant,
but the one of the diffusion pressure is (see Theorem 4). This is the
main difference between the linear diffusion and the starvation driven
diffusion.

Finally, in Section 5, we consider the optimal habitat selection
property of the starvation driven diffusion. For that purpose we con-
sider the motility function in (13) and its regularized ones under the
assumption that the relative variation of motility is bigger than the
one of resource distribution, i.e.,

maxΩ̄m(x)

minΩ̄m(x)
<
h

l
. (15)

The solution of the system (1)-(5) with the discontinuous motility in
(13) is viewed as the limit of solutions with regularized motilities. In
Theorem 5, it has been shown that u = m is one of the steady states
for the problem without the logistic reaction term. In Theorem 6, it
is shown that it is the globally asymptotically stable solution under
a more restrictive condition in (62).

2. Starvation driven diffusion without reaction

The steady state solution of the reaction-diffusion equation (8) is not
a state without any dynamics but a one in a balance of two different
ones. The logistic reaction pushes the solution u(x, t) to fit it into
the resource distribution m(x) and the linear diffusion flattens the
solution into a constant as t → ∞.1 Such steady state solutions are
well understood and we will study similar dynamics when the linear
diffusion is replaced with the ecological one.

In this section we first study the dynamics of the diffusion without
the logistic reaction term. Consider

ut = ∆(γ(s)u), 0 < t, x ∈ Ω, (16)

where s = s(x, t) = m(x)/u(x, t) and the boundary and the initial
conditions in (2) and (3) are imposed. We will call

U := γu (17)

1 Therefore, ‘m(x) = constant’ is the only case that there is no dynamics at
all in the steady state solution. If ‘m(x) 6= constant’, such a balance exists in a
steady state.
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a (biological) diffusion pressure or simply a pressure. We will freely
abuse the notation by writing u = u(x,U) or U = U(x, u) throughout

this paper. Then, one may write U(x, u) = γ(m(x)
u

)u. Then,

∂U

∂u
= γ

(m

u

)

− γ′
(m

u

)m

u2
u = γ(s)− γ′(s)s > l, (18)

i.e., the pressure U is monotone increasing on the density u for a

fixed point x ∈ Ω. One can write ∂u
∂U

=
(

∂U
∂u

)−1
under the notational

convention. Combining this estimate and (7) gives

0 < l ≤
∂U

∂u
≤ L(:=M + h) <∞. (19)

The equation (16) can be written in terms of pressure,

Ut =
∂U

∂u
ut = (γ − γ′(s)s)∆U.

One can easily see that U = constant is a steady state. In the follow-
ing theorem, we will show that the pressure converges to a constant
state for t large.

Theorem 1. Let the motility γ satisfy (5)–(7) and u be the solution
of (16). Then there exists a constant 0 < U0 such that

γ(s(x, t))u(x, t) → U0 weakly in W 1,2(Ω) as t→ ∞.

Proof. The positivity and local existence of the problem is standard.
The equation (16) and the boundary and the initial conditions (2)
and (3) can be rewritten in terms of the pressure, U = γu, as







∂u
∂U

Ut = ∆U for x ∈ Ω, t > 0,

∇U · n = 0 for x ∈ ∂Ω, t > 0,

U(x, 0) = U0(x),

(20)

where U0(x) = γ(m(x)
u0(x)

)u0(x) and
∂U
∂u

satisfies (19).

Integrating the first equation over Ω after a multiplication by Ut
gives

1

2

d

dt

∫

Ω

|∇U |2dx = −

∫

Ω

∂u

∂U
U2
t dx ≤ 0. (21)

This monotonicity of the energy gives

∫

Ω

|∇U(x, t)|2dx ≤

∫

Ω

|∇U0(x)|
2dx. (22)
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The maximum principle is applicable thanks to the uniform bound
for ∂U

∂u
in (19) and we obtain

min
Ω

U0(x) ≤ U(x, t) ≤ max
Ω

U0(x). (23)

Next, multiply the equation in (20) by U . Then, integrating both
sides over Ω gives
∫

Ω

|∇U |2dx = −

∫

Ω

∂u

∂U
UUtdx ≤

1

l

(

∫

Ω

U2dx
)

1

2

(

∫

Ω

U2
t dx

)
1

2

, (24)

where l > 0 is the lower bound in (19). Thus, (23) and (24) imply
that there exists a constant c > 0, which is independent of t and

c
(

∫

Ω

|∇U |2dx
)2

≤

∫

Ω

U2
t dx.

Moreover, (21) implies that, for any T > 0, there exists C > 0 such
that

∫ ∞

T

(

∫

Ω

U2
t dx

)

dt ≤ C.

It follows that for some constant C ′ > 0,
∫ ∞

T

(

∫

Ω

|∇U |2dx
)2
dt ≤ C ′.

Therefore, (21) implies that
∫

Ω

|∇U |2dx→ 0, as t→ ∞. (25)

Thus, (22) and (23) together give that

‖U(·, t)‖W 1,2(Ω) ≤ c1,

where the constant c1 > 0 is independent of t. Therefore, it follows
that there exist Ũ ∈W 1,2(Ω) and a sequence tn → ∞ such that

U(x, tn)⇀ Ũ(x) weakly in W 1,2(Ω) as tn → ∞. (26)

For any non-negative function φ ∈ C1(Ω) with ∇φ ·n = 0 on ∂Ω,
(25) and (26) imply

∫

Ω

∇Ũ · ∇φdx = 0.

Therefore, Ũ is a weak solution of the problem
{

∆Ũ = 0 for x ∈ Ω,

∇Ũ · n = 0 for x ∈ ∂Ω.
(27)
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It is known that (27) has constant solutions only and hence Ũ = U0 >
0. The conservation of mass of the problem (1)-(3) implies that

∫

Ω

u(x,U0)dx = lim
t→∞

∫

Ω

u(x,U(x, t))dx =

∫

Ω

u0(x)dx.

Therefore, the strict monotonicity of u(x,U) in U for all x implies
that U0 is independent of the choice of the sequence {tn} and hence
the proof is complete. ⊓⊔

3. Starvation driven diffusion with logistic reaction

In this section, we return to the full system (1)–(7) that includes
the population dynamics. We let the growth rate be fixed by setting
κ = 1. Let us write the equation and boundary and initial conditions
again,







ut = ∆ (γ(s)u) + u[m(x)− u] for x ∈ Ω, 0 < t,

0 = ∇[γ(s)u] · n for x ∈ ∂Ω, 0 < t,

0 < u(x, 0) = u0(x) for x ∈ Ω,

(28)

where s = m
u
. We will show the existence, uniqueness and global

asymptotic stability of the unique positive stationary solution of (28).
Let U = γ(s)u be the pressure. As we did in the previous section,

we abuse the notation by writing u = u(x,U) and U = U(x, u). Then,
Eq. (28) can be rewritten as







Ut =
∂U
∂u

[∆U + u(m− u)] , x ∈ Ω, t > 0,

∇U · n = 0, x ∈ ∂Ω, t > 0,

U(x, 0) = U0(x), x ∈ Ω,

(29)

where ∂U
∂u

satisfies (18) and (19).

Theorem 2. Suppose that the motility γ satisfies (5)–(7) and an ex-
tra technical assumption

γ(s)− s(s− 1)γ′(s) > 0 for 0 < s < 1. (30)

Then, there exists a unique globally asymptotically stable positive
steady state solution of (28).

Proof. It suffices to show (29) has a unique positive steady state. To
this end, we will generalize the classical upper/lower solution method.
Consider an eigenvalue problem

{

∆ϕ+ m
γ( m

u0
)ϕ = µϕ in Ω,

∇ϕ · n = 0 on ∂Ω.
(31)
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Let µ1 > 0 and ϕ1 > 0 be the first eigenvalue and eigenfunction,
respectively. Without loss of generality, we can assume u0 > 0 in
Ω by the strong maximum principle. Since γ(s)m

s
is decreasing as s

increases, there exists a sufficiently small ε such that µ1 >
εϕ1

l2
and

γ(m
u
)u ≤ γ(m

u0
)u0, where u(x) := u(x, εϕ1).

Clearly, for s = m/u,
[

γ(s)− γ′(s)s
]

[∆U + u(m− u)] > 0

in Ω. Let U(x, t) denote the solution of the initial value problem (29)
with initial data U(x, 0) = εϕ1. Differentiating (29) with respect to t
gives that

U tt =
∂U

∂u

[

∆U t + (m− 2u)
∂u

∂U
U t

]

+ γ′′s2u−1
( ∂u

∂U
U t

)2
,

where ∇U t · n = 0 for x ∈ ∂Ω, t > 0. Then, the maximum principle
implies that U t ≥ 0 for x ∈ Ω, t > 0.

Now choose a constant

Ū > hmax
Ω̄

m(x). (32)

Similarly, this implies that, for all x ∈ Ω,

ū(x) := u(x, Ū ) > max
Ω̄

m(x).

Then let U(x, t) denote the solution of the initial value problem (29)
with initial data U(x, 0) = Ū . Similarly, U t ≤ 0 for x ∈ Ω, t > 0.

Since U(x, 0) < U(x, 0) in Ω̄ and, for t > 0,

∆U + u(x,U)[m(x) − u(x,U)] ≥ 0,

∆U + u(x,U)[m(x) − u(x,U)] ≤ 0,

U(x, t) < U(x, t) for x ∈ Ω̄ and t > 0 by the maximum principle and
Hopf boundary lemma. Therefore, the pointwise limits

U(x) = lim
t→∞

U(x, t),

U(x) = lim
t→∞

U(x, t)

exist and

U(x, 0) ≤ U(x, t) ≤ U(x) ≤ U(x) ≤ U(x, t) ≤ U(x, 0). (33)

(Note that we are abusing a notation here but with a consistency.
For example, we use the same notation U for a solution U(x, t), for
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its long time limit U(x) and for the constant U in (32). They should
be distinguished from context.)

Next, we show that U(x) is the smooth steady state solution of

(29). Let ϕ ∈ C2(Ω) with ∂ϕ
∂ν

= 0 on ∂Ω be a test function. Multiply
ϕ
T

to the first equation in (29) for U(x, t) and then integrate it over
Ω × (0, T ). Then,
∫

Ω

u(x,U (x, T ))− u(x,U (x, 0))

T
ϕ(x)dx

=
1

T

∫ T

0

∫

Ω

(∆U1 + u(x,U)[m(x) − u(x,U)])ϕdxdt

=

∫

Ω

{

∆ϕ
1

T

∫ T

0
U1(x, t)dt+ ϕ

1

T

∫ T

0
u(x,U )[m(x)− u(x,U )]dt

}

dx.

Now, it is easy to see that

lim
T→∞

∫

Ω

u(x,U(x, T )) − u(x,U(x, 0))

T
ϕ(x)dx = 0,

lim
T→∞

1

T

∫ T

0
U(x, t)dt = U(x),

and

lim
T→∞

1

T

∫ T

0
u(x,U )[m(x)− u(x,U )]dt = u(x,U)[m(x) − ρ(x,U )].

Therefore, by the Lebesgue dominated convergence theorem, we get
∫

Ω

U∆ϕ+ u(x,U)[m(x) − u(x,U)]ϕdx = 0.

The arguments in [44, Page 989] show that U(x) is a classical sta-
tionary solution of (29). Similarly, it can be proved that U(x) is also
a classical stationary solution. Consequently, the existence of unique
positive steady state of (28) is proved.

Clearly, U(x) and U(x) satisfy
{

−∆U = u(m− u), x ∈ Ω,

∇U · n = 0, x ∈ ∂Ω.
(34)

Therefore,
∫

Ω

∇U · ∇U dx = −

∫

Ω

U∆U dx =

∫

Ω

Uu(m− u)dx

=

∫

Ω

UUm(1− s−1)γ−1(s)dx,
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where s := m
u
. Replacing the role of U and U gives a similar relation

and hence we can conclude that
∫

Ω

UUm(1− s−1)γ−1(s)dx =

∫

Ω

UUm(1− s−1)γ−1(s)dx.

One can easily check that the extra condition (30) gives the mono-
tonicity of the function s → (1 − s−1)γ−1(s). Hence if u 6= u, then
it gives a contradiction. Therefore, (29) has a unique positive steady
state, which is globally asymptotically stable. ⊓⊔

Remark 1. One may see that the theory for the linear diffusion case is
extended to our nonlinear diffusion case. However, for the uniqueness
part, the motility γ is assumed to satisfy an extra condition (30). This
assumption is for technical difficulties and a technical improvement
is required to obtain the uniqueness without such an assumption.
However, the examples (13) and (14) of our main interest satisfy this
assumption after a typical regularization. It is also worth to point
out that the proof of the theorem shows that the uniqueness of the
steady state solution implies the global asymptotic stability.

The globally asymptotically stable solution in Theorem 2 will be
denoted by θ(x) in the rest of this paper. Notice that the uniqueness
has been shown under an assumption (30) on the motility function
γ. In the following lemma we will show that steady state solutions
should satisfy certain structure without using the assumption. This
lemma will be used in proving the uniqueness under extra conditions
on the resource distribution m(x), but without the assumption (30)
on γ.

Lemma 1. Let θ be a positive steady state:
{

∆U + θ(m(x)− θ) = 0 for x ∈ Ω,

∇U · n = 0 for x ∈ ∂Ω,
(35)

where U = γ(m
θ
)θ. Then,

(i) minΩm(x) ≤ minΩ θ(x) ≤ maxΩ θ(x) ≤ maxΩm(x).
(ii)

∫

Ω
m(x)dx ≤

∫

Ω
θ(x)dx.

(iii) Furthermore, if m is not constant, then the inequalities are strict,
i.e.,

min
Ω

θ(x) < max
Ω

θ(x),

∫

Ω

m(x)dx <

∫

Ω

θ(x)dx.

Proof. Let U(x1) = maxΩ U(x). Suppose that θ has a maximum at

x0 ∈ Ω such that

θ(x0) = max
Ω

θ(x) > max
Ω

m(x).
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We will show that this assumption derives a contradiction. First,
assume that x1 ∈ Ω, then

θ(x1)[m(x1)− θ(x1)] = −∆U(x1) ≥ 0.

This implies that m(x1)− θ(x1) ≥ 0 and thus

θ(x1) ≤ m(x1) ≤ max
Ω

m(x) < θ(x0).

Therefore

max
Ω

U(x) = U(x1) = γ
(m(x1)

θ(x1)

)

θ(x1)

≤ γ(1)θ(x1) < γ(
m(x0)

θ(x0)
)θ(x0) = U(x0),

which is a contradiction.
Next, assume that x1 ∈ ∂Ω. Note that if θ(x1) ≤ m(x1), then a

contradiction can be derived by repeating the previous arguments.
Now the only possible situation is x1 ∈ ∂Ω and θ(x1) > m(x1). This
yields that

∆U = −θ(x)[m(x)− θ(x)] > 0 in B(x1, r)
⋂

Ω,

where B(x1, r) denotes a ball centered at x1 with sufficiently small
radius r > 0. A contradiction arises due to the Hopf boundary
lemma and the boundary condition imposed on U . Therefore the
inequality maxΩ θ(x) ≤ maxΩm(x) in (i) is proved. The inequality
minΩm(x) ≤ minΩ θ(x) can be handled similarly.

For the proof of (ii), notice that it follows easily from the problem
(34) that

∫

Ω

[

|∇U |2

U2
+
m− θ

γ(m
θ
)

]

dx = 0.

Moreover, observe that since γ is decreasing,

(s− 1)(γ(s) − γ(1)) ≤ 0,

which implies that

(m− θ)

(

1−
γ(1)

γ(m/θ)

)

≤ 0.

Therefore,

∫

Ω

(m− θ)dx ≤ γ(1)

∫

Ω

m− θ

γ(m
θ
)
dx = −γ(1)

∫

Ω

|∇U |2

U2
dx ≤ 0. (36)
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Now we show (iii). Suppose thatm(x) is not constant and minΩ θ(x) =
maxΩ θ(x), i.e., θ(x) ≡ c > 0, a constant. Then, the part (i) im-
plies that minΩm(x) ≤ c ≤ maxΩm(x). Since m is not a constant
minΩm(x) < c or c < maxΩm(x). We will assume minΩm(x) < c
and the other case is similar. Let x2 be the maximum point of the
pressure, i.e.,

U(x2) = max
Ω

γ(
m(x2)

c
)c.

Clearly, due to the monotonicity of γ,m(x2) = minΩm(x). If x2 ∈ Ω,
then ∆U(x2) = −c(m(x2)− c) > 0, which is not possible. If x2 ∈ ∂Ω,
then we still have ∆U(x2) > 0 and Hopf’s boundary lemma yields
that ∇U ·n > 0 at x = x2 ∈ ∂Ω. We obtain a contradiction and thus
minΩ θ(x) < maxΩ θ(x).

Notice that because of (36),
∫

Ω
m(x)dx =

∫

Ω
θ(x)dx implies that

U ≡ U0, a constant pressure. Then according to the problem (34), we
easily get m(x) ≡ θ(x) a.e., which however yields that

U = γ(
m

θ
)θ = γ(1)θ = γ(1)m.

This is a contradiction sincem(x) is not a constant. Therefore
∫

Ω
m(x)dx <

∫

Ω
θ(x)dx. ⊓⊔

The relations in the lemma between the resource distributionm(x)
and the steady population distribution θ(x) are classical ones for ODE
patch models and PDE models with linear diffusion. This lemma
shows that such classical relations are naturally extended to equations
with the Fokker-Planck type diffusion considered in this article.

Theorem 3. Suppose that one of the following two conditions holds:

(i) maxΩm(x) ≤ 2minΩm(x),

(ii) ∇m · n ≤ 0 on ∂Ω and △m+ 1
2α(2)m

2 ≥ 0 in Ω̄.

Then the solution of (35) is unique and hence it is the globally asymp-
totically stable positive solution of (28).

Proof. Let θ1(x) and θ2(x) be positive solutions of (35). Thanks to
the proof of Theorem 2, we can assume that θ1(x) ≤ θ2(x) in Ω.
Recall that θi(x), i = 1, 2, satisfy

{

∆Ui + θi[m(x)− θi] = 0 for x ∈ Ω,

∇Ui · n = 0 for x ∈ ∂Ω,

where Ui = U(x, θi) = α(m/θi)θi. It is easy to see that
∫

Ω

θ1[m(x)− θ1]dx =

∫

Ω

θ2[m(x)− θ2]dx = 0,
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which immediately implies that
∫

Ω

(θ1 − θ2)[m(x)− θ1 − θ2]dx = 0. (37)

We will show that if either (i) or (ii) holds, a solution θ of (34)
satisfies

θ(x) ≥
m(x)

2
in Ω. (38)

Then, this claim, θ1(x) ≤ θ2(x) and θ1(x) 6= θ2(x) immediately imply
that

∫

Ω

(θ1 − θ2)[m(x)− θ1 − θ2]dx > 0,

which contradicts (37). Hence, the uniqueness of the positive solution
of (34) follows. First, if (i) is assumed, then (38) is immediate from
Lemma 1(i), i.e.,

m(x) ≤ max
Ω

m(x) ≤ 2min
Ω

m(x) ≤ 2min
Ω

θ(x) ≤ 2θ(x).

Now we show (38) under the assumption of (ii). Let

β(s) = α(s)s−1.

Then,

U = β(s)m and β′(s) = α′(s)s−1 − α(s)s−2 < 0.

On the boundary ∂Ω,

0 = ∇[α(s)θ] · n = ∇[β(s)m] · n =
[

β′(s)m∇s+ β(s)∇m
]

· n.

Therefore, since ∇m · n ≤ 0 and β′(s) < 0, we have

∇s · n ≤ 0 on ∂Ω. (39)

Hence (34) can be rewritten as

{

∆ (β(s)m) +m2s−1
[

1− s−1
]

= 0 for x ∈ Ω,

∇s · n ≤ 0 for x ∈ ∂Ω.

This equation can be written as

∆s+
β′′

β′
|∇s|2 +

2

m
∇m · ∇s+

β

β′m

[

∆m+
m2

α

(

1− s−1
)

]

= 0. (40)

Suppose that there exists x0 ∈ Ω̄ such that

s(x0) = max
Ω̄

s(x) > 2.
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Suppose that the critical point is an interior one x0 ∈ Ω. Then, since
α(s) is a decreasing function,

∆m(x0) +
m2(x0)

α(s(x0))

(

1−
1

s(x0)

)

> ∆m(x0) +
m2(x0)

2α(2)
.

By (40) and (ii), we have ∆s(x0) > 0, which is impossible since the
maximum value of s is achieved at x0 ∈ Ω. Let x0 ∈ ∂Ω. Obviously,
∇s(x0) · n ≥ 0 since x0 is a boundary point with a maximum value.
Thus, ∇s(x0) · n = 0 because of (39). Moreover, the maximum value
of s is obtained at x0 ∈ ∂Ω and ∇s(x0) · n = 0 together imply that
|∇s(x0)| = 0. Similarly, from (ii), we also have

∆m(x0) +
m2(x0)

α(s(x0))

(

1−
1

s(x0)

)

> 0.

Therefore, from (40) with |∇s(x0)| = 0, ∆s(x) > 0 in B(x0, r)
⋂

Ω
for small r > 0. Then∇s(x0)·n = 0 contradicts to the Hopf boundary
lemma. Therefore, maxΩ̄ s(x) ≤ 2, and hence (38) is satisfied. ⊓⊔

4. Zero-diffusion and zero-reaction limits

Let θd(x) be the positive solution of the stationary problem

{

d∆U + θ[m− θ] = 0 for x ∈ Ω,

∇U · n = 0 for x ∈ ∂Ω,
(41)

where U(x) = γ(s(x))θ(x) and s(x) = m(x)
θ(x) . We will explore the

behavior of the solution θd(x) as d → 0 or d → ∞. This behavior is
well known for the linear diffusion case,

d∆θ + θ(m− θ) = 0.

The technique for the linear diffusion case is modified appropriately
for the nonlinear case, where the analysis will show their similarities
and differences.

In the followings we develop techniques in [19] for our nonlinear
diffusion. We will first construct an auxiliary function with a solution
of the following problem,

{

d∆v + v
γ2( m

θd
)
(c− v) = 0 in B(x0, r),

v = 0 on ∂B(x0, r),
(42)

where c > 0 is a constant and θd is the solution of (41). It is standard
to verify that v ≡ c+1 is a upper solution and v ≡ c

‖ϕ‖∞
ϕ is a lower
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solution, where ϕ ≥ 0 is an eigenfunction corresponding to the first
eigenvalue of

{

∆ϕ+ µϕ = 0 in B(x0, r),

ϕ = 0 on ∂B(x0, r).
(43)

Thus we have the existence of a positive solution of (42). Moreover,
let v1 and v2 be two distinct positive solutions. Then we may assume
that v1 ≤ v2 and so,
∫

[

dv2∆v1 +
v1v2
γ2(m

θd
)
(c− v1)

]

= 0 =

∫

[

dv1∆v2 +
v1v2
γ2(m

θd
)
(c− v2)

]

dx.

This implies that
∫

[ v1v2
γ2(m

θd
)
(v1 − v2)

]

dx = 0.

Therefore, v1 ≡ v2, i.e., the solution of (42) is unique. We will denote
this unique solution by vrd and omit the dependency on x0 since the
center of the ball is clear in most of cases.

Lemma 2. lim
d→0

(

inf
x∈K

vrd(x)
)

≥ c on any compact set K ⊂ B(x0, r).

Proof. We show that for any given compact set K ⊂ B(x0, r) and
ε > 0, there exists d0 = d0(K, ε) > 0 such that vd(x) ≥ c− ε, for any
x ∈ K and 0 < d < d0.

Let y0 ∈ K and fix δ > 0 so that B(y0, 2δ) ⊂ B(x0, r). Let µ1 =
µ1(B(y0, δ)), ϕ1 > 0 with ‖ϕ1‖L∞ = 1 be the first eigenvalue and
eigenfunction of

{

∆ϕ+ µϕ = 0 in B(y0, δ),

ϕ = 0 on ∂B(y0, δ).
(44)

We claim that (c − dh2µ1)ϕ1(x) ≤ vδd(x) ≤ vrd(x), for all x ∈
B(y0, δ) and sufficiently small d > 0, where h is the maximum of the
motility γ.

Since vrd is the solution of (42), we have vδd ≤ vrd on B(y0, δ).

Assume that dh2µ1 < c otherwise the claim is trivial. Let U1 = vδd
and U2 = (c− dh2µ1)ϕ1. Then

{

∆U1 +
U1

dγ2( m
θd

)(c− U1) = 0 in B(y0, δ),

U1 = 0 on ∂B(y0, δ)
(45)

and
{

∆U2 + µ1(B(y0, δ))U2 = 0 in B(y0, δ),

U2 = 0 on ∂B(y0, δ).
(46)
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Hence, it follows that

∆U2 +
U2

dγ2(m
θd
)
(c− U2)

= −µ1(B(y0, δ))U2 +
U2

dγ2(m
θd
)
(c− U2)

=

{

c

dγ2(m
θd
)
− µ1(B(y0, δ)) −

(

c

dγ2(m
θd
)
−
h2µ1(B(y0, δ))

γ2(m
θd
)

)

ϕ1

}

U2

≥

(

c

dγ2(m
θd
)
−
h2µ1(B(y0, δ))

γ2(m
θd
)

)

(1− ϕ1)U2 ≥ 0.

Therefore, U2 is a lower solution and hence U2 ≤ U1.
Let d0(y0, ε) =

ε
2h2µ1

. For every d < d0(y0, ε), since v
δ
d(x) is con-

tinuous, we can choose 0 < δ̃ < δ such that δ̃ = δ̃(y0, d, ε) and

vδd(x) ≥ vδd(y0)−
ε
2 , for all x ∈ B(y0, δ̃). Then, for every x ∈ B(y0, δ̃),

vrd(x) ≥ vδd(x) ≥ vδd(y0)−
ε

2

≥ [c− dh2µ1)]ϕ1(y0)−
ε

2
≥ c− ε.

Then the conclusion follows by standard compactness argument. ⊓⊔

Next, we construct two estimates for the positive solutions of (41).

Lemma 3. Let θd(x) denote a positive solution of (41) and U =
γ(m/θd)θd. Then

γ(1)min
Ω̄

m(x) ≤ U(x) ≤ γ(1)max
Ω̄

m(x). (47)

Proof. Suppose that maxΩ̄ U(x) > γ(1)maxΩ̄m(x) and that the
pressure U attains it maximum at x0 ∈ Ω, i.e.,

U(x0) = max
Ω̄

U(x) > γ(1)max
Ω̄

m(x). (48)

Then, since θd(x0)[m(x0)− θd(x0)] = −d∆U(x0) ≥ 0, we have

s(x0) =
m(x0)

θd(x0)
≥ 1. (49)

Therefore,

γ(1)θd(x0) ≥ γ(s(x0))θd(x0) = U(x0) > γ(1)max
Ω̄

m(x) ≥ γ(1)m(x0),

which contradicts to (49).
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Now, suppose that x0 ∈ ∂Ω. One may similarly derive a contradic-
tion if m(x0) ≥ θd(x0). Hence we consider the case m(x0) < θd(x0),
which implies that

∆U(x0) = −θd(x0)[m(x0)− θd(x0)] > 0.

Hence,

∆U > 0 in B(x0, r)
⋂

Ω,

where B(x0, r) denotes a ball centered at x0 with sufficiently small
radius r > 0. Therefore, the Hopf boundary lemma implies that ∇U ·
n > 0, which contradicts with the boundary condition of the problem.
Consequently,

U(x) ≤ γ(1)max
Ω̄

m(x).

The first inequality in (47) is obtained similarly. ⊓⊔

Lemma 4. Let θd(x) be a positive solution of (41). Then there exist
positive constants K1 and K2 independent of d such that

K1 ≤
m(x)

θd(x)
≤ K2. (50)

Proof. Let β(s) = γ(s)s−1. Since β′(s) < 0, β(s) is invertible. More-
over, by Lemma 3, we have

γ(1)
minΩ̄m(x)

m(x)
≤ β(s) =

U

m
≤ γ(1)

maxΩ̄m(x)

m(x)
.

Therefore (50) is satisfied with

K1 = β−1
(

γ(1)
maxΩ̄m(x)

minΩ̄m(x)

)

and K2 = β−1
(

γ(1)
minΩ̄m(x)

maxΩ̄m(x)

)

.

The proof is complete. ⊓⊔

Theorem 4. Let θd(x, t) be a positive solution of (41) under assump-
tions in (5)–(7). Then, (i) limd→0 θd = m uniformly on any compact
subset of Ω. (ii) limd→∞Ud = constant in C1,α for any 0 < α < 1.

Proof. The proof of the first part (i) consists of two parts. First, we
set that U r,x0d is the solution of

{

d∆U + U
γ2( m

θd
)

(

γ(m
θd
)m− U

)

= 0 in B(x0, r),

U = 0 on ∂B(x0, r).
(51)

Let Ωε ≡ {x ∈ Ω | l ·m(x) ≥ ε}.
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Claim. For a given ε > 0 and x0 ∈ Ωε, there exist δ > 0 and d0 > 0
such that Ud(x) ≥ γ(m

θd
)m(x)−ε in B(x0, δ) for any 0 < d < d0(x0, ε).

Proof of claim: Since m is continuous on Ω, there exists a constant
δ1 = δ1(x0, ε) > 0 such that B(x0, δ1) ⊂ Ω and minB(x0,δ1) γ(

m
θd
)m ≥

γ(m
θd
)m − ε

2 , for all x ∈ B(x0, δ1). Then, since Ud is an upper so-

lution of (51) in B(x0, δ1), Ud ≥ U δ1,x0d . Moreover, since the solu-

tion vδ1d of (42) is a lower solution of (51), U δ1,x0d ≥ vδ1d , where c =

minB(x0,δ1) γ(
m
θd
)m. Let δ = min{δ̃(x0, d, ε), δ1}, where δ̃ is the one in

the proof of Lemma 2. Then, the lemma guarantees the existence of
d0(x0, ε) such that, for every d < d0(x0, ε) and x ∈ B(x0, δ), v

δ1
d ≥

minB(x0,δ) γ(
m
θd
)m− ε

2 . Therefore, Ud ≥ vδ1d ≥ minB(x0,δ) γ(
m
θd
)m− ε

2 ≥

γ(m
θd
)m(x) − ε for all x ∈ B(x0, δ).

Claim. For any given ε > 0, there exists d0 > 0 such that 0 ≤
Ud(x) ≤ γ(m

θd
)m+ ε in Ω for any 0 < d < d0.

Proof of claim: Let U ∈ C2 satisfy γ(m
θd
)m+ ε

2 ≤ U ≤ γ(m
θd
)m+ ε for

all x ∈ Ω and ∂U
∂ν

|∂Ω ≥ 0. Then, there exists d0(ε) > 0 s.t. for any
d < d0(ε)

d∆U +
U

γ2(m
θd
)

(

γ(
m

θd
)m− U

)

≤ d∆U +
U

γ2(m
θd
)

(

γ(
m

θd
)m− γ(

m

θd
)m−

ε

2

)

≤ d∆U −
εU

2γ2(m
θd
)
≤ 0.

So U is an upper solution. Therefore 0 ≤ Ud(x) ≤ U(x) ≤ γ(m
θd
)m+ε

in Ω for every 0 < d < d0.
Now we prove the second part (ii). We denote the solution by

Ud = Ū + ψ, where Ū = 1
|Ω|

∫

Ω
Uddx and

∫

Ω
ψdx = 0. Set

C = 2max
Ω̄

m(x).

Thanks to Lemma 3, we have ‖Ud‖L∞ ≤ C/2, ‖Ū‖L∞ ≤ ‖Ud‖L∞ ≤
C/2 and ‖ψ‖L∞ = ‖Ud − Ū‖L∞ ≤ C.

Consider the equation satisfied by ψ,






d∆ψ + Ū+ψ
γ( m

θd
)

(

m− Ū+ψ
γ( m

θd
)

)

= 0 in Ω,

∂ψ
∂ν

= 0 on ∂Ω.
(52)
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Hence,

d

∫

Ω

|∇ψ|2

=

∫

Ω

Ū + ψ

γ(m
θd
)

(

m−
Ū + ψ

γ(m
θd
)

)

ψ

= Ū

∫

Ω

mψ

γ(m
θd
)
− Ū2

∫

Ω

ψ

γ2(m
θd
)
+

∫

Ω

(

mγ(
m

θd
)− 2Ū − ψ

)

ψ2

γ2(m
θd
)
.

This, combined with Lemma 4, implies that

d

∫

Ω

|∇ψ|2 ≤
Ū

l
‖m‖L2‖ψ‖L2 + Ū2‖γ−2(

m

θd
)‖L2‖ψ‖L2

+
‖mγ(m

θd
)− 2Ū − ψ‖L∞

l2

∫

Ω

ψ2,

where l = γ(K2).

Since µ1 := inf
{

∫
Ω
|∇v|2dx∫
Ω
v2dx

:
∫

Ω
vdx = 0, v 6= 0, ∂v

∂ν
|∂Ω = 0

}

> 0,

µ1d

∫

Ω

ψ2 ≤ d

∫

Ω

|∇ψ|2 ≤ c‖ψ‖L2 + c

∫

Ω

ψ2.

When d > 0 is large such that c < 1
2dµ1, we get ‖ψ‖L2 ≤ c

d
. And this

implies that ‖∇ψ‖L2 ≤ c
d
. Therefore, we have ‖ψ‖H1 ≤ c

d
and thus

‖ψ‖Lq1 ≤ c
d
, where q1 =

2n
n−2 . Since ψ satisfies that







∆ψ − ψ = 1
d
Ū+ψ
γ( m

θd
)

(

m− Ū+ψ
γ( m

θd
)

)

− ψ in Ω,

∂ψ
∂ν

= 0 on ∂Ω,
(53)

and
∥

∥

∥

∥

∥

1

d

Ū + ψ

γ(m
θd
)

(

m−
Ū + ψ

γ(m
θd
)

)

− ψ

∥

∥

∥

∥

∥

Lq1

≤
c

d
,

we obtain that ‖ψ‖U2,q1 ≤ c
d
. Moreover, from the embedding theorem,

it follows that ‖ψ‖Lq2 ≤ c
d
, where q2 =

nq1
n−2q1

. By this iteration, we get

‖ψ‖U2,q ≤ c
d
, for any 1 < q < ∞. This implies that ‖ψ‖C1,α ≤ c

d
and

so, ψ → 0 in C1,α as d → ∞. Therefore, Ud converges to a constant
in C1,α as d→ ∞. ⊓⊔

Remark 2. Since ∆Ud + u(x,Ud)[m(x) − u(x,Ud)] = 0, it follow that
∫

Ω
u(x,Ud)[m(x) − u(x,Ud)]dx = 0. Therefore, as d → ∞, Ud con-

verges to a constant C1, where
∫

Ω
u(x,C1)[m(x)− u(x,C1)]dx = 0.
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5. Ideal free distribution

Suppose that u0(x) 
 0 for all x ∈ Ω and diffusivity d = 0. Then, the
solution u(x, t) of (8) with the initial condition u(x, 0) = u0(x) will
converge tom(x) as t→ ∞ for all x ∈ Ω. Such a case that the popula-
tion grows to exactly match the carrying capacity is sometimes called
the optimal habitat selection or the ideal free distribution, which has
been considered for many ODE models. The linear diffusion allows
the population to spread and the solution to be strictly positive,
u(x, t) 
 0, for t > 0 if u0(x) ≥ 0. However, it plays a negative role in
achieving the optimal selection eventually for nonconstant resource
distribution m(x) since the linear diffusion flattens the solution. In
fact, this is the reason why the slower diffuser prevails (see [9,14]).
In the rest of this section we will consider an example of starvation
driven diffusion that shows the optimal selection phenomenon even
in the PDE model.

Consider the two modes motility function introduced in Section
1,

γ0(s) =

{

h, 0 ≤ s < 1,
l, 1 ≤ s <∞.

(13)

The state s = 1 is a critical one that the amount of resource supply
m and the demand u are exactly balanced. Therefore, this motility
function indicates that the organisms decrease their motility to l if
the food is enough. If not, they increase their motility to h to find
more resource. Notice that this motility function is discontinuous. We
first consider its continuous approximation

βǫ(s) =







h, 0 ≤ s ≤ 1− ǫ,
l, 1 + ǫ ≤ s ≤ ∞,

1+ǫ−s
2ǫ h+ s−(1−ǫ)

2ǫ l, otherwise,
(54)

where h > l > 0 and ǫ > 0 is small. Then a smooth approximation of
γ0 is given by

γǫ := βǫ ∗ η
ǫ2 , (55)

where ηǫ
2

is a symmetric mollifier with its support in (−ǫ2, ǫ2). Then,
the symmetry of η gives γǫ explicitly

γǫ(s) =







h, 0 ≤ s ≤ 1− ǫ− ǫ2,
l, 1 + ǫ+ ǫ2 ≤ s ≤ ∞,

1+ǫ−s
2ǫ h+ s−(1−ǫ)

2ǫ l, 1− ǫ+ ǫ2 ≤ s ≤ 1 + ǫ− ǫ2,

(56)

where two missing regions (1−ǫ−ǫ2, 1−ǫ+ǫ2) and (1+ǫ−ǫ2, 1+ǫ+ǫ2)
are of length 2ǫ2.

We first consider the equation without the logistic reaction, i.e.,

(16) ut = ∆(γ(s)u), t > 0, x ∈ Ω,
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and compute steady state solutions. These steady states show the rich
structure of the starvation driven diffusion in compare with linear
diffusion, which gives only constant steady state without reaction.
The stationary problem for (16) with regularized motility γǫ is given
by, for ǫ > 0,

{

∆(γǫ(s)u) = 0, x ∈ Ω,

∇(γǫ(s)u) · n = 0, x ∈ ∂Ω.
(57)

Using the pressure, U = γǫ(
m(x)
u

)u, the equation simply becomes
∆U = 0 with a boundary condition (∇U) · n = 0 and the steady
state is U = constant. Therefore, for any given U0 > 0, there exists a
positive steady state solution u given by

γǫ

(m(x)

u(x)

)

u(x) = U0.

Note that the steady state solution u is decided by two parameter
and we write u = u(x,U0; ǫ) to denote the parameters if needed. The
computation is straight forward. Fix x ∈ Ω and consider the case

s < 1− ǫ− ǫ2, which corresponds to the case that m(x)
u(x) < 1− ǫ− ǫ2.

Then, the motility is γǫ(s) = h and hence u = U0/h. Therefore,

u(x) =
U0

h
if

m(x)

U0
<

1− ǫ− ǫ2

h
.

Similarly,

u(x) =
U0

l
if

m(x)

U0
>

1 + ǫ+ ǫ2

l
.

Suppose that 1− ǫ+ ǫ2 ≤ m(x)
u(x) ≤ 1+ ǫ− ǫ2. Then, γǫ(

m(x)
u(x) )u(x) = U0

yields that

h

2ǫ

(

1 + ǫ−
m(x)

u(x)

)

+
l

2ǫ

(

m(x)

u(x)
− 1 + ǫ

)

=
U0

u(x)
.

It follows from a direct calculation that

u(x) =
m(x)h−m(x)l + 2ǫU0

h(1 + ǫ)− l(1− ǫ)
.

Summing up, we have

u(x,U0; ǫ) =



















U0/l,
m(x)
U0

> 1+ǫ+ǫ2

l
,

U0/h,
m(x)
U0

< 1−ǫ−ǫ2

h
,

m(x)(h− l) + 2ǫU0

(h− l) + ǫ(h+ l)
, 1−ǫ+ǫ2

h
< m(x)

U0
< 1+ǫ−ǫ2

l
.

(58)
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Taking ǫ→ 0 limit gives

lim
ǫ→0

u(x,U0; ǫ) =

{

U0/l, m(x) > U0/l,
U0/h, m(x) < U0/h,
m(x), otherwise,

(59)

which should be understood as the steady state under the discontin-
uous motility function given in (13). Now we are ready to show the
following.

Theorem 5. Let the motility function γǫ(s), ǫ ≥ 0, be given by (13)
and (55) and the resource distribution m(x) satisfy

(15)
maxΩ̄m(x)

minΩ̄m(x)
<
h

l
.

Then, there exists a constant U0 > 0 such that the solution u(x,U0; ǫ)
of (57), which is given by (58), converges to m(x) as ǫ → 0. In other
words, u = m(x) is a steady state solution under the motility function
(13).

Proof. Notice that, even if there is no logistic reaction term in the
equation (57), the resource distribution m(x) is involved since γ =
γ(m/u). The inequality (15) implies that there exists a small ǫ > 0
such that

maxΩ̄m(x)

minΩ̄m(x)
≤

(

1 + ǫ− ǫ2

1− ǫ+ ǫ2

)

h

l
,

Then, there exists U0 > 0 such that

l

1 + ǫ− ǫ2
max
Ω̄

m(x) ≤ U0 ≤
h

1− ǫ+ ǫ2
min
Ω̄

m(x), (60)

which implies

1− ǫ+ ǫ2

h
U0 ≤ m(x) ≤

1 + ǫ− ǫ2

l
U0.

Hence, u(x) should be given by the third case in (58) for all x ∈ Ω
and a direct computation gives

1− ǫ ≤
m(x)

u(x)
≤ 1 + ǫ. (61)

By taking the limit as ǫ→ 0, one obtains the convergence u(x,U0; ǫ) →
m(x) as ǫ → 0. ⊓⊔
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Notice that the condition (15) can be satisfied only for strictly
positive resource function m(x) > 0. The condition implies that the
relative variation of motility h/l is bigger than the relative variation
of resource distribution. The motility function in (13) shows a dra-
matic change of motility across the interface that m(x) = u(x, t). For
example, (11) is written in one space dimension as

(γ(s)u)xx =
(

γ(s)ux − (h− l)δ|s=1(m− u)x
)

x
,

which shows Fick’s law type diffusion and an advection with a Dirac-
δ type coefficient across the interface s = 1. This advection gives a
strong migration effect to the region with enough resources {x : m >
u} and is the reason that the distribution of the population could
match the resources distribution.

In the theorem, a boundary condition is not imposed to m(x).
Suppose that γ is smooth and consider a necessary condition for
u = m(x) to be a steady state solution. Then, s = 1 and (57) is
written as

div(γ(1)∇m) = 0, γ(1)∇m · n = 0.

Therefore, the only case ism = constant. Hence the acquisition of the
ideal free distribution (or the optimal selection property) as a steady
state solution depends on the discontinuity of motility function γ
in (13). This kind of phenomenon related to discontinuous motility
has never been reported as far as authors know and requires deeper
analytical understanding.

If u = m(x) is a steady state solution of (57), then this indicates
that both of the diffusion and the logistic reaction push the solution
u(x, t) to match the resource distribution m(x) as t→ ∞. Therefore,
the starvation driven diffusion is not an obstacle to obtain the ideal
free distribution asymptotically. In fact, we will show in the following
theorem that the ideal free distribution is globally asymptotically
stable under an assumption on m(x) such that

lmax
Ω̄

m(x) <
h+ l

2
min
Ω̄

m(x) <
h+ l

2
max
Ω̄

m(x) < hmin
Ω̄

m(x),

(62)
which is a stronger restriction to m(x) than (15) is.

Theorem 6 (Ideal free distribution). Let the motility function
γǫ(s), ǫ ≥ 0, be given by (13) and (55), the resource distribution
m(x) satisfy (62), and θ(x; ǫ) be the globally asymptotically stable
solutions in Theorem 2. Then, θ(x; ǫ) converges to m(x) as ǫ → 0.
In this sense, u = m(x) is the globally asymptotically stable positive
solution of (28) with the discontinuous motility function in (13).
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Proof. The proof uses the classical upper/lower solution method. Let
ǫ > 0 be small. First note that, for the case u = m(x), we have

U(x,m(x)) = γǫ(1)m(x) =
h+ l

2
m(x).

Let U := h+l
2 minΩ̄m(x). Then, U ≤ U(x,m(x)) for all x ∈ Ω and

hence u(x,U ; ǫ) ≤ m(x). Therefore, ∆(γǫu(x,U ; ǫ)) = ∆U = 0 and
u(x,U ; ǫ)(m− u(x,U ; ǫ)) ≥ 0. Hence u(x,U ; ǫ) is a lower solution to
the problem (28) with the motility function γǫ. Similarly, let U :=
h+l
2 maxΩ̄m(x). Then, u(x,U ; ǫ) is an upper solution. Therefore, the

unique globally asymptotically stable solution θ(x; ǫ) should be placed
as

u(x,U ; ǫ) ≤ θ(x; ǫ) ≤ u(x,U ; ǫ).

The relation (62) implies that there is a small ǫ > 0 such that U and
U satisfy the relation in (60). Therefore, the proof of Theorem 5 gives
that

u(x,U ; ǫ) → m(x) and u(x,U ; ǫ) → m(x) as ǫ→ 0.

Therefore, θ(x; ǫ) → m(x) as ǫ → 0. ⊓⊔

Remark 3. The condition in (62) seems unnecessarily restrictive. The
condition (15) seems the sufficient and necessary condition for the
ideal free distribution.

6. Discussion

Dispersal strategy is a key element for the survival of species and
each species has developed its own way. Diffusion models a random
dispersal and only the constant diffusivity case has been intensively
studied. However, the need of food or mating causes a huge leap in
the motility of species and such a change is the key to understand
the role of dispersal in the evolution. In this paper such a motility
change has been analyzed for the simplest logistic equation case

ut = ∆(γ(s)u) + u(m− u),

where u is the population density and m is the resource distribution.
Readers are referred to [9] for a detailed discussion about this model
including competition cases.

The key feature of this model is that the motility γ(s) is a decreas-
ing function on the satisfaction measure s := m

u
. In other words, if

there is enough food and the satisfaction level is high, then organisms
will reduce their motility. However, if organisms are starved, they will
increase the motility to leave the habitat. For example, Dictyostelium,
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social ameobae, undergoes a dramatic change when foods are con-
sumed. Then they aggregate to form a stalk-like fruiting body. The
organisms on top of it become spores that can be easily dispersed (see
[5,20]). Starvation driven motility is also observed from much more
complex organism such as Caenorhabditis elegans and desert locust
(see [30,41]). It is experimentally confirmed that locomotor activity
is increased under starvation in common model organisms such as
Drosophila, mice and rats (see [25,42,43]).

The starvation driven diffusion is closely related to Ludwig’s ther-
mophoresis [35], where salt particles move toward cold regions. Theo-
retical foundation of the phenomenon has been a long standing debate
and, recently, it is shown in [27] that the source of such an advection
is the motility change of particles on a temperature change. Similarly,
many biological organisms aggregate around food without knowing
where the food is until they find the food. Such a phenomenon is
due to migration and its time scale is a lot shorter than the effect of
the logistic reaction term. A phenomenological way to explain it is
to put an appropriate advection term as in (12). However, in many
cases, although there is a clear intension for the migration, animals
including human beings do not know which way to go until they find
something. Hence it should be understood as a random dispersal.
In the model of this paper, such an aggregation has been obtained
from the motility change that depends on the satisfaction of species
to the environment. Furthermore, the ideal free distribution, Theo-
rems 5 and 6, has been obtained from such a motility change without
adding a phenomenological advection term in Section 5.

In certain cases biological organisms may sense the gradient of
resource or chemical concentration and move toward or against it.
However, in other cases, they do sense the concentration only and
control the motility depending on it. For example, German cock-
roaches (Blattela germanica) change their motility level depending
on the concentration of aggregation pheromone (see [18,24]). It seems
that the limitation of the classical diffusion of Fick’s law type forces
to introduce a phenomenological advection. However, such an advec-
tion should be distinguished from the real advection to understand
the dispersal correctly. The diffusion model in this paper is based
on the new diffusion law (9) for a heterogeneous motility and gives
aggregation phenomenon even without the logistic term as shown in
Section 2.

Mathematically, this paper develops its theory much the same way
as its linear diffusive counterpart, but the analysis is more sophisti-
cated. The global asymptotic stability has been obtained in Section
3 and the zero-diffusion and the zero-reaction limits are obtained in
Section 4. The methods of proofs are also similar to the linear dif-
fusion case. However, it seems needed to develop them to obtain the
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full potential of the model without technical hypotheses assumed in
this paper.
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