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Abstract. It is widely believed that the slowest dispersal strategy is
selected in the evolutional if the environment is temporally invariant
but spatially heterogeneous. Authors claim in this paper that this
belief is true only if random dispersals with constant motility are
considered. However, if a dispersal strategy with fitness property is
included, the size of the dispersal is not such a crucial factor anymore.
Recently, a starvation driven diffusion has been introduced by Cho
and Kim [7], which is a random dispersal strategy with a motility in-
crease on starvation. The authors show that such a dispersal strategy
has fitness property and that the evolutional selection favors fitness
but not simply slowness. Such a conclusion is obtained from a sta-
bility analysis of a competition system between two phenotypes with
different dispersal strategies of linear and starvation driven diffusions.

Key words. evolution of dispersal, fitness, local stability, starvation
driven diffusion

1. Introduction

Dispersal strategy is one of the key elements in the evolution of biolog-
ical species and each species has developed its own way. An existing
dispersal strategy of a biological species is a result of an exceptionally
long history of evolution and hence it is important to understand the
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key ingredients of a dispersal strategy that provide a species a chance
to survive. It is widely believed that the spatial heterogeneity of en-
vironments disfavors dispersal. However, this is a narrow perspective
obtained from theories based on linear dispersal. The purpose of this
paper is to show that the spatial heterogeneity of environments fa-
vors the fitness of dispersal. Therefore, there is no confliction with
the well-accepted belief that the temporal fluctuation favors the size
of dispersal.

The evolution of dispersal rates has been studied by many authors.
Since the modern experimental techniques are limited to study such a
foundation of ecology, numerical computations and theoretical anal-
ysis of mathematical models have been useful tools to understand it.
Readers are referred to [4,8,20,25–27] for comprehensive discussions
of discrete and continuous models. It is well-accepted that spatial and
temporal heterogeneities of environments occur in all scales and such
heterogeneities play a key role in the evolutional selection of disper-
sal rates. Numerical simulations and theoretical analysis of discrete
and continuous models indicate that spatial heterogeneities reduce
dispersal rates [12,13,19–21,24] and temporal changes increase dis-
persal rates [12,17,19,20,29]. If habitats are spatially heterogeneous
and temporally fluctuating, then the dispersal rate is selected by the
interaction between the two [12,19]. These studies are mostly based
on uniform random dispersals, which is usually modeled by a linear
diffusion with a constant diffusivity in continuous cases. However, bi-
ological organisms may increase the motility to find food if food is
consumed. Such a starvation driven diffusion is an example of a non-
uniform random dispersal and has been modeled by Cho and Kim
[7]. Even though the biological organisms do not know the place with
more food, such a motility increase produces an advection toward a
better environment, i.e., a better fitness.

We will consider a Lotka-Volterra type competition model:
ut = ∆(γ1(s)u) + u[m(x)− u− v],
vt = ∆(γ2(s)v) + v[m(x)− u− v],
0 = n · ∇[γ1(s)u] = n · ∇[γ2(s)v],
0 ≤ u(x, 0) = u0(x), 0 ≤ v(x, 0) = v0(x).

(1)

In this model, the zero flux condition is given on the smooth bound-
ary ∂Ω, where n is the outward unit normal vector to the boundary.
Unknown solutions u(x, t) and v(x, t) are population densities of two
phenotypes of a species. The population dynamics for both pheno-
types is identical in the model. Hence, one of them can be considered
as a mutant of the other with a different dispersal strategies γi’s. The
variable s is the satisfaction measure on the environment, which is
defined by

s :=
m

u+ v
. (2)
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Then, s = 1 is the case that food supply m is exactly same as the
food demand u + v. Hence, if s < 1, then the organisms suffer for a
food shortage and, if s > 1, there is surplus food and everybody is
satisfied.

The main feature of the model is that the motility functions γ1
and γ2 are decreasing functions of the satisfaction measure s. In other
words, if species are satisfied with the environment, they just reduce
their motility to stay at the favorable place. However, they increase
their motility to find food if species are starved. Throughout this pa-
per, we consider this starvation driven diffusion under two assump-
tions

m(x) ≥ 0 is a non-constant smooth function in Ω̄, (3)

γ1(s), γ2(s) > 0 are decreasing smooth functions for s ≥ 0. (4)

The spatial heterogeneity of environment is represented by a noncon-
stant function m(x). Remember that having a nonconstant m(x) is
not a technical reason, but is an essential requirement of the analy-
sis. The stability analyses in this paper are property of the spatial
heterogeneity and fail if m(x) is constant.

The nonlinear diffusion operator in the equations is based on a
non-isothermal diffusion and readers are referred to [7] for more dis-
cussions and biological examples. For a single species case,

ut = ∆(γ(s)u) + u(m(x)− u), (5)

the global asymptotic stability of its unique positive steady state
θγ(x) has been obtained in [22, Theorem 2] under an extra assumption
on the motility:

γ(s)− s(s− 1)γ′(s) > 0 for 0 < s < 1. (6)

The motility function mostly considered in this paper is

γ0(s) =

{
h if 0 ≤ s < 1,
ℓ if 1 ≤ s <∞,

(7)

where 0 < ℓ < h are constants. This discontinuous motility function is
approximated by a smooth motility function defined by a convolution,

γϵ := γ0 ∗ ηϵ, (8)

where 0 < ϵ is small and ηϵ is a smooth symmetric mollifier with
supp ηϵ ⊂ (−ϵ, ϵ) and

∫
ηϵ(x)dx = 1. Then, γϵ(s) = h for s < 1 − ϵ,

γϵ(s) = ℓ for s ≥ 1 + ϵ, γϵ → γ0 as ϵ → 0, and γϵ satisfies (6). The
discontinuous motility γ0 does not satisfy the regularity assumption
(4). Hence, the case with a discontinuous motility function is always
considered as the approximation sense with ϵ → 0. We may also
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choose the mollifier ηϵ on our convenience. For example, supp ηϵ ⊂
(−ϵ, 0) is assumed in Theorem 2 so that γϵ(s) = ℓ for s ≥ 1.

This paper contains three theorems and the first two are proved
in Section 3. These two are for the case that the first phenotype has a
constant motility γ1 = d > 0 and the second one has a non-constant
motility γ2 = γϵ. In the first theorem it is shown that, if the motility
of a phenotype jumps when the food is not enough, then its survival
against a slower diffuser is guaranteed at least.

Theorem 1 (Survival of SDD is guaranteed!). Let γ1 = d > 0
be constant, γ2 = γϵ, and θd be the positive steady state of (5) with
γ = d. If m(x) is not a constant, ϵ > 0 is sufficiently small (depending
on h, ℓ,m and d), and

maxΩ̄m(x)

minΩ̄m(x)
≤ h

ℓ
, (9)

then the semi-trivial steady state (θd, 0) of (1) is unstable.

If the dispersal rate d goes to zero, then the fitness increases
since the weight of the population reaction term increases. Hence,
the steady state converges to θ = m for the single equation case.
However, Theorem 1 implies that the starvation driven dispersal with
γ0 as its motility function can guarantee a survival of a phenotype
no matter how small linear diffusivity the other phenotype has. This
phenomenon is related to the fact that θ = m is also a steady state
for (5) even without the reaction term if (9) is satisfied (see [7, Propo-
sition 1] and [22, Section 5]).

In the second theorem we will see that a starvation driven diffuser
may have an advantage over a slower linear diffuser.

Theorem 2 (Spatial heterogeneity favors SDD!). Let γ1 = d >
0 be constant, γ2 = γϵ, and (0, θγϵ) be a semi-trivial steady state of
(1) with a mollifier such that supp ηϵ ⊂ (−ϵ, 0). Then,
(i) There exists 0 < ω2 = ω2(m,h, ℓ, ϵ) < ℓ such that, if d < ω2, then

(0, θγϵ) is linearly unstable and if ω2 < d, then (0, θγϵ) is linearly
stable.

(ii) If ℓ ≤ d, then (0, θγϵ) is the unique stable steady state.

The linear dispersal does not provide any fitness property. However,
if ℓ < h, the starvation driven dispersal does. Theorem 2 implies that,
if a phenotype increases its motility when food is not enough, this
phenotype obtains a fitness property and can invade the colony of
the linear diffuser.

The ω2 in Theorem 2 is the boundary of the stability regime for the
semi-trivial steady state (0, θγϵ). One may consider a similar bound-
ary, say ω1, for the stability regime of (θd, 0). Theorem 1 implies that
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ω1 = 0 if (9) holds and ϵ > 0 is small enough. The positivity of such
ω1 seems true when (9) fails. However, its proof seems tricky and is
open. It was conjectured from computational observations that there
exist 0 ≤ d1 < d2 < ∞ such that (0, θγϵ) is the globally asymptoti-
cally stable if d > d2, (θd, 0) is if 0 < d < d1, and two species may
coexist if d1 < d < d2 (see [7, Conjecture 1 and Figure 3]). It is nat-
ural to guess that such ω1 and ω2 would be these two. However, we
are still far from such a conclusion for the following reasons.

First, it should be shown that (0, θγϵ) is the unique stable steady
state for all d > ω2 and (θd, 0) is the one for d < ω1. Theorems 1 and
2 provide them partially. For a 2×2 monotone system, the uniqueness
of a stable steady state gives the globally asymptotic stability (see
[18]) among nonnegative and nontrivial solutions. However, since the
equation for the second species involves the second derivative of the
concentration of the first species, the monotonicity of the system does
not come easily and is not obtained yet. Hence authors could not
claim that SDD is selected because of that even though they believe
so. Hence, finding a way to overcome the lack of monotonicity is the
second requirement.

In the last theorem in Section 4, we consider the case that both
phenotypes follow starvation driven diffusions.

Theorem 3 (Spatial heterogeneity favors fitness!). If γ1 and γ2
satisfy (6), γ1(s) ≤ γ2(s) for 0 ≤ s < 1, γ1(s) ≥ γ2(s) for 1 < s <∞
and γ1 ̸≡ γ2 in a small neighborhood of s = 1. Then, (0, θγ2) is the
unique stable steady state.

The relation between the two motility functions in the theorem
indicates that γ1(1) = γ2(1) and γ2 changes more sharply before and
after s = 1. If the mollifier is symmetric and ϵ2 < ϵ1, then γ1 = γϵ1

and γ2 = γϵ2 satisfies the relation in the theorem. If the motility
changes more sharply at s = 1, then the dispersal gives a better
fitness (see Figure 2). The extreme case is γ0 with (9), where the
steady state gives the perfect fitness, i.e., θ = m is the steady state.
Hence, we may conclude that a dispersal that gives a better fitness is
favored by the evolution. Furthermore, the sensitivity of a species to
the environments can be measured by the amount of motility change
of the species. If γ2 is bigger than γ1 for s ∈ (0, 1), this indicates that
the second phenotype v is more eager to leave the area if the food is
less than the amount to support the colony. On the other hand, if γ2
is smaller than γ1 for s ∈ (1,∞), this indicates that v is more eager
to stay at the area if the food is enough. Hence the second phenotype
v in Theorem 3 is more sensitive to the change of environmental
conditions. One may easily guess that the sensitive phenotype will
have a better fitness which has been tested in Figures 1 and 2. In
the model, there is no cost for the movement and no delay effect.
Theorem 3 claims that the phenotype which is more sensitive to the
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environment makes a stable colony and hence the less sensitive one
cannot invade them. However, the colony of less sensitive phenotypes
is vulnerable since it does not make a stable colony.

The proofs of the three theorems are based on the classical eigen-
value analysis of the linearized problems. The difference is that the
model of this paper contains nonlinearity not only in the zero-th order
reaction term, but also in the second order diffusion term. Hence, the
analysis is more complicated. However, for the stability test of a semi-
trivial steady states to (1), we could obtained a simplified stability
criteria in Lemma 1 and Lemma 2. These stability criteria are used
repeatedly in this paper since the first step in studying global asymp-
totic behaviors of system (1) are to understand stability properties
of semi-trivial steady states. Extension of the theories to the cases
that allow stable coexisting solutions such as a strong competition
situation will be more challenging.

2. Fitness by dispersal

Suppose that organisms are located in a way that each individual
has the same reproduction rate with the highest rate possible. Then,
the organisms may have better chance to grow. Such a state is called
the ideal free distribution and the fitness is the ability to obtain it
(see [9,14,15]). In nature, the population density is usually higher
in a place with more food than in a place with less food. Is such a
fitness of organisms a result of dispersal or population reaction? The
answer would be both. However, one may see from many examples
that the time scale of fitness is shorter than the one of the population
growth. Hence the dispersal should be one of the main dynamics for
the fitness.

The population dynamics for a single phenotype is given by

ut = u(m− u).

For a numerical test we consider a resource (or environment) function,

m(x) =

{
2, 0 < x < 0.5,
0, 0.5 < x < 1,

(10)

where the domain is Ω = (0, 1) and the carrying capacity of the
environment is

∫
m(x)dx = 1. In this case the ideal free distribution

of a fixed total population A > 0 is

R(x) =

{
2A, 0 < x < 0.5,
0, 0.5 < x < 1.

(11)

In this section we will discuss the fitness property of dispersal pro-
cesses with or without the population reaction and compare them
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numerically using the above example. We will see that the pheno-
types that have a better fitness has more chance to survive in other
sections.

2.1. Fitness by linear diffusion

In this section we will briefly review the well-known fitness property
of linear diffusion. However, this discussion provides a clear view for
the nonlinear diffusion case in the next section. Consider a single
species case without a population dynamics:

ut = duxx, 0 < x < 1, t > 0, (12)

where the initial mass is
∫
u0(x)dx = A > 0 and the zero flux con-

dition is given on the boundary. Then, the steady state ue satisfies
0 = (ue)xx which gives ue = A for all d > 0. Hence, the solution
u(x, t) converges to the constant A, i.e., u(x, t) → A as t → ∞ for
all d > 0. It is clear that this linear diffusion does not provide any
fitness dynamics to the species even if d > 0 is small. Now consider
the same problem with population dynamics, i.e.,

ut = duxx + u(m− u). (13)

In this case the steady state is independent of the initial value as
long as it is nontrivial and nonnegative. The steady state satisfies
0 = uxx +

1
du(m− u). Hence, the nonnegative nontrivial steady state

converges to m as d → 0, i.e., θd → m as d → 0. In other words,
even if the linear diffusion does not give any fitness, the equation
with reaction has fitness properties which increases as d → 0 (see
the graphs in Figure 1 corresponding to h = 1). Notice that the
linear diffusion with a constant diffusivity does not give any fitness
behavior and hence this fitness properties comes entirely from the
population reaction term. In fact, the smaller diffusivity only gives
a bigger weight to the population reaction and hence increases the
fitness. Hence the selection of a smaller dispersal rate with a spatial
heterogeneity can be understood as a selection for fitness.

2.2. Fitness by advection

One way to add fitness to the linear dispersal is adding an advection
term:

ut = div(d∇u− cu∇P ) + u(m(x)− u), t > 0, x ∈ Ω. (14)

The advection term, −cu∇P , models the migration of the organisms
toward food, where c > 0 is a scaling coefficient. In chemo-taxis
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individual organisms are assumed to sense the gradient of chemo-
attractants, which justifies the case with ‘P = m’. However, having
such advection is guaranteed to be advantageous only if c > 0 is small
enough. If c > 0 is large, the population becomes concentrated only
near the maximum points of m, which gives a better chance to their
competing species (see [2,3,11,16,23]). If the advection is given with
‘P = m − u’ or ‘P = lnm’, then such an advection always gives a
species an advantage in a competition against other species (see [1,
5,6,9,10]). In particular, the case with ‘P = lnm’ is based on the
Weber-Fechner law and commonly used in the theory of chemotaxis
(see [28]).

In many cases, it is not clear how species sense the gradient of
m, lnm or m − u. Species, including human beings, often do not
know where to go until they arrive at the right place even if they
have a clear intension for migration. Of course, if they find food, they
usually stay with the food until the food is consumed. Hence the dis-
persal of organisms could be understood as a random dispersal with
non-constant eagerness to move. The advection produced by such
a conditional random dispersal may play the key role in advection-
diffusion models. In fact, the starvation driven diffusion has used in
a chemotaxis modeling without a gradient-sensing mechanism (see
[30]).

2.3. Fitness by starvation driven diffusion

Let a resource distribution be

m(x) =

{
1.9, 0 < x < 0.5,
0.1, 0.5 < x < 1,

(15)

and a motility function be

γ0h(s) =

{
h if 0 ≤ s < 1,
1 if 1 ≤ s <∞,

(16)

which is the same discontinuous motility function in (7) with a fixed
ℓ := 1 for an easier comparison with the linear diffusion case. Consider
a case with starvation driven diffusion without population dynamics,

vt = d
(
γ0h(s)v

)
xx
, 0 < x < 1, t > 0, (17)

where the satisfaction measure is s = m
v . The steady state ve of the

problem satisfies 0 =
(
γ0h(s)v

)
xx

and hence γ0h(s)v = const. Hence,
the steady state with total population A > 0 is

ve(x) =

{
2hA/(h+ 1), 0 < x < 0.5,
2A/(h+ 1), 0.5 < x < 1
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(b) steady states of (18) with d = 1
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(c) steady states of (18) with d = 0.1
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(d) steady states of (18) with d = 0.01

Fig. 1. Fitness by dispersal [x-axis: space, y-axis: concentration density]
(a): Steady state solutions of (17) with unit total population. (b-d): Steady state
solutions of (18) with different diffusivity d > 0. The steady states converge to
m(x) in (10) as h → ∞ with a fixed d > 0 or as d → 0 with a fixed h > 0.
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(a) steady states of (20) or d = ∞
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(b) steady states of (20) with d = 0.002

Fig. 2. Fitness by dispersal [x-axis: space, y-axis: concentration density]
(a): Steady state solutions of (20) without the population reaction. (b): Steady
state solutions of (20) with d = 0.002’s. Here, h = 5 and l = 1. As ϵ → 0, the
motility function becomes sharper at s = 1 and obtains more fitness.

(see [7, Proposition 1] or [22, Thoerem 1]). In Figure 1(a) the graphs
of the steady states are plotted with several h’s. The population den-
sity in the region 0 < x < 0.5 is h times bigger than the one in
0.5 < x < 1. In other words, the starvation driven diffusion has such
a fitness property by itself. If h = ℓ(= 1), then we obtain the con-
stant steady state of the linear diffusion case which does not give any
fitness. If h → ∞, the steady state converges to the ideal free distri-
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bution. Notice that the steady state is independent of the coefficient
d > 0. In other words, the fitness obtained from the dispersal is not
related to the actual size of dispersal but to the ratio of the dispersal
jump.

Now we consider the problem with the population dynamics:

vt = d
(
γ0h(s)v

)
xx

+ v(m− v), 0 < x < 1, t > 0. (18)

In this case both the reaction and the diffusion have fitness property.
Furthermore, as the diffusivity coefficient d > 0 converges to zero,
the fitness effect of the population reaction increases. The steady
state satisfies 0 =

(
γ0h(s)v

)
xx

+ 1
dv(m − v). The global asymptotic

stability of the problem has been shown in [22, Theorem 6] for lim-
ited cases. Suppose that there exists a globally asymptotically stable
steady state θh,d(x). Then it is expected that

θh,d(x) → m

as h → ∞ with a fixed d > 0 or as d → 0 with a fixed h > 0. See
Figures 1(b)–(d).

Now consider a continuous motility function:

γϵh(s) =

 h, 0 ≤ s < 1− ϵ,
1, 1 + ϵ ≤ s <∞,

s−1+ϵ
2ϵ + 1+ϵ−s

2ϵ h, otherwise.
(19)

Then the corresponding reaction-diffusion equation is

vt = d
(
γϵh(s)v

)
xx

+ v(m− v), 0 < x < 1, t > 0. (20)

The steady states are given in Figure 2. One can clearly observe that
the fitness increases as ϵ→ 0.

3. Starvation driven diffuser versus linear diffuser

The purpose of this section is to prove Theorems 1 and 2. These
theorems are cases that the motility function for the first species is
constant, γ1 = d, and the second one is not, γ2 = γ. Therefore, the
equations in this section are

ut = d∆u+ u[m− u− v],

vt = ∆(γ(s)v) + v[m− u− v],

0 = n · ∇[γ(s)v] = n · ∇u,
0 ≤ u(x, 0) = u0(x), 0 ≤ v(x, 0) = v0(x),

(21)

where the first two equations hold for t > 0 and x ∈ Ω, the Neumann
boundary conditions in the third line are for t > 0 and x ∈ ∂Ω, and
the initial conditions in the last line are for x ∈ Ω. The domain of
variables and boundary conditions are always like this throughout
the paper and will not be mentioned again.
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3.1. Linearization and eigenvalue analysis

First, introduce the diffusion pressure V for the second species v:

V := γ(s)v with s :=
m

u+ v
. (22)

If u = v = 0, then the satisfaction measure s is not well-defined.
However, since the motility γ is bounded, we may define the diffusion
pressure as V = 0 if v = 0. Define

F(m,u, v, V ) := γ(s)v − V,

which is identically zero under the relation (22). This functional gives
a relation among unknowns. Since the resource distribution is as-
sumed to be invariant in time, i.e., m = m(x), we have

Ft =
∂F
∂u

ut +
∂F
∂v

vt +
∂F
∂V

Vt =
∂F
∂u

ut +
∂F
∂v

vt − Vt = 0.

Furthermore, since

∂F
∂u

= −γ′(s)s v

u+ v
> 0,

∂F
∂v

= γ(s)− γ′(s)s
v

u+ v
> 0, (23)

the unknown function v can be completely decided by m,u, and V by
the implicit function theorem. Hence, we may write v = v(m,u, V ),
and (21) is rewritten as

ut = d∆u+ u[m− u− v],

Vt =
∂F
∂u {d∆u+ u[m− u− v]}+ ∂F

∂v {∆V + v[m− u− v]},
0 = n · ∇V = n · ∇u,
0 ≤ u(x, 0) = u0(x), 0 ≤ V (x, 0) = V0(x),

(24)
where

V0 := γ
( m

v0 + u0

)
v0.

Let (ue, ve) be a steady state solution of (21). The stability of
(ue, ve) is equivalent to that of the steady state (ue, V e) of (24) for
V e := γ(se)ve. Whenever a linearized problem is considered at a
steady state, say (ue, ve), the satisfaction measure is always

se =
m

ue + ve
.

Let u = ue + ϕ and V = V e + Ψ with |ϕ| and |Ψ | small. Then,

v = v(m,ue + ϕ, V e + Ψ) = ve +
∂v

∂u
ϕ+

∂v

∂V
Ψ + higher order terms,
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where the implicit function theorem implies

∂v

∂V
= −

∂F
∂V
∂F
∂v

=

[
γ(s)− γ′(s)

mv

(u+ v)2

]−1

,

∂v

∂u
= −

∂F
∂u
∂F
∂v

= γ′(s)
mv

(u+ v)2

[
γ(s)− γ′(s)

mv

(u+ v)2

]−1

.

Substituting these perturbed quantities to (24) gives the following
linearized problem after deleting higher order terms,
ϕt = d∆ϕ+ (m− ve − ue ∂v∂u − 2ue)ϕ− ue ∂v

∂V Ψ,

Ψt =
∂F
∂v

{
∆Ψ + (m− 2ve − ue) ∂v

∂V Ψ + [(m− 2ve − ue) ∂v∂u − ve]ϕ
}

+∂F
∂u

{
d∆ϕ+ (m− ve − ue ∂v∂u − 2ue)ϕ− ue ∂v

∂V Ψ
}
,

0 = n · ∇Ψ = n · ∇ϕ.
(25)

A steady state (ue(x), V e(x)) of (24) is stable if the eigenvalues of
the following eigenvalue problem are strictly negative,
λϕ = d∆ϕ+ (m− ve − ue ∂v∂u − 2ue)ϕ− ue ∂v

∂V Ψ,

λΨ = ∂F
∂v

{
∆Ψ + (m− 2ve − ue) ∂v

∂V Ψ + [(m− 2ve − ue) ∂v∂u − ve]ϕ
}

+∂F
∂u

{
d∆ϕ+ (m− ve − ue ∂v∂u − 2ue)ϕ− ue ∂v

∂V Ψ
}
,

0 = n · ∇Ψ = n · ∇ϕ.
(26)

Consider the semi-trivial steady state (θd(x), 0) of (21). Then, at
the steady state,

∂v

∂V
=

1

γ(sd)
,

∂v

∂u
= 0,

∂F
∂v

= γ(sd),
∂F
∂u

= 0, sd =
m

θd
,

and the eigenvalue value problem for (24) at (θd(x), 0) becomes
λϕ = d∆ϕ+ (m− 2θd)ϕ− θd

γ(sd)
Ψ,

λΨ = γ(sd)
[
∆Ψ + m−θd

γ(sd)
Ψ
]
,

0 = n · ∇Ψ = n · ∇ϕ,
(27)

where θd satisfies {
0 = d∆θd + θd[m− θd],

0 = n · ∇θd.
(28)

Let (0, θγ(x)) be the other semi-trivial steady state and hence

Vγ := γ(sγ)θγ , sγ =
m

θγ
.
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Then, similarly, the eigenvalue problem corresponding to the steady
state (0, Vγ(x)) becomes

λϕ = d∆ϕ+ (m− θγ)ϕ,

λΨ = ∂F
∂v

{
∆Ψ + (m− 2θγ)

∂v
∂V Ψ + [(m− 2θγ)

∂v
∂u − θγ ]ϕ

}
+∂F

∂u {d∆ϕ+ (m− θγ)ϕ} ,
0 = n · ∇Ψ = n · ∇ϕ,

(29)

where θγ satisfies{
0 = ∆ (γ(sγ)θγ) + θγ [m− θγ ],

0 = n · ∇ (γ(sγ)θγ) .
(30)

In the following lemma we derive stability criteria for semi-trivial
steady states.

Lemma 1. Let θd and θγ be the unique globally asymptotically stable
steady solution of (28) and (30), respectively.

(i) Let µ1 be the largest eigenvalue of{
µΨ = ∆Ψ + m−θd

γ(sd)
Ψ,

0 = n · ∇Ψ.
(31)

If µ1 > 0, then the semi-trivial steady state solution (θd, 0) is
linearly unstable; if µ1 < 0, then (θd, 0) is linearly stable.

(ii) Let ν1 be the largest eigenvalue of{
νϕ = d∆ϕ+ (m− θγ)ϕ,

0 = n · ∇ϕ. (32)

If ν1 > 0, then the semi-trivial steady state solution (0, θγ) of (21)
is linearly unstable; if ν1 < 0, (0, θγ) is linearly stable.

Proof. (i) First, suppose µ1 > 0. Consider an eigenvalue problem{
ℓΨ = ∆Ψ + m−θd

γ(sd)
Ψ − λ

γ(sd)
Ψ,

0 = ∇Ψ · n.

and denote the largest eigenvalue by ℓλ1 . When λ = 0, clearly ℓλ1 =
µ1 > 0. Moreover, ℓλ1 will be negative when λ becomes large enough.

Thus, there exists λ1 > 0 such that ℓλ1
1 = 0. Due to (28), it is easy to

see that the operator

Lv = d∆+ (m− 2θd)− λ1

is invertible. This yields that λ1 > 0 is an eigenvalue of the linearized
problem (27), which implies that (θd(x), 0) is linearly unstable.
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Next, assume that µ1 < 0. Suppose that the linearized problem
(27) has nonnegative eigenvalue λ1 ≥ 0 with the corresponding eigen-
functions (ϕ1, Ψ1). If Ψ1 ≡ 0, then a contradiction follows due to (27),
(28) and the assumption that λ1 ≥ 0. Hence Ψ1 ̸= 0. However, this
yields that

µ1 = sup
Ψ∈H1(Ω)\{0}

∫
Ω

[
−|∇Ψ |2 + m−θd

γ(sd)
Ψ2

]
dx∫

Ω Ψ
2dx

≥

∫
Ω

[
−|∇Ψ1|2 + m−θd

γ(sd)
Ψ2
1

]
dx∫

Ω Ψ
2
1dx

=

∫
Ω

λ1
γ(sd)

Ψ2
1dx∫

Ω Ψ
2
1dx

≥ 0.

This is a contradiction. Therefore, (θd(x), 0) is linearly stable.
(ii) Consider the linearized eigenvalue problem of (30) at Vγ , which

is written as

λΨ =
(
∆+ (m− 2θγ)

∂v

∂V

)
Ψ.

Since θγ(x) is a stable solution of (30), the linear operator ∆+ (m−
2θγ)

∂v
∂V has nonpositive eigenvalues. Thus, if ν1 > 0, because of (23),

the operator

L := ∆+ (m− 2θγ)
∂v

∂V
− ν1

(
∂F
∂v

)−1

has strictly negative eigenvalues and thus it is invertible. Let {ν1, ϕ1}
be an eigen-pair of (32) and Ψ1 satisfy

LΨ1 = −[(m− 2θγ)
∂v

∂u
− θγ ]ϕ1 −

(∂F
∂v

)−1∂F
∂u

{d∆ϕ1 + (m− θγ)ϕ1} .

Then, {ν1, (ϕ1, Ψ1)} is an eigen-pair of the linearized problem (29),
which implies that (0, Vγ(x)) is linearly unstable.

Since an eigenvalue of (29) is also an eigenvalue of (32), eigenvalues
of (29) are all strictly negative if ν1 < 0 and hence (0, Vγ(x)) is linearly
stable. ⊓⊔

3.2. Survival of SDD is guaranteed!

It is well-known that the slower diffuser prevails over a faster diffuser
for the constant diffusivity case (see Dockery et al. [13]). From that
point of view, Theorem 1 gives a rather striking conclusion that the
starvation driven diffusion may guarantee the survival of a species no
matter how slow the other competing species spreads with a linear
diffusion. The proof of the theorem is based on the stability criteria
in Lemma 1.
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Proof (of Theorem 1). Clearly, (θd, 0) is a semi-trivial steady state
of (24). Thanks to Lemma 1, the stability of (θd, 0) as a semi-trivial
steady state of (21) is determined by the signs of the largest eigen-
value, denoted by µ1, of the following eigenvalue problem{

µΨ = ∆Ψ + m−θd
γϵ(s) Ψ,

0 = n · ∇Ψ,

where s = m/θd.
On the one hand side,

µ1 = sup
Ψ∈H1(Ω)\{0}

(∫
Ω

[
−|∇Ψ |2 + m− θd

γϵ(s)
Ψ2

]
dx

/∫
Ω
Ψ2dx

)
≥ 1

|Ω|

∫
Ω

m− θd
γϵ(s)

dx

=
1

|Ω|

∫
{s>1}

m− θd
ℓ

dx+
1

|Ω|

∫
{s<1}

m− θd
h

dx+Aϵ, (33)

where

Aϵ :=
1

|Ω|

∫
{1−ϵ<s<1}

(
1

γϵ(s)
− 1

h

)
(m− θd)dx < 0.

Since |m− θd| < ϵθd in the domain {1− ϵ < s < 1}, we have Aϵ → 0
as ϵ→ 0.

Recall that θd satisfies{
0 = d∆u+ u[m− u],

0 = ∇u · n.

Thanks to the maximum principle and the Hopf boundary lemma, it
is standard to derive that

min
Ω̄

m(x) ≤ θd(x) ≤ max
Ω̄

m(x). (34)

Moreover, obviously
∫
Ω θd[m(x)− θd]dx = 0. Thus∫

{s>1}
θd(m− θd)dx =

∫
{s<1}

θd(θd −m)dx > 0,

where the integrands are nonnegative. Applying (34) yields that

max
Ω̄

m(x)

∫
{s>1}

(m− θd)dx > min
Ω̄

m(x)

∫
{s<1}

(θd −m)dx.
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Therefore, there exists ϵ0 > 0 such that

1

|Ω|

∫
{s>1}

1

ℓ
(m− θd)dx >

1

ℓ

minΩ̄m(x)

maxΩ̄m(x)

∫
{s<1}

(θd −m)dx+Aϵ

for all ϵ < ϵ0. Finally, the relation (9) gives that, for ϵ < ϵ0,

µ1 ≥
1

|Ω|

∫
{s>1}

1

ℓ
(m− θd)dx+

1

|Ω|

∫
{s<1}

1

h
(m− θd)dx+Aϵ

>
1

|Ω|

∫
{s<1}

(θd −m)dx

(
1

ℓ

minΩ̄m(x)

maxΩ̄m(x)
− 1

h

)
≥ 0.

Hence, the semi-trivial steady state (θd, 0) of (21) is unstable if the
motility function is given by γϵ with ϵ < ϵ0. ⊓⊔

Since the semi-trivial state (θd, 0) is not stable, the species dis-
persed with the starvation driven diffusion with motility function d
can always survive no matter how small d is. The condition (9) im-
plies that the motility variation depending on the environment is
larger than the variation of the environment itself, i.e., m(x). This
condition indicates that the species with starvation driven diffusion
reacts sensitively enough to the environment. Notice that this is the
condition that gives the ideal free distribution for a single species case
in [22] with the motility function d in (7). The above theorem shows
that this condition guarantees survival in this competition model.

3.3. Linear diffuser cannot invade starvation driven diffuser!

Theorem 2 gives the range of the diffusion rate d where the phenotype
with the starvation driven diffusion has more chance to survive than
the linear diffuser, i.e., ℓ ≤ d. However, for the range ω2 < d < ℓ, we
have obtained the linear stability of (0, θγϵ), but not global asymptotic
stability. The proof of this theorem is also based on the stability
criteria in Lemma 1.

Proof (of Theorem 2). (i) To show the instability of (0, θγϵ) we com-
pute the sign of the largest eigenvalue of (32). Sincem−θγϵ is positive
in a region, we obtain for a sufficiently small d that

ν1 = sup
ϕ∈H1(Ω)\{0}

∫
Ω

[
−d|∇ϕ|2 + (m− θγϵ)ϕ2

]
dx∫

Ω ϕ
2dx

> 0.
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Moreover, ν1 decreases as d increases. Let d = ℓ and (ν1, ϕ1) be the
largest eigen-pair of (32). Then

ν1 = sup
ϕ∈H1(Ω)\{0}

∫
Ω −d|∇ϕ|2 + (m− θγϵ)ϕ2dx∫

Ω ϕ
2dx

=

∫
Ω −d|∇ϕ1|2 + (m− θγϵ)ϕ21dx∫

Ω ϕ
2
1dx

=

∫
Ω −ℓ|∇ϕ1|2 + ℓ

γϵ (m− θγϵ)ϕ21dx∫
Ω ϕ

2
1dx

+

∫
Ω(1−

ℓ
γϵ )(m− θγϵ)ϕ21dx∫

Ω ϕ
2
1dx

,

where s = m/θγϵ .

Since the operator ∆+
m−θγϵ

γϵ(s) has a positive eigenfunction γϵ(s)θγϵ

with 0-eigenvalue, 0 is the largest eigenvalue of ∆+
m−θγϵ

γϵ(s) . It implies

that ∫
Ω
−|∇ϕ1|2 +

m− θγϵ

γϵ(s)
ϕ21dx ≤ 0.

Therefore,

ν1 ≤

∫
Ω(1−

ℓ
γϵ(s))(m− θγϵ)ϕ21dx∫

Ω ϕ
2
1dx

=

( ∫
{m>θγϵ}+

∫
{m<θγϵ}

)
(m− θγϵ)(1− ℓ

γϵ(s))ϕ
2
1dx∫

Ω ϕ
2
1dx

< 0.

Therefore, according to Lemma 1, there exists 0 < ω2 < ℓ, such
that if d < ω2, then (0, θγϵ) is linearly unstable and if d > ω2, then
(0, θγϵ) is linearly stable.

(ii) Now assume that ℓ ≤ d. First, according to the proof of (i), it
is clear that (0, θγϵ) is linearly stable when ℓ ≤ d.

Next, we show the instability of (θd(x), 0) by showing the positiv-
ity of the largest eigenvalue of (31). An analogy of (33) gives that

sup
Ψ∈H1(Ω)\{0}

∫
Ω

[
−|∇Ψ |2 + m− θd

γϵ(s)
Ψ2

]
dx

≥
∫
Ω

[
−|∇θd|2 +

m− θd
γϵ(s)

θ2d

]
dx

=

∫
Ω

[
−|∇θd|2 +

1

ℓ
θ2d(m− θd)

]
dx+

∫
{s<1}

(
1

γϵ
− 1

ℓ
)θ2d(m− θd)dx

=

∫
Ω

[
−|∇θd|2 +

d

ℓ
|∇θd|2

]
dx+

∫
{s<1}

(
1

γϵ
− 1

ℓ
)θ2d(m− θd)dx

≥
∫
{s<1}

(
1

γϵ
− 1

ℓ
)θ2d(m− θd)dx > 0. (35)
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Therefore, the largest eigenvalue is strictly positive and hence Lemma
1(i) implies that (θd, 0) is linearly unstable if ℓ ≤ d.

Now we show that there is no positive steady state of (21). Suppose
(u, v), u, v ̸≡ 0, is a one. Then,

0 = d∆u+ u[m− u− v],

0 = ∆V + v[m− u− v],

0 = n · ∇V = n · ∇u,

where V = γϵ(s)v and s = m
u+v . Then, it follows that,

0 ≥ sup
Ψ∈H1(Ω)\{0}

∫
Ω

[
−|∇Ψ |2 + 1

γϵ(s)
Ψ2(m− u− v)

]
dx

≥
∫
Ω

[
−|∇u|2 + 1

γϵ(s)
u2(m− u− v)

]
dx

=

∫
Ω

[
−|∇u|2 + 1

ℓ
u2(m− u− v)

]
dx

+

∫
{s<1}

(
1

γϵ(s)
− 1

ℓ
)u2(m− u− v)dx

≥
∫
Ω

[
−|∇u|2 + 1

ℓ
u2(m− u− v)

]
dx

=

∫
Ω

[
−|∇u|2 + d

ℓ
|∇u|2

]
dx ≥ 0.

Therefore,
∫
{s<1}(

1
γϵ(s) −

1
ℓ )u

2(m− u− v)dx = 0, and it follows that∫
{m<u+v}(m− u− v)dx = 0. On the other hand,∫

Ω
(m− u− v)dx = −

∫
Ω

d|∇u|2

u2
≤ 0.

Therefore, we obtain that m ≡ u + v and u ≡ c for some positive
constant c. This implies that

0 = γ(1)∆v.

However,m is nonconstant, this is a contradiction. Therefore, if ℓ ≤ d
and ϵ > 0 is small enough, (0, θγϵ) is the only stable steady state
solution. �

The stability of the semi-trivial steady state (0, θγϵ) in Theorem
2 indicates that the linear diffusers cannot invade the habitat of the
starvation driven diffusers. On the other hand, the instability of the
other semi-trivial steady state (θd, 0) indicates that the starvation
driven diffuser can invade the habitat of linear diffusers. It has been
observed numerically that the linear diffuser actually becomes extinct
in [7].
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4. Competition between two starvation driven diffusers

The purpose of this section is to prove Theorem 3 and we return to
the competition model (1) with non-constant motility functions for
both species.

4.1. Linearization and eigenvalue analysis

Introduce diffusion pressures

U := γ1(s)u, V := γ2(s)v with s :=
m

u+ v
. (36)

If u = v = 0, then the satisfaction measure s is not defined. However,
for the definition of the pressure, we may define U = 0 if u = 0 and
V = 0 if v = 0. Define

F(x, u, v, U) := γ1(s)u− U and G(x, u, v, V ) := γ2(s)v − V.

Then, (1) can be rewritten as
Ut =

∂F
∂u {∆U + u[m(x)− u− v]}+ ∂F

∂v {∆V + v[m(x)− u− v]},
Vt =

∂G
∂u{∆U + u[m(x)− u− v]}+ ∂G

∂v {∆V + v[m(x)− u− v]},
0 = n · ∇U = n · ∇V,
0 ≤ U(x, 0) = U0(x), 0 ≤ V (x, 0) = V0(x),

(37)
where

U0 := γ1

( m

u0 + v0

)
u0 and V0 := γ1

( m

u0 + v0

)
v0.

Let (ue, ve) denote a steady state solution of (1). Note that the
stability of (ue, ve) is equivalent to that of the corresponding steady
state (U e, V e) of (37) which is determined by the signs of the largest
eigenvalue of the linearized problem. Let U = U e+Φ and V = V e+Ψ
with |Φ| and |Ψ | small. Then, the eigenvalue problem of the linearized
problem at the steady state (U e, V e) is given by

λΦ = ∂F
∂u

{
∆Φ+ [G1

∂u
∂U − ue ∂v

∂U ]Φ+ [G1
∂u
∂V − ue ∂v

∂V ]Ψ
}

+∂F
∂v

{
∆Ψ + [G2

∂v
∂V − ve ∂u

∂V ]Ψ + [G2
∂v
∂U − ve ∂u

∂U ]Φ
}
,

λΨ = ∂G
∂u

{
∆Φ+ [G1

∂u
∂U − ue ∂v

∂U ]Φ+ [G1
∂u
∂V − ue ∂v

∂V ]Ψ
}

+∂G
∂v

{
∆Ψ + [G2

∂v
∂V − ve ∂u

∂V ]Ψ + [G2
∂v
∂U − ve ∂u

∂U ]Φ
}
,

0 = n · ∇Φ = n · ∇Ψ,

(38)

where G1 = m− 2ue − ve and G2 = m− ue − 2ve. Denote

F :=

(
U
V

)
=

(
γ1(s)u
γ2(s)v

)
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and consider it as a function of u and v. Then, the Jacobian matrix
is

M :=

(
∂U
∂u

∂U
∂v

∂V
∂u

∂V
∂v

)
=

(
γ1 − γ1

′ mu
(u+v)2

−γ1′ mu
(u+v)2

−γ2′ mv
(u+v)2

γ2 − γ2
′ mv
(u+v)2

)
and

M−1 =

(
∂u
∂U

∂u
∂V

∂v
∂U

∂v
∂V

)
=

1

|M |

(
γ2 − γ2

′ mv
(u+v)2

γ1
′ mu
(u+v)2

γ2
′ mv
(u+v)2

γ1 − γ1
′ mu
(u+v)2

)
.

Let (θγ1 , 0) and (0, θγ2) be the two semi-trivial steady states of
(1). The eigenvalue problem for (37) at the semi-trivial steady state
(θγ1(x), 0) is

λΦ = ∂F
∂u

{
∆Φ+

m−2θγ1
γ1−sγ1′

Φ+ 1
γ2
[
sγ1′(m−2θγ1 )

(γ1−sγ1′)
− θγ1 ]Ψ

}
+∂F

∂v

{
∆Ψ +

m−θγ1
γ2

Ψ
}
,

λΨ = γ2(s)
{
∆Ψ +

m−θγ1
γ2

Ψ
}
,

0 = n · ∇Φ = n · ∇Ψ,

(39)

where s = m
θγ1

, and θγ1 satisfies{
0 = ∆(γ1(s)θγ1) + θγ1 [m(x)− θγ1 ],

0 = n · ∇(γ1(s)θγ1).
(40)

Similarly, we may compute that the corresponding eigenvalue prob-
lem for (37) at (0, θγ2(x)) is

λΦ = γ1(s)
{
∆Φ+

m−θγ2
γ1

Φ
}
,

λΨ = ∂G
∂u

{
∆Φ+

m−θγ2
γ1

Φ
}

+∂G
∂v

{
∆Ψ +

m−2θγ2
γ2−sγ2′

Ψ + 1
γ1
[
sγ2′(m−2θγ2 )

(γ2−sγ2′)
− θγ2 ]Φ

}
,

0 = n · ∇Φ = n · ∇Ψ,

(41)

where s = m
θγ2

, and θγ2(x) satisfies{
0 = ∆(γ2(s)θγ2) + θγ2 [m− θγ2 ],

0 = n · ∇(γ2(s)θγ2).
(42)

The uniqueness and global asymptotic stability of the positive steady
states θγ1(x) and θγ2(x) have been obtained in [22, Theorem 2 and
3].

We now show the simplified stability criteria for the semi-trivial
steady states of (1) which corresponds to Lemma 1 for the previous
case.
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Lemma 2. Let θγ1(x) and θγ2(x) be the unique globally asymptoti-
cally stable steady state solution of (40) and(42), respectively.

(i) Let ν1 be the largest eigenvalue of{
νΨ = ∆Ψ +

m−θγ1
γ2(s)

Ψ,

0 = n · ∇Ψ.
(43)

If ν1 > 0, (θγ1(x), 0) is linearly unstable; if ν1 < 0, (θγ1(x), 0) is
linearly stable.

(ii) Let µ1 be the largest eigenvalue of{
µΦ = ∆Φ+

m−θγ2
γ1(s)

Φ,

0 = n · ∇Φ.
(44)

If µ1 > 0, (0, θγ2(x)) is linearly unstable; if µ1 < 0, (0, θγ2(x)) is
linearly stable.

Proof. Parts (i) and (ii) are of the same structure and we show part
(i) only. Consider an eigenvalue problem{

ℓΨ = ∆Ψ +
m−θγ1
γ2(s)

Ψ − λ
γ2(s)

Ψ,

0 = ∇Ψ · n

and denote its largest eigenvalue by ℓλ1 . Clearly, ℓ
0
1 = ν1. Moreover,

ℓλ1 will be negative when λ becomes large enough. First suppose that

ν1 > 0. Then, there exists λ1 > 0 such that ℓλ1
1 = 0. Then, the corre-

sponding eigen-pair {λ1, Ψ1} satisfies the second equation of (39).
Next, since θγ1 is a stable steady state of (40), the eigenvalue

problem, {
σψ = (γ1 − sγ1

′)∆ψ + (m− 2θγ1)ψ,

0 = ∇ψ · n, (45)

has only nonpositive eigenvalues and hence the operator,

L := ∆+
m− 2θγ1
γ1 − sγ1′

− λ1
γ1 − sγ1′

is strictly negative and thus invertible. Let Φ1 be given by

LΦ1 = − 1

γ2

[sγ1′(m− 2θγ1)

γ1 − sγ1′
− θγ1

]
Ψ1

−
(∂F
∂u

)−1∂F
∂v

{
∆Ψ1 +

m− θγ1
γ2

Ψ1

}
.

Then {λ1, (Φ1, Ψ1)} is an eigen-pair of the linearized problem (39)
with λ1 > 0, which implies that (θγ1(x), 0) is linearly unstable.
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Next, assume that ν1 < 0. Suppose that the linearized problem
(39) has a nonnegative eigenvalue λ1 ≥ 0 with the corresponding
eigenfunctions (Φ1, Ψ1).

If Ψ1 ≡ 0, then one may find that {λ1, Φ1} is an eigen-pair of (45)
due to (39). Since θγ1 is a stable steady state of (40), the largest
eigenvalue of (45) is negative, which contradicts to the assumption
λ1 ≥ 0.

Let Ψ1 ̸≡ 0. Then,

ν1 = sup
Ψ∈H1(Ω)\{0}

∫
Ω

[
−|∇Ψ |2 + m−θγ1

γ2(s)
Ψ2

]
dx∫

Ω Ψ
2dx

≥

∫
Ω

[
−|∇Ψ1|2 +

m−θγ1
γ2(s)

Ψ2
1

]
dx∫

Ω Ψ
2
1dx

=

∫
Ω

λ1
γ2(s)

Ψ2
1dx∫

Ω Ψ
2
1dx

≥ 0,

where the last equality comes from the second equation of (39). There-
fore, the linearized problem (39) has strictly negative eigenvalues only
and hence (θγ1(x), 0) is linearly stable. ⊓⊔

4.2. Spatial heterogeneity favors fitness! (proof of Theorem 3)

Theorem 3 claims that a species having more sensitive to the change
of environmental conditions is favored by the evolution. The proof is
based on the stability criteria of Lemma 2.

Proof (of Theorem 3). The proof of the theorem consists of three
steps. First we show the stability of (0, θγ2(x)). Let (µ1, Φ1) be the
largest eigen-pair of (44). Then,

µ1 = sup
Φ∈H1(Ω)\{0}

∫
Ω −|∇Φ|2 + m−θγ2

γ1(s)
Φ2dx∫

Ω Φ
2dx

=

∫
Ω −|∇Φ1|2 +

m−θγ2
γ1(s)

Φ2
1dx∫

Ω Φ
2
1dx

=

∫
Ω −|∇Φ1|2 +

m−θγ2
γ2(s)

Φ2
1dx∫

Ω Φ
2
1dx

+

∫
Ω(m− θγ2)(

1
γ1(s)

− 1
γ2(s)

)Φ2
1dx∫

Ω Φ
2
1dx

.

Since the operator ∆ +
m−θγ2
γ2(s)

has a positive eigenfunction γ2(s)θγ2

with the zero eigenvalue, λ = 0 is the largest eigenvalue of ∆+
m−θγ2
γ2(s)

.
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It implies that ∫
Ω
−|∇Φ1|2 +

m− θγ2
γ2(s)

Φ2
1dx ≤ 0.

Therefore,

µ1 ≤

∫
Ω(m− θγ2)(

1
γ1(s)

− 1
γ2(s)

)Φ2
1dx∫

Ω Φ
2
1dx

=

( ∫
{m>θγ2}

+
∫
{m<θγ2}

)
(m− θγ2)(

1
γ1(s)

− 1
γ2(s)

)Φ2
1dx∫

Ω Φ
2
1dx

< 0,

and hence (0, θγ2) is linearly stable by Lemma 2.
In the second step, we show that (θγ1(x), 0) is unstable. Recall

that the stability is determined by

ν1 = sup
Ψ∈H1(Ω)\{0}

∫
Ω

[
−|∇Ψ |2 + m−θγ1

γ2(s)
Ψ2

]
dx∫

Ω Ψ
2dx

,

where s = m/θγ1 . Let Ψ := U = γ1(s)θγ1 . Since minΩ̄m(x) ≤ θγ1 ≤
maxΩ̄m(x),

ν1 ≥

∫
Ω

[
−|∇U |2 + m−θγ1

γ2(s)
U2

]
dx∫

Ω U
2dx

=

∫
Ω(m− θγ1)(− 1

γ1(s)
+ 1

γ2(s)
)U2dx∫

Ω U
2dx

=
(∫

{m>θγ1}
+

∫
{m<θγ1}

)( 1

γ2(s)
− 1

γ1(s)

)
(m− θγ1)U

2dx > 0.

Therefore, according to Lemma 2, (θγ1 , 0) is linearly unstable.
Finally, we show that there is no steady state of coexistence. Sup-

pose (ũ, ṽ) is a steady state such that ũ ̸≡ 0 ̸≡ ṽ. Then, we have{
0 = ∆Ũ + ũ[m(x)− ũ− ṽ],

0 = ∆Ṽ + ṽ[m(x)− ũ− ṽ],

where Ũ = γ1(s)ũ, Ṽ = γ2(s)ṽ, and s =
m

ũ+ṽ . Clearly, (Ũ , Ṽ ) satisfies{
0 = ∆Ũ + m(x)−ũ−ṽ

γ1(s)
Ũ ,

0 = ∆Ṽ + m(x)−ũ−ṽ
γ2(s)

Ṽ .
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Due to the assumption that γ1 ̸≡ γ2 in a small neighborhood of
s = 1, we have

m(x)− ũ− ṽ

γ1(s)
�
m(x)− ũ− ṽ

γ2(s)
.

A contradiction arises immediately. �

5. Conclusions

It is widely believed that spatial heterogeneities of environments re-
duce dispersal rates. This belief is based on studies of linear dispersal
models with constant rates. However, biological organisms change
their motility depending on environmental conditions and, recently,
Cho and Kim [7] modeled a dispersal strategy that increases the
motility when food is not enough. In this paper such a starvation
driven diffusion is taken as a dispersal strategy of phenotypes of a
species and the evolution of such dispersal strategies is analyzed.
The main conclusion is that spatial heterogeneities of environments
increase the fitness of dispersal. Since the model is not a monotone
system, authors could not claim the global asymptotic stability. How-
ever, it is proved that the semi-trivial state that consists of the phe-
notype with a better fitness is the only stable steady state solution
(see Theorems 2 and 3). It is also proved that a phenotype with a
starvation driven diffusion may survive against the slowest phenotype
among all possible linear diffusers (see Theorem 1). It seems safe to
claim that spatial heterogeneities of environments increase the fit-
ness of dispersal and the temporal fluctuations increase the size of
dispersal.
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