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1 Introduction

In this paper we consider the following equation

∂u

∂t
= ∆u+ f(u) in Rn, t > 0, (1.1)

u|t=0 = u0 in Rn.

Here n ≥ 1 and u0 is a given bounded uniformly continuous function. The Laplacian ∆

stands for ∆
def
=
∑n

j=1 ∂
2/∂x2

j . Here f ∈ C1(R) satisfies f(0) = 0. In addition, we assume
either

f ′(0) < 0 (1.2)

or

0 < lim inf
u→0

f(u)

−u|u|p
≤ lim sup

u→0

f(u)

−u|u|p
< ∞ (1.3)

for a positive constant p with

n− 1− 2

p
< 0.

Typical examples are

(a) f(u) = −u+ |u|q−1u with q > 1;

(b) f(u) = −u(u− b0)(u− 1) with 0 < b0 < 1;

(c) f(u) = u|u|(u− 1) with n = 1, 2.

We study a travelling wave solution v(x1, . . . , xn−ct) with speed c. We write y = xn−ct
and v(x1, . . . , xn−1, y) satisfies(

n−1∑
j=1

∂2

∂x2
j

+
∂2

∂y2

)
v + c

∂v

∂y
+ f(v) = 0 (x1, . . . , xn−1, y) ∈ Rn.

This equation is the profile equation for a travelling wave solution v(x1, . . . xn−1, xn − ct).
We write v(x1, . . . , xn−1, y) by u(x1, . . . , xn). Then we have

∆u+ c
∂u

∂xn

+ f(u) = 0 in Rn. (1.4)

In this paper we study this equation with

[lim inf
|x|→∞

u(x), lim sup
|x|→∞

u(x)] ⊂ (−a0, b0). (1.5)

Here we put

b0
def
= sup{b ∈ (0,∞) | f(s) < 0 for all s ∈ (0, b)} ∈ (0,∞],

a0
def
= sup{a′ ∈ (0,∞) | f(s) > 0 for all s ∈ (−a′, 0)} ∈ (0,∞],
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and have −a0 < 0 < b0. If u satisfies lim|x|→∞ u(x) = 0, we have (1.5). If u satisfies (1.4)
and lim|x|→∞ u(x) = 0, we call u a localized travelling wave solution.

If c = 0, a localized travelling wave is a stationary solution. Many works have been
studied for the existence, uniqueness and the spherical symmetry of stationary solutions.
For the existence and the uniqueness of stationary solutions, see [14] , [3] , [4], [5], [16], [12]
and [19] for instance. For the spherical symmetry of positive solutions, see [7], [8] and [13]
for instance.

Localized travelling waves for systems of reaction-diffusion equations are studied in [15],
[10] and [6] for examples, and they are sometimes called travelling spots or travelling spikes.

For a single reaction-diffusion one might suppose that (1.1) is a gradient system for an
energy functional and thus a localized initial state with finite energy has to be a stationary
state or cannot keep its shape as time goes on. This intuitive idea suggests that there exist
no localized travelling wave solutions with speed c ̸= 0. The aim of this paper is to give a
simple proof of this non-existence.

The main assertion of this paper is as follows.

Theorem 1. Assume f ∈ C1(R) satisfies f(0) = 0. In addition assume f ′(0) < 0 or (1.3).
If u ∈ L∞(Rn) ∩ C2(Rn) satisfies (1.4) and (1.5), one has c = 0 or u ≡ 0.

Remark 1. If one assumes either

[lim inf
|x|→∞

u(x), lim sup
|x|→∞

u(x)] ⊂ [−a0, b0) or [lim inf
|x|→∞

u(x), lim sup
|x|→∞

u(x)] ⊂ (−a0, b0]

in stead of (1.5), Theorem 1 does not hold true. Indeed, we put n = 1, a0 = 1, b0 = 1, and
choose f with f ′(−1) > 0,

f(u) > 0, f ′(u) < f ′(−1) for all u ∈ (−1, 0),

and have a monotone decreasing solution connecting 0 and−1 with any speed c ≥ 2
√
f ′(−1)

to (1.4) by [11, 1, 2]. Thus the interval (−a0, b0) in the condition (1.5) is maximal in
Theorem 1.

2 Proof of Theorem 1

We put

F (u)
def
=

∫ u

0

f(s) ds.

For any R > 0 we use B(0;R)
def
= {x ∈ Rn | |x| ≤ R} and ∂B(0;R)

def
= {x ∈ Rn | |x| = R}.

We write the outward unit vector ν = (ν1, . . . , νn) at x ∈ ∂B(0;R) as

ν =
x

|x|
=

x

R
for x ∈ ∂B(0;R).
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We denote ∂/∂xj by Dj and ∂2/∂xi∂xj by Dij for 1 ≤ i, j ≤ n. Under the assumption of
Theorem 1 we put

A
def
= 1 + sup

x∈Rn

|u(x)|, M
def
= max

{
1, max

−A≤s≤A
|f ′(s)|

}
,

B1
def
= lim inf

|x|→∞
u(x), B2

def
= lim sup

|x|→∞
u(x),

and have −A ≤ B1 ≤ B2 ≤ A.

Lemma 1. If u ∈ L∞(Rn) ∩ C2(Rn) satisfies (1.4), one has

c

∫
B(0;R)

(Dnu)
2 =

∫
∂B(0;R)

(
1

2
|∇u|2 − F (u)

)
νn −

∫
∂B(0;R)

Dnu(∇u, ν). (2.6)

Proof. Using

div (Dnu∇u) = Dnu∆u+
n∑

j=1

DjnuDju

and
1

2
Dn

(
|∇u|2

)
=

n∑
j=1

DjuDjnu,

we get

div (Dnu∇u) =
1

2
Dn

(
|∇u|2

)
+Dnu∆u.

Multiplying (1.4) by Dnu, we have

0 = div (Dnu∇u)− 1

2
Dn

(
|∇u|2

)
+ c(Dnu)

2 +Dn (F (u)) .

Applying the Gauss divergence formula
∫
B(0;R)

divF =
∫
∂B(0;R)

(F, ν), we obtain

0 =

∫
∂B(0;R)

Dnu(∇u, ν)− 1

2

∫
∂B(0;R)

|∇u|2νn + c

∫
B(0;R)

(Dnu)
2 +

∫
∂B(0;R)

F (u)νn.

This completes the proof.

We take δ0 > 0 small enough such that we have

sf(s) < 0 if s ∈ [−δ0, δ0]\{0}

and

−1

2
f ′(0) ≤ inf

s∈[−δ0,δ0]\{0}

|f(s)|
|s|

≤ sup
s∈[−δ0,δ0]\{0}

|f(s)|
|s|

≤ −2f ′(0) if f ′(0) < 0,

a ≤ inf
s∈[−δ0,δ0]\{0}

|f(s)|
|s|1+p

≤ sup
s∈[−δ0,δ0]\{0}

|f(s)|
|s|1+p

< +∞ if f satisfies (1.3).
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Here a ∈ (0,∞) is a constant. We put

α
def
= − 1

2
f ′(0) > 0

if f ′(0) < 0.
For any x0 ∈ [−δ0, δ0] we define T (t;x0) by

T ′(t;x0) = f(T (t;x0)) t > 0,

T (0;x0) = x0.

Here ′ means d/dt. If x0 ̸= 0, we have

t =

∫ T (t;x0)

x0

ds

f(s)
=

∫ x0

T (t;x0)

ds

−f(s)
.

We put

ε0
def
=


1
2
min {1, a0 +B1, b0 −B2} if a0 < ∞, b0 < ∞,

1
2
min {1, b0 −B2} if a0 = ∞, b0 < ∞,

1
2
min {1, a0 +B1} if a0 < ∞, b0 = ∞,

1
2

if a0 = ∞, b0 = ∞,

and have 0 < ε0 ≤ 1/2 and [B1 − ε,B2 + ε] ⊂ (−a0, b0) for all ε ∈ (0, ε0). For all ε ∈ (0, ε0)
there exists rε > 0 such that

B1 − ε ≤ u(x) ≤ B2 + ε if |x| ≥ rε. (2.7)

Lemma 2. Suppose f ′(0) < 0. For x0 ∈ [−δ0, δ0] one has

|T (t; x0)| ≤ |x0|e−αt for all t ≥ 0.

One has
sup
t≥1

eαt max {|T (t;B1 − ε)|, |T (t;B2 + ε)|} < +∞.

Proof. The assertion holds true for the case x0 = 0. For the former statement we give a
proof for the case x0 > 0, since the case x0 < 0 can be proved similarly. Using

1

−f(s)
≤ 1

αs

for all s ∈ (0, δ0], we get ∫ x0

T (t;x0)

ds

−f(s)
= t ≤

∫ x0

T (t;x0)

ds

αs
.

This gives
log T (t; x0) ≤ −αt+ log x0

for all t ≥ 0. The latter statement follows from the former statement.
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Lemma 3. Suppose f satisfies (1.3). For x0 ∈ [−δ0, 0) ∪ (0, δ0] one has

|T (t;x0)| ≤
(
apt+ |x0|−p

)− 1
p for all t ≥ 0.

One has
sup
t≥1

(apt)
1
p max {|T (t;B1 − ε)|, |T (t;B2 + ε)|} < +∞.

Proof. For the former statement we give a proof for the case x0 > 0, since the case x0 < 0
can be proved similarly. We have

t ≤
∫ x0

T (t;x0)

ds

as1+p
,

which gives

t ≤ 1

ap

(
T (t; x0)

−p − x−p
0

)
.

The latter statement follows from the former statement.

We define a constant k > 0 as

k
def
=

{
1 + supt≥1 e

αt max {|T (t;B1 − ε)|, |T (t;B2 + ε)|} if f satisfies f ′(0) < 0,

1 + supt≥1(apt)
1
p max {|T (t;B1 − ε)|, |T (t;B2 + ε)|} if f satisfies (1.3).

We define a positive constant β as

β
def
=


1

4
min

{
1

max{1, |c|}
,

1√
α+M

}
if f satisfies (1.2),

1

4
min

{
1

max{1, |c|}
,

1√
1 +M

}
if f satisfies (1.3).

Using a method in [18], we will prove the following a priori estimate.

Proposition 1. For any ε ∈ (0, ε0) let rε > 0 be as in (2.7). Assume that u ∈ L∞(Rn) ∩
C2(Rn) satisfies (1.4) and (1.5). In the case of (1.2) one has

|u(x)| ≤ 2ke−αβ|x| (2.8)

if

|x| ≥ max

{
1,

1

β
,
rε(β|c|+

√
n)

2αβ2
+

1

αβ
log

(
2A(rε)

n

k(πβ)
n
2

)}
.

In the case of (1.3) one has

|u(x)| ≤ 2k (apβ|x|)−
1
p (2.9)

if

|x| ≥ max

{
1,

1

β
,
rε(β|c|+

√
n)

2β2
+

1

β
log

(
2A(rε)

na
1
p

k(πβ)
n
2 e

1
p

)}
.
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Proof. We only give a proof for the upper estimate on u, since the lower estimate on u can
be proved similarly.

We put w(x, t)
def
= u(x)− T (t;B2 + ε) for x ∈ Rn and t > 0. Then we have

wt −∆w − cDnw = f(u(x))− f(T (t;B2 + ε))

for x ∈ Rn and t > 0. Thus we have

wt −∆w − cDnw − w

∫ 1

0

f ′(θu(x) + (1− θ)T (t;B2 + ε)) dθ = 0 for all x ∈ Rn, t > 0,

w(x, 0) = u(x)−B2 − ε for all x ∈ Rn.

We introduce w̃(x, t) by

w̃t −∆w̃ − cDnw̃ − w̃

∫ 1

0

f ′(θu(x) + (1− θ)T (t;B2 + ε)) dθ = 0 for all x ∈ Rn, t > 0,

w̃(x, 0) =

{
2A if |x| ≤ rε,

0 if |x| > rε.

By the maximum principle, we obtain

0 ≤ w̃(x, t) for all x ∈ Rn, t > 0,

w(x, t) ≤ w̃(x, t) for all x ∈ Rn, t > 0.

For the maximum principles see [17] or [9] for instance. We introduce W (x, t) by

Wt −∆W − cDnW −MW = 0 for all x ∈ Rn, t > 0,

W (x, 0) =

{
2A if |x| ≤ rε,

0 if |x| > rε.

We have
w̃(x, t) ≤ W (x, t) for all x ∈ Rn, t > 0,

and
u(x) ≤ T (t;B2 + ε) +W (x, t) for all x ∈ Rn, t > 0. (2.10)

Using

K(x, t)
def
= eMt 1

(4πt)
n
2

exp

(
−
∑n−1

j=1 x
2
j + (xn + ct)2

4t

)
,

we have

0 < W (x, t) = 2A

∫
B(0;rε)

K(x− y, t) dy.

Using B(0; rε) ⊂ [−rε, rε]
n we have

0 < W (x, t) < 2A

∫
[−rε,rε]n

K(x− y, t) dy,
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and thus

0 < W (x, t) < 2AeMt

∫ xn+rε+ct√
4t

xn−rε+ct√
4t

e−z2

√
π

dz

n−1∏
j=1

∫ xj+rε√
4t

xj−rε√
4t

e−z2

√
π

dz (2.11)

for all x ∈ Rn and all t > 0.
Then (2.10) and (2.11) give

u(x) ≤ T (t;B2 + ε) + 2Ag(x, t) (2.12)

for all x ∈ Rn and all t > 0, where

g(x, t)
def
= eMt

∫ xn + rε + ct√
4t

xn − rε + ct√
4t

e−z2

√
π

dz
n−1∏
j=1

∫ xj + rε√
4t

xj − rε√
4t

e−z2

√
π

dz.

Now we study g. Using

min{(xj + rε)
2, (xj − rε)

2} ≥ |xj|2 − 2rε|xj|+ r2ε = (|xj| − rε)
2,

we have

0 <

∫ xj + rε√
4t

xj − rε√
4t

e−z2

√
π

dz ≤ rε√
πt

exp

(
−(|xj| − rε)

2

4t

)
if |xj| > rε,

and

0 <

∫ xj + rε√
4t

xj − rε√
4t

e−z2

√
π

dz ≤ rε√
πt

if |xj| ≤ rε.

Combining these estimates together, we obtain

0 <

∫ xj + rε√
4t

xj − rε√
4t

e−z2

√
π

dz ≤ rε√
πt

exp

(
rε

2

4t

)
exp

(
−(|xj| − rε)

2

4t

)

for all xj ∈ R and t > 0. Using

min
{
(xn + ct+ rε)

2, (xn + ct− rε)
2
}
≥ (|xn + ct| − rε)

2 ,

we obtain

∫ xn + rε + ct√
4t

xn − rε + ct√
4t

e−z2

√
π

dz ≤ rε√
πt

exp

(
−(|xn + ct| − rε)

2

4t

)
if |xn + ct| > rε,
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and ∫ xn + rε + ct√
4t

xn − rε + ct√
4t

e−z2

√
π

dz ≤ rε√
πt

if |xn + ct| ≤ rε.

Combining these two estimates together, we obtain

0 <

∫ xn + rε + ct√
4t

xn − rε + ct√
4t

e−z2

√
π

dz ≤ rε√
πt

exp

(
r2ε
4t

)
exp

(
−(|xn + ct| − rε)

2

4t

)

for all xn ∈ R and t > 0. Now we obtain

0 < g(x, t) ≤ eMt (rε)
n

(πt)
n
2

exp

(
n(rε)

2

4t

)
exp

(
−J(x, t)

4t

)
,

where

J(x, t)
def
= (|xn + ct| − rε)

2 +
n−1∑
j=1

(|xj| − rε)
2 .

Now we get

J(x, t) = |x|2 + 2ctxn + c2t2 − 2rε|xn + ct| − 2rε

n−1∑
j=1

|xj|+ n(rε)
2.

Now we set t = β|x| and have

J(x, β|x|) = |x|2 + 2βcxn|x|+ β2c2|x|2 − 2rε

n−1∑
j=1

|xj| − 2rε|xn + ct|+ nr2ε .

Using
n∑

j=1

|xj| ≤
√
n|x|,

we get
J(x, β|x|) ≥ (1 + β2c2 − 2β|c|)|x|2 − 2rε

√
n|x| − 2rεβ|c||x|+ nr2ε ,

and thus
J(x, β|x|) ≥ (1− β|c|)2|x|2 − 2rε(

√
n+ β|c|)|x|+ nr2ε .

From the definition of β we have

(1− β|c|)2 ≥ 1

2
and

J(x, β|x|) ≥ 1

2
|x|2 − 2rε(β|c|+

√
n)|x|+ nr2ε .

Thus we get

0 < g(x, β|x|) ≤ (rε)
n

(πβ|x|)n
2

exp

(
rε(β|c|+

√
n)

2β

)
exp

(
−
(

1

8β
−Mβ

)
|x|
)
.
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From the definition of β we have

2αβ <
1

8β
−Mβ if f ′(0) < 0,

2β <
1

8β
−Mβ if f satisfies (1.3).

In the case of f ′(0) < 0 we have

u(x) ≤ 2ke−αβ|x|

if

eαβ|x| ≥ 2A(rε)
n

k(πβ|x|)n
2

exp

(
rε(β|c|+

√
n)

2β

)
.

This gives (2.8).
In the case of (1.3) we have

u(x) ≤ k (apβ|x|)−
1
p +

2A(rε)
n

(πβ|x|)n
2

exp

(
rε(β|c|+

√
n)

2β

)
e−2β|x|

≤ k (apβ|x|)−
1
p

(
1 +

2A(rε)
n

k(πβ)
n
2

exp

(
rε(β|c|+

√
n)

2β

)
(apβ|x|)

1
p e−β|x|e−β|x|

)
≤ k (apβ|x|)−

1
p

(
1 +

2A(rε)
n

k(πβ)
n
2

exp

(
rε(β|c|+

√
n)

2β

)(a
e

) 1
p
e−β|x|

)
if |x| ≥ 1. Here we used

sup
r>0

(apβr)
1
p e−βr =

(a
e

) 1
p
.

This gives (2.9) and completes the proof.

Let s ∈ (n,+∞) be arbitrarily given. If w ∈ W 2,s
loc (B(0; 2)) ∩ Ls(B(0; 2)) and h ∈

Ls(B(0; 2)) satisfy
(−∆− cDn)w = h in B(0; 2),

one has
∥w∥W 2,s(B(0;1)) ≤ K0∥h∥Ls(B(0;2))

by the Schauder interior estimate, where K0 is a positive constant. See [9, Theorem 9.11]
for a general theory. Then W 2,s(B(0; 1)) ⊂ C1(B(0; 1)) and L∞(B(0; 2)) ⊂ Ls(B(0; 2))
yield

∥w∥C1(B(0;1)) ≤ K∥h∥L∞(B(0;2)),

where K is a positive constant. See also [9] for the Sobolev imbedding theorems.

Proof of Theorem 1. For any y ∈ Rn we put w(x)
def
= u(x+ y) and have

−∆w(x)− cDnw(x) = f(w(x)) for x ∈ B(y; 2).
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The Schauder estimate gives

∥w∥C1(B(0;1)) ≤ K∥f(w)∥L∞(B(0;2)),

which yields
|∇u(y)| ≤ K sup

|x|≤2

|f(u(y + x))| for all y ∈ Rn.

Especially we get

|∇u(x)| ≤ KM sup
|y|≤2

|u(x+ y)| for all x ∈ Rn.

In the case of (1.2) we obtain

|∇u(x)| ≤ 2kKMe−αβ(|x|−2) ≤ 2kKMe2αβe−αβ|x|

if

|x| ≥ max

{
3,

1

β
,
rε(β|c|+

√
n)

2αβ2
+

1

αβ
log

(
2A(rε)

n

k(πβ)
n
2

)}
.

In the case of (1.3) we obtain

|∇u(x)| ≤ 2kKM3
1
p (apβ|x|)−

1
p

if

|x| ≥ max

{
3,

1

β
,
rε(β|c|+

√
n)

2β2
+

1

β
log

(
2A(rε)

na
1
p

k(πβ)
n
2 e

1
p

)}
.

Using estimates on u and |∇u|, we get∣∣∣∣∫
∂B(0;R)

(
1

2
|∇u|2 − F (u)

)
νn −

∫
∂B(0;R)

Dnu(∇u, ν)

∣∣∣∣
≤ 2π

n
2

Γ
(
n
2

)Rn−1

(
3

2
max

∂B(0;R)
|∇u|2 + M

2
max

∂B(0;R)
|u|2
)
.

Here Γ is the Gamma function. Recall that 2πn/2/Γ (n/2) is the area of a unit ball in Rn.
If f ′(0) < 0, we have

lim
R→∞

∣∣∣∣∫
∂B(0;R)

(
1

2
|∇u|2 − F (u)

)
νn −

∫
∂B(0;R)

Dnu(∇u, ν)

∣∣∣∣ = 0

from Proposition 1.
If f satisfies (1.3), we have

max
∂B(0;R)

|u| = O(R− 1
p ), max

∂B(0;R)
|∇u| = O(R− 1

p )

as R → ∞ using Proposition 1. Thus we obtain∣∣∣∣∫
∂B(0;R)

(
1

2
|∇u|2 − F (u)

)
νn −

∫
∂B(0;R)

Dnu(∇u, ν)

∣∣∣∣ = O(Rn−1− 2
p )
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as R → ∞. Using

n− 1− 2

p
< 0

and sending R → ∞ in (2.6) in Lemma 1, we obtain

c

∫
Rn

(Dnu)
2 = 0

for both cases. This equality gives c = 0 or Dnu ≡ 0. If Dnu ≡ 0, the condition
lim|x|→∞ u(x) = 0 implies u ≡ 0. Thus we find that c = 0 or u ≡ 0. This completes
the proof of Theorem 1.

3 Applications

Let n ≥ 3, 1 < q < (n + 2)/(n − 2) and f(u) = −u + |u|q−1u. Equation (1.4) for c = 0 is
called the scalar field equation. It is well known that there exists a unique positive U of
class C2[0,∞) satisfying

U ′′(r) +
n− 1

r
U ′(r) + f(U(r)) = 0 for all r > 0,

U ′(0) = 0, lim
r→∞

U(r) = 0.

If u > 0 satisfies
∆u+ f(u) = 0 x ∈ Rn,

u(x) = U(|x− y|) for some y ∈ Rn from [7, 8]. From Theorem 1 in this paper one has c = 0
if u ̸≡ 0 satisfies (1.4) and (1.5) for some c ∈ R. Thus there exist no localized travelling
waves with non-zero speed for f(u) = −u+ |u|q−1u.

We give another example of f that satisfies (1.3). Let f(u) = u|u|(u − 1). If u > 0
satisfies

∆u+ f(u) = 0 x ∈ Rn,

u has to be spherically symmetric for some point in R2 from [13]. For an example of
spherically symmetric solution is as follows. For n = 2, the following equation

U ′′(r) + 1
r
U ′(r) + f(U(r)) = 0 for all r > 0,

lim
r→∞

U(r) = 0. (3.13)

has a solution

U(r) =
4

r2 + 2
.

From Theorem 1 one has c = 0 if n = 1, 2 and u ̸≡ 0 satisfies (1.4) and (1.5) for some c ∈ R.
Thus there exist no localized travelling waves with non-zero speed for f(u) = u|u|(u − 1)
when n = 1, 2. However our assumption does not hold true when p = 1 and n ≥ 3. Thus it
is an interesting open problem to prove the existence or non-existence of travelling waves
for f = u|u|(u− 1) when n ≥ 3 or more generally for f with (1.3) when n ≥ 1 + (2/p).
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