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Abstract. Chemotaxis models are based on spatial or temporal gra-
dient measurements of by individual organisms. The key contribution
of Keller and Segel [15,16] is showing that erratic measurements of
individuals may result in an accurate chemotaxis phenomenon as a
group. In this paper we provide another option to understand chemo-
tactic behavior when individuals do not sense the gradient of chemi-
cal concentration by any means. We show that, if individuals increase
their dispersal rate to find food when there is not enough food, an
accurate chemotactic behavior may be obtained without sensing the
gradient. Such a dispersal has been suggested by Cho and Kim [5]
and was called starvation driven diffusion. This model is surprisingly
similar to the original Keller-Segel model. A comprehensive picture
of traveling bands and fronts is provided.

Key words. chemotaxis, phase plane analysis, starvation driven dif-
fusion, Keller-Segel equation, pulse and front type traveling waves

1. Introduction

In chemotaxis a surprising and mysterious phenomenon is how micro-
scopic scale organisms figure out the macroscopic scale concentration
gradient and find the correct direction to resources such as food.
One may say that the main contribution of the classical Keller-Segel
model on this issue is to show that, even if the individuals sense the
chemical gradient inaccurately, the chemotactic phenomenon can be
accurate in an averaged sense. The purpose of this paper is to go one
step further from Keller and Segel’s idea and conclude that, if indi-
vidual organisms increase the dispersal rate when starvation begins,
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accurate chemotactic behavior is obtained without sensing the gradi-
ent. We will achieve this goal by introducing a new chemotaxis model
based on a starvation driven diffusion and showing the existence of
traveling waves.

Chemotactic behaviors of single-celled organisms have been inten-
sively studied for a long time. It is believed that the dynamics behind
them will help us to understand other migration phenomenon such as
the cell movements within a human body. Bonner’s Dictyostelium [3]
and Matsushita et al.’s Bacillus subtilis [24] show interesting chemo-
tactic behavior and patterns. The chemotaxis model in this paper is
closely related to the the pioneering works of Adler which made a
significant turning point in the theory of intracellular signal trans-
duction of bacteria. Adler showed in his paper [1,2] that motile Es-
cherichia coli placed at one end of a capillary tube containing food
and oxygen migrate through the tube in one or two traveling wave
bands, which is clearly a chemotaxis phenomenon. This phenomenon
has been mathematically modeled by Keller and Segel [15,16] and
Adler’s experiment data were successfully fit by the model.

Keller and Segel’s equations are written as
{

ut = (µ(m)ux − χ(m)umx)x,

mt = ǫmxx − k(m)u,
(1)

where u ≥ 0 is the population density, m ≥ 0 is the nutrient con-
centration, ǫ > 0 is the diffusivity of the nutrient, and k(m) ≥ 0
is the consumption rate. The population reproduction term such as
the logistic one is omitted since chemotaxis models are to understand
the migration effect. The diffusivity µ(m) > 0 and the chemosensi-
tivity χ(m) > 0 come from the bacteria’s dispersal strategy and are
related. In the derivation of the model bacteria are assumed to mea-
sure the nutrient concentration using receptors placed along the body
and move toward higher concentration. Let 0 < a < 1 be the ratio
of effective body length, i.e., the largest distance between receptors
over the body length of bacteria. In the derivation of the Keller-Segel
model, µ and χ satisfy

χ(m) = −(1− a)µ′(m), µ′(m) ≤ 0. (2)

Notice that the ratio becomes a = 0 if there is only one receptor or if
the concentration gradient is not actually measured. One may find a
detailed mechanism of chemotactic systems and related mathematical
approaches from Tindall et al. [31,32].

Traveling wave solutions of (1) have been intensively studied after
various simplifications. In fact, Keller and Segel by themselves broke
the link between µ and χ in (2) by assuming

ǫ = µ′ = k′ = 0 and χ(m) = m−1, (3)
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and then found explicit traveling wave solutions [16].
Nonconstant consumption rates such as

k(m) = mp, p ≥ 0 (4)

have been considered by many authors. The consumption rate repre-
sents the feeding style of organisms and decides traveling wave types.
Organisms may consume more if there is more food. However, it is
more realistic to assume 0 ≤ p < 1 since, even if the amount of food is
doubled, organisms do not consume two times more usually. For the
case with 0 ≤ p < 1, we have traveling band solutions and the exis-
tence, stability and convergence as ǫ→ 0 have been intensively stud-
ied (see [11,17,18,23,25,27–30,34]). The case with p = 1 gives travel-
ing fronts instead of bands (see [14,21,33]). In fact, this case models
vascular growth of angiogenesis and has been well-documented (see
[4,8,9,20,22]). These traveling wave band and front solutions are ob-
tained using a chemotaxis model introduced in the next section.

The rest of this paper is organized as follows. In Section 2, the
chemotaxis model of this paper is introduced, which is based on star-
vation driven diffusion. Main theorems and results are in Section 3,
which consists of two lemmas and three theorems. The proofs of the
three theorems are in Section 4. A phase plane analysis for travel-
ing wave solutions are done in Section 5. Examples of traveling wave
solutions are given in Section 6 by computing ordinary differential
equations and compared with the cases in Theorems. Conclusions
and discussions on possible biological applications are given in Sec-
tion 7.

2. The Model

The main feature of the chemotaxis model presented in this paper
is that we do not assume that species sense the gradient of chemical
concentration. The only hypothesis of the theory presented here is
that organisms increase their motility to find food when there is not
enough food. In other words, if nutrient is abundant, species decrease
their motility and stay in place. Such behavior of bacterial species can
be found from the literature and we took an example from Matsushita
et al. [24]. A cartoon of a growing tip of Bacillus subtilis is given in
Figure 1 (see [24, Figure 3] for the actual photo).

The fingernail structure consists of actively moving cells. The cells
surrounding the nail are inactive in movement. The ones in the site
without nutrient are inactive since they have no energy to move.
However, the boundary ones in the site with nutrient, which take most
of the resources, are inactive in movement and active in multiplying.
The influx of the nutrient to the fingernail region is limited due to
the consumption by the boundary cells and the cells in the region
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Fig. 1. A cartoon of the tip of a upward growing branch of Bacillus subtilis. The
Fingernail structure consists of actively moving cells. Inactive cells surrounding the
nail are of two types. The ones in the site with nutrient are inactive in movement
and active in multiplying. However, the ones in the site without nutrient are
inactive in both. The actual photo is from [24, Figure 3] and the width of the
finger is 0.5 mm.

are actively moving to find food. This is a clear example that shows
starvation increases dispersal as long as species has energy to move.
Dictyostelium also provides an example of dispersal increase under
starvation in a different level of ecological evolution. It is well known
that, if starvation has started, Dictyostelium aggregates to form a
stalk like structure. The single purpose of this process is to eventually
increase their dispersal ability. Dispersal increase under starvation
can be found in various sizes and levels of biological organisms and
more discussions can be found from [5].

The chemotaxis model of this paper does not have the usual drift
term and is written as

{

ut = (γ u)xx,

mt = −k(m)u,
x ∈ R, t > 0, (5)

where the motility γ is understood as the departing probability (see
Appendix A for a derivation of the first equation). Directional infor-
mation is not included and the motility γ = γ(m,u) is a function
of concentrations u and m, but not their gradients. In other words,
organisms decide their movement without any gradient information.
The required hypotheses on the motility function γ are:

γ > 0, γu ≥ 0 and γm ≤ 0. (6)

If the population increases or the resource decreases, the starvation
will increase. Therefore, these hypotheses imply that starvation in-
creases the motility of species and hence we call the corresponding
dispersal process a starvation driven diffusion. The first equation in
(5) is written as

ut =
(

(γ + γuu)ux + γmumx

)

x
. (7)
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The first two conditions in (6) make the model parabolic and the
third one gives an advection toward the resource but not against it.
Therefore, if one choose a motility function that starvation reduces
motility, the problem will become invalid.

Remark 1. The Keller-Segel model in (1) is identical to (7) when the
motility depends on the resource concentration only, i.e., γ = γ(m),
and the ratio of the effective body length is a = 0. Then, the cor-
responding chemosensitivity and the diffusivity in (7) satisfy the re-
lation in (2). In fact, it is not surprising since a = 0 implies that
bacteria do not sense the gradient, but sense the concentration only,
which is exactly the assumption of our model.

Next, we will restrict our motility functions further as a function
of a satisfaction measure only,

s =
m

u
, (8)

which measures the average amount of resources available for each
individual. Individuals does not know the total size of resource nor
population. However, they know the amount of the resource they ob-
tain and hence the use of the above measure is biologically reasonable.
We will abuse notation by writing γ(m,u) = γ(mu ). The main hypoth-
esis of the motility function γ(s) is that it is a decreasing function of
the satisfaction measure. The motility function is also assumed to be
smooth and bounded below, i.e.,

lim
s→∞

γ(s) = ℓ > 0, γ′(s) ≤ 0 on (0,∞). (9)

Then, the hypotheses in (6) are satisfied, i.e.,

γm = γ′(s)
1

u
≤ 0 and γu = −γ′(s)m

u2
≥ 0, (10)

and hence the diffusion in the model is still a starvation driven one.
The consumption rate k(m) is assumed to satisfy two hypotheses:

k′(m) ≥ 0, lim
m→0

k(m) = 0. (11)

The first one indicates that organisms consume more if there is more
food. The second one says that the organisms do not consume food
at all if there is nothing left. Two typical examples in the litera-
ture are k(m) = mp and k(m) = mp

1+mp with p > 0. The second one
has bounded consumption rate as m → ∞, which is more realistic.
However, since we will consider uniformly bounded nutrient concen-
tration, there is no essential difference in our context. On the other
hand, the choice of p makes a difference. The regime with p ≤ 1 is
more realistic in the context of this paper since, even if the amount
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of resource is doubled, the consumption rate is not usually doubled.
However, the case with p > 1 provides mathematically interesting
phenomena and we consider both cases.

Remark 2 (Supersensitivity). The Weber-Fechner law, χ(m) = 1
m ,

blows up as m → 0 and such a singularity is called a chemotactic
supersensitivity. Notice that one needs both the chemotactic behav-
ior and the population reproduction to get a traveling wave band
phenomenon, where a persistent traveling wave does not exist in re-
ality without reproduction. The contribution of chemotaxis theory
is to show that the chemotactic behavior is so important in the phe-
nomenon that this supersensitivity is enough to allow a traveling wave
band even without any reproduction. However, if the relation (2) is
taken instead of the simplification assumption µ′(m) = 0 in (3), the
diffusivity µ(m) also blows up as m → 0 and it is unclear whether
there exists a traveling wave band or not. We will obtain traveling
waves under such a relation between the diffusivity and the chemosen-
sitivity. To obtain a traveling wave band without such singularities,
one should consider a problem with a population reproduction.

3. Main Theorems and Results

A traveling wave solution of speed c ∈ R is a solution in the form of

u(x, t) = u(x− ct), m(x, t) = m(x− ct).

Introduce the variable for a traveling wave solution,

ξ = x− ct.

Then, from Equation (5), we obtain a system of ODEs

c u′ = −(γ(s)u)′′, ξ ∈ R, (12)

cm′ = k(m)u, ξ ∈ R, (13)

where the notation ′ is to denote ordinary differentiation with respect
to the single variable ξ. The boundary conditions are

u′ → 0, m′ → 0, u→ u± ≥ 0, m→ m± ≥ 0 as ξ → ±∞. (14)

Lemma 1. Let (u(ξ),m(ξ)) be a nonnegative traveling wave solution
of (12)–(14). If u is not identically zero, then m(ξ) is strictly mono-
tone.

Proof. Since the motility function satisfies (9), Equation (7) is uni-
formly parabolic. Hence, if a traveling wave solution u is not iden-
tically zero, it is strictly positive everywhere, i.e., u(ξ) > 0 for all
ξ ∈ R. Therefore, by (13), we have

m′(ξ) =
k(m)u

c
6= 0.
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Hence, m is strictly monotone. ⊓⊔

A traveling wave is called a front type if the boundary values at
ξ = ±∞ are different. Lemma 1 implies that a nontrivial traveling
wave of the resource distribution m is always a front type with a
monotone profile. In the rest of this paper we consider the case when
m is increasing under a boundary condition

0 ≤ m− < m+.

Then, the solution m is strictly increasing and we may consider ξ =
ξ(m) as the inverse function of m = m(ξ). This choice of boundary
data, m+ > 0, forces us to choose u+ = 0 since (11) and (13) imply
that (m+, u+) is not a steady state for any u+ > 0 if m+ > 0. One
can easily see that this steady state is unstable. In the rest of the
paper the boundary values of the traveling wave at ξ = ∞ are fixed
with

u+ = 0, m+ > 0. (15)

We will investigate the sufficient and necessary conditions of other
boundary conditions u−,m− and the wave speed c ∈ R that give the
existence of a traveling wave.

Lemma 2. If m− > 0 or
∫m+

0
1

k(η)dη < ∞, then the population size

of the species is finite. Hence u− = 0 is a necessary condition for the
existence of a traveling wave solution.

Proof. Equation (13) can be written as u = c m′

k(m) . Its integration over

the whole real line gives the total population of the species, which is
∫

∞

−∞

u(ξ)dξ = c

∫

∞

−∞

m′

k(m)
dξ = c

∫ m+

m−

1

k(m)
dm.

Under the hypotheses in (11) the right side is finite for all m− > 0.
Therefore, the population size is finite under the assumptions of the
lemma. However, if u− > 0, the total population size becomes infinite
and hence u− = 0 is a necessary condition. ⊓⊔

A traveling wave is called a pulse type, band, or localized if the
boundary values at ξ = ±∞ are identical. Lemma 2 implies that
there exists only a pulse type traveling wave if

∫m+

0
1

k(η)dη <∞. We

first consider necessary conditions to have a traveling wave solution
and the possibility m− > 0 is deleted.

Theorem 1. Let u+ = 0 and 0 ≤ m− < m+ <∞.
(i) m− = 0 and c > 0 are necessary conditions for the existence of a
nontrivial traveling wave solution of (12)–(14).
(ii) If γ(s) is bounded, there is no nontrivial traveling wave solution.
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Proofs of this and subsequent theorems will be given in the next
section. The types of traveling waves depends on the consumption
rate k = k(m) and the asymptotic behavior of the motility function
γ(s) as s→ 0. The following two theorems are for the two cases with
∫m+

0
1

k(η)dη <∞ and
∫m+

0
1

k(η)dη = ∞.

Theorem 2. Let u+ = 0, 0 ≤ m− < m+ <∞, and
∫m+

0
1

k(η)dη <∞.

There exists a traveling wave solution of (12)–(14) if and only if
u− = m− = 0 and γ(s) → ∞ as s → 0. The total population of the
traveling species is

N := c

∫ m+

0

1

k(η)
dη. (16)

Theorem 2 gives the conditions of boundary values and the motil-
ity function for the existence of a traveling wave band solution. The
condition

∫m+

0
1

k(η)dη <∞ is the case with 0 < p < 1 if the consump-

tion rate is given by (4). The relation (16) shows that the wave speed
c is related to the population size N > 0 and the consumption rate
k(m), but not to the motility function γ.

Remark 3. Keller and Odell [17, Theorem] found necessary and suffi-
cient conditions for the existence of traveling wave band of finite size,
which are

lim
m→0+

1

k(m)χ(m)
= 0, (17)

lim
m→0+

∫ m+

0

exp
(

−
∫m+

m
χ(η)
µ(η)dη

)

µ(m)k(m)
dm = 0. (18)

For the case with

µ = mr, χ = m−q and k = mp,

the corresponding conditions are

p < min(1, q) and r + q ≥ 1.

The two hypotheses of Keller and Odell are resolved in the unbound-
edness of the motility γ(s) as s→ 0 in Theorem 2.

Next, we will go one step further for the case
∫m+

0
1

k(m)dm = ∞.

The condition (17) appears in a slightly modified form in the following
theorem. In this case we obtain front type traveling waves and pulse
type ones of infinite mass. Non-existence of a traveling wave solution
is also shown.
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Theorem 3. Let u+ = 0, 0 ≤ m− < m+ <∞, and
∫m+

0
1

k(η)dη = ∞.

(i) Suppose that there exists 0 < u0 <∞ such that

− lim
m→0

γ′
(m

u0

)

k(m) = c2. (19)

Then, there exists a traveling wave solution of (12)–(14) if and only
if u− = u0 and m− = 0.
(ii) Suppose that

− lim
m→0

γ′
(m

u0

)

k(m) > c2 (20)

for any u0 > 0. Then, there exists a traveling wave solution of (12)–
(14) if and only if u− = m− = 0. Furthermore, the traveling wave
solution has infinite population mass.
(iii) Otherwise, there is no traveling wave solution for any boundary
values u−,m− <∞.

The relation (19) shows that the speed of the traveling wave is
independent of the amount of nutrient on the right side, m+ > 0,
for a case with

∫m+

0
1

k(η)dη = ∞. However, the amount of population

density on the left side, u− = u0, and the asymptotic behavior of
the motility function and the consumption rate at zero decide the
traveling speed c > 0. If (20) is satisfied for all u0 > 0 with a given
c = c0 > 0, then it is so for any given positive speed c < c0. Hence
there exists a traveling wave solution for any speed c ≥ c0. If the limit
diverges to infinity, Theorem 3(ii) implies that there exists a localized
traveling wave solution with any speed c > 0 with infinite population
mass. To our knowledge this is the first proof of the existence of a
localized traveling wave solution of a chemotaxis model with infinite
population mass.

4. Proofs of Theorems

In this section we prove the three theorems stated in the previous
section. We first clarify the exactness in the traveling wave system,
which makes proofs a lot simpler than the original Keller-Segel cases.
Let 0 ≤ m− < m+ < ∞ and u+ = 0. Then, the integration of (12)
on (ξ,∞) gives

−cu = (γ(s)u)′ = γmm
′u+ γuuu

′ + γ(s)u′,

where the boundary terms disappear by the boundary condition (14).
Divide both sides by m′ and substitute the relation u

m′ =
c

k(m) , which

is from Equation (13), and obtain

(

γmu+
c2

k(m)

)

+ (γuu+ γ)
u′

m′
= 0. (21)
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Therefore, the system (21) and (13) is equivalent to (12) and (13)
under the boundary condition m+ > 0 and u+ = 0.

Next we consider a relation in the phase plane. (A detailed phase
plane analysis is given in Section 5.) Since m > 0 and m is strictly
increasing, one may consider u as a function of m by changing the
variable. Hence the relation in (21) can be written as

Mdm+ Udu = 0, (22)

where M := γmu+ c2

k(m) and U := γuu+ γ. Then,

Mu = γmuu+ γm = Um,

which shows the equation for the traveling wave solution (22) is exact.
This exactness is the key advantage of the chemotaxis model and gives
a complete picture of traveling waves. Define

ψ(m,u) := γu− c2H(m), H ′(m) =
1

k(m)
. (23)

Then, the solution is implicitly given by

ψ(m,u) = constant.

Since u → u+ = 0, s → limm→m+
m
u = ∞, and hence γ → ℓ > 0

as m → m+, we have the constant is c2H(m+). Hence, we have
H(m) = −

∫m+

m
1

k(η)dη and obtain

ψ(m,u) = γu− c2
∫ m+

m

1

k(η)
dη = 0, m− < m < m+. (24)

Then, since

ψu = γu u+ γ > 0, m− < m < m+,

the implicit function theorem implies that there is a function u =
u(m) on (m−,m+).

Remark 4. It is clear that u(m) → 0 (= u+) as m → m+. Hence, for
the existence of the traveling wave solution of (12)–(14), we only need
to check if u(m) → u− as m → m−. Therefore, showing a necessary
condition for the boundary condition also gives a sufficient condition.

Remark 5. Consider the case when the motility is a function of m
only, i.e., γ = γ(m). In this case, the trajectory of a traveling wave is
given explicitly by

u(m) =
c2

γ(m)

∫ m+

m

1

k(η)
dη.
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Having the chemotaxis model in the form of (7) is highly advan-
tageous since it gives an exact form for the traveling wave solution
and makes a complete picture accessible.

Proof (of Theorem 1).
(i). From Equation (13) we obtain

u = c
m′

k(m)
.

Since m > 0, u > 0 and m′ > 0 for all ξ ∈ R, the wave speed is
strictly positive by the relation, i.e., c > 0. Suppose that m− > 0.
Then, taking m→ m− limit for (24) gives

lim
m→m−

γ
( m

u(m)

)

u(m) = c2
∫ m+

m−

1

k(η)
dη > 0.

If u− = 0, then lim
m→m−

γ
( m

u(m)

)

u(m) = ℓ × 0 = 0 which contradicts

the above relation. Hence u− > 0, which also contradicts Lemma 2.
Therefore m− = 0 is a necessary condition.

(ii). Suppose that the motility function is bounded by γ < A for
some constant A > 0. Then, the relation (24) is written by

Au ≥ c2
∫ m+

m

1

k(η)
dη > 0.

If we let m → m−(= 0), we find u− ≥ c2

A

∫m+

0
1

k(η)dη > 0. Hence, if
∫m+

0
1

k(η)dη < ∞, Lemma 2 is contradicted and there is no traveling

wave solution. On the other hand, if
∫m+

0
1

k(η)dη = ∞, then u(m) →
∞ as m → 0 and hence there is again no traveling wave solution.
Therefore, for any boundary condition u− ∈ R, we conclude that
there is no traveling wave solution if γ is bounded. ⊓⊔

Proof (of Theorem 2).
(⇒) We have u− = 0 by Lemma 2 and m− = 0 by Theorem 1(i).

If γ is bounded, then u− > 0 by the relation (24). Therefore, γ should
be unbounded. Since γ is smooth on (0,∞) and γ(s) → ℓ as s→ ∞,
we have γ(s) → ∞ as s→ 0.

(⇐) It is enough to show that u(m) → u− (= 0) asm→ m− (= 0),
where u = u(m) satisfies (24), i.e.,

γ
( m

u(m)

)

u(m) = c2
∫ m+

m

1

k(η)
dη, m− < m < m+.
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Suppose that u(m) → u0 > 0 as m → 0. Then, for any c finite, as
m→ 0,

γ
( m

u(m)

)

u(m) → ∞,

c2
∫ m+

m

1

k(η)
dη → c2

∫ m+

0

1

k(η)
dη <∞,

which is a contradiction. Hence u(m) → 0 as m→ 0.
The total population of the traveling wave band is computed by

(13). Then,
∫

∞

−∞

u(ξ)dξ =

∫

∞

−∞

cm′

k(m)
dξ =

∫ m+

0

c

k(m)
dm,

which gives (16). ⊓⊔
Proof (of Theorem 3). We already have in Theorem 1(i) thatm− = 0
is a necessary condition. The other necessary condition for u− comes
from the relation (24) which can be written as

γ
( m

u(m)

)

u(m) = c2
∫ m+

m

1

k(η)
dη. (25)

Since the right side diverges to ∞ as m→ 0, the derivatives of both
sides with respect to m should have the same asymptotics as m→ 0
if u(m) → u− > 0 as m → 0. In other words, L’Hopital’s rule is
applicable and is the key of the following proof.

(i) Suppose that there exists a traveling wave solution and u(m) →
u− < u0 as m → 0. Choose u1 > 0 such that u− < u1 < u0. From
the relation (25) and the monotonicity of γ, we have

c2 = lim
m→0

γ(mu )u
∫m+

m
1

k(η)dη
< lim

m→0

γ(mu1
)u1

∫m+

m
1

k(η)dη
.

Since
∫m+

m
1

k(η)dη → ∞ as m→ 0, we may apply L’Hopital’s rule and

obtain
− lim

m→0
γ′
(m

u1

)

k(m) > c2.

However, this contradicts the assumption (19) since m
u0

< m
u1

and
no one diverges faster from the behind. One may similarly derive
a contradiction if u(m) → u− > u0 as m → 0 and conclude that
u(m) → u0 as m→ 0.

(ii) Suppose that there exists a traveling wave and u(m) → u− > 0
or u(m) → ∞ as m → 0. Take u1 > 0 such that u1 < u−. Then,
similarly,

c2 = lim
m→0

γ(mu )u
∫m+

m
1

k(η)dη
> lim

m→0

γ(mu1
)u1

∫m+

m
1

k(η)dη
.
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Apply L’Hopital’s rule and obtain

− lim
m→0

γ′
(m

u1

)

k(m) < c2,

which contradicts the assumption (20). Hence u(m) → 0 as m→ 0 if
and only if there exists a traveling wave solution. The total population
of the traveling wave band is computed by (13). Then, since c 6= 0,

∫

∞

−∞

u(ξ)dξ =

∫

∞

−∞

cm′

k(m)
dξ =

∫ m+

0

c

k(m)
dm = ∞.

(iii) Suppose that there exists a traveling wave such that u(m) →
u− as m → 0. If u− > 0, then (19) is satisfied with u0 = u−. If
u− = 0, then (20) is satisfied. Hence, if (19) and (20) fail, the only
possibility is u(m) → ∞ as m → 0 and there is no traveling wave
solution for any boundary condition u− ≥ 0. ⊓⊔

5. Phase Plane Analysis

contradicts to We study the structure of traveling wave solutions in
this section using phase plane analysis. This study shows that the
proofs in the previous section are closely related to this analysis. The
basic relation satisfied by a traveling wave is (24). Note that Equation
(22) gives a regularity to the solution, i.e.,

du

dm
=

−1

γuu+ γ

(

γmu+
c2

k(m)

)

, m− < m < m+. (26)

Hence, the derivative of u = u(m) is continuous and bounded. This
relation also implies that the monotonicity of the solution is divided
along a curve

γmu+
c2

k(m)
= 0.

We will call this curve a separatrix since the monotonicity of trajec-
tories u = u(m) are different in the two regions separated by this
curve. Since γmu = γ′(s), this separatrix satisfies

−γ′(s) = c2

k(m)
, (27)

which is the relation used to characterize the traveling waves in Theo-
rem 3 as in (19). In this section we analyze the trajectories of traveling
waves in the phase plane using the separatrix.

First, consider a case when −γ′(s) is bounded (see Figure 2(a) ).
Let −γ′(s) ≤ κ0 and −γ′(s0) = κ0 with s0 6= 0. Then, since k(m) → 0
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c2

k(m0)

c2

k(m1)

s m0 m1m+

du
dm

> 0

du
dm

< 0

m

u

(a) a graph of bounded −γ′(s) (b) the separatrix and a trajectory

Fig. 2. The monotonicity of a traveling wave trajectory in the phase plane is
divided by a curve called ‘separatrix’ in (b). This diagram shows its relation to
the graph of γ′ in (a) when γ′ is bounded.

monotone as m→ 0, there exists a unique m0 > 0 such that c2

k(m0)
=

κ0. Therefore, a point (m0, u0) is on the curve if s0 =
m0
u0

or u0 =
m0
s0

.

Since c2

k(m) > κ0 for all m < m0, the separatrix does not enter the

region m < m0 (see Figure 2(b) ). Let m1 > m0. Then, there exists

at least one s > 0 such that c2

k(m1)
= −γ′(s). For example, in Figure

2(a), there are two such points. Therefore, there should be two points
in the separatrix corresponding the value m = m1. Since u = m

s , the
point with smaller satisfaction measure s corresponds to the upper
point as in Figure 2. A rough sketch of the separatrix is given in
Figure 2(b). If the maximum point is s0 = 0, then the vertical line
m = m0 becomes an asymptote of the separatrix.

Next, consider the other limit of the trajectory u = u(m) of a
traveling wave which starts from an unstable steady state (m+, 0).
Since du

dm < 0 for all m < m0, there is no chance that the trajectory
connects the origin as m → 0. One might guess that u(m) → u0 > 0
as m→ 0. However, that is not possible by Theorem 3. Clearly,

− lim
m→0

γ′
(m

u0

)

k(m) = 0

for any u0 > 0 since γ′ is bounded and k(m) → 0 as m → 0. There-
fore, Theorem 3(iii) implies that u(m) → ∞ as m → 0. The only
possibility is that the population u blows up as in Figure 2(b) as
m→ 0.

The second case is when γ′(s) is unbounded. Since γ′(s) → 0 as
s→ ∞ and γ is smooth on (0,∞), −γ′(s) → ∞ as s→ 0 (see Figure
3(a) ). Since γ′ is unbounded, there exists at least one point in the
separatrix for each m > 0. We assume that γ′ is monotone for s small
enough as in Theorem 3. Then, there are three possible cases for the
limit of the separatrix as m → 0 which are given in Figures 3(b), 3(c)



Bacterial chemotaxis without gradient-sensing 15

s

−γ′

(a) a graph of unbounded −γ′(s)

du
dm

> 0

du
dm

< 0

m

u

m+ m+ m+

(b) trajectories of case in Thm 3(i)

du
dm

> 0

du
dm

< 0

m

u

m+ m+
(c) trajectories related to Thm 2,3(ii)

du
dm

> 0

du
dm

< 0

m

u

m+
(d) trajectories related to Thm 3(iii)

Fig. 3. A graph of −γ′ is given in (a) when −γ′(s) → ∞ as s → 0. Three
types trajectories of traveling waves are given with dashed lines in (b),(c) and
(d). The monotonicity of a traveling wave trajectory is divided by a curve called
‘separatrix’ given in solid lines.

and 3(d). These three cases correspond to the three cases of Theorem
3 in that order. In fact the conditions of (19) and (20) are the ones
of (27) for m small.

Similarly, consider the other limit of the trajectory u = u(m) that
starts from (m+, 0). Theorem 3 implies that the trajectory connects
the same limit of the separatrix as m → 0 (see Figures 3(b),3(c)
and 3(d)). One can formally see the reason directly from (24). If
u(m) → u0 > 0 as m→ 0, the relation gives

γ
(m

u0

)

u0 −
∫ m+

m

c2

k(η)
dη → 0 as m→ 0.

Therefore, this convergence is possible only if two terms diverge with
the same speed. If the integral term grows slow in comparison with a
given motility function or vice-versa as m→ 0, then there is no such
u0 > 0. Hence, derivatives of both terms with respect to m decides
the limit, which are

∂

∂m

(

γ
(m

u0

)

u0

)

= γ′
(m

u0

)

,
∂

∂m

∫ m+

m

c2

k(η)
dη = − c2

k(m)
.
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In other words, even if the separatrix and the traveling wave trajecto-
ries satisfy different relations, their behaviors near m = 0 are decided
by the same dynamics and hence they have the same limit as m→ 0.

Remark 6 (Monotonicity of traveling waves). Lemma 1 implies that
the resource distribution m = m(ξ) of a traveling wave is always
monotone and hence it is a front type. However, the profile of the
population distribution u = u(ξ) is not monotone in general. A pulse
type traveling wave is not monotone of course. However, even if u =
u(ξ) is a front type, it is not necessarily monotone. If the trajectory
of a traveling wave stays in one of the two regions divided by the
separatrix, then u is monotone. However, if it crosses the boundary
as in Figures 3(b) and 3(c), then u = u(ξ) is not monotone.

6. Numerical Simulations

The purpose of this section is to provide specific examples of traveling
wave solutions by numerically computing the differential equations
and to compare them with the theorems. Hence we will choose specific
γ and k for each of the three cases. We also simulate the appearance of
a localized traveling wave and compare it to the theoretical traveling
waves. Consider a Cauchy problem of our chemotaxis model

{

ut = (γ(s)u)xx, mt = −k(m)u,

u(x, 0) = 0.1χ(−0.2,0.2), m(x, 0) = 0.1,
x ∈ R, t > 0, (28)

where
γ(s) = 0.005(s−4 + 1), k(m) = 5m1/2. (29)

Since both the equation and the initial value are symmetric with re-
spect to the origin, so is the solution. The initial population distribu-
tion splits in two pieces and then propagates into opposite directions
symmetrically. The population size of each piece is N = 0.02. The
consumption rate of this example gives

∫ m+

0

1

k(m)
dm =

1

5

∫ 0.1

0
m−1/2dm =

2
√
0.1

5
<∞.

Therefore, we are in the case of Theorem 2 and the traveling wave
speed is given by (16), which is

c = 0.02 × 5

2
√
0.1

∼= 0.158.

A numerical simulation for the traveling wave moving to right is
given in Figure 4(a). The profile of the wave has been displayed at
two different incidents t = 10 and 20. The numerical wave speed is
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(a) Traveling waves at two different
moments t = 10 and 20
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(b)Pulse type traveling wave for
(29)–(31) with c = 0.158

Fig. 4. [A case with
∫ 1

0
1

k(m)
dm < ∞] The numerical simulations for (28) is given

in (a) at two different times t = 10 and 20. A pulse type traveling band of finite
population is formed and moves with a constant speed. The ode system (30) for
traveling wave solution gives the same traveling wave solution.

about c = 0.160. The shape and the speed of the traveling wave fits
to the simulation of the model case (28).

Consider the solution of the ODE system (12)–(13). Since m− =
u+ = 0 are necessary conditions and m+ = 0.1 is given, we take
them. Then, the second order equation in the first row is turned into
a first order one after integration on (ξ,∞). Then the equations are
written as

{

c(γ′(s)s− γ)u′ = c2u+ γ′(s)k(m)u,

cm′ = k(m)u,
ξ ∈ R, (30)

where the boundary values are

u− = u+ = m− = 0, m+ = 0.1.

A solution of this traveling wave equation is given in Figure 4(b). For
the computation, boundary conditions and the wave speed are given
as

m(5) = 0.1, u(5) = 10−7, c = 0.158. (31)

The solution is then computed for x < 5. For the comparison with the
numerical simulation of (28) in Figure 4(a), we have used the same
wave speed in this computation. One may observe the same structure
of the solution.

Next we consider an example of a front type traveling wave cor-
responding to the case in Theorem 3(i). First, let

γ(s) = 0.005(s−2 + 1), k(m) = 10m3. (32)

In this example we took a consumption rate k satisfying
∫m+

0
1

k(m)dm =

∞. We are looking for a front type traveling wave with m+ = u− =



18 C. Yoon and Y.-J. Kim

0.1 and u+ = m− = 0. Then, the relation (19) is written as

− lim
m→0

γ′
( m

0.1

)

k(m) = 0.01
( m

0.1

)−3
10m3 = (0.1)4 = c2.

Hence the traveling wave speed should be c = 0.01. The traveling
wave for this case can be numerically computed by solving the or-
dinary differential equation (30). In Figure 5(a), a traveling wave is
given after solving it with boundary conditions,

m(100) = 0.1, u(100) = 10−7, (33)

and a wave speed c = 0.01. One may observe that the population
density u converges exactly to u− = 0.1 as ξ → −∞. In Figure 5(b),
the traveling wave with a wave speed c = 0.005 is given with the same
boundary conditions. In this case the population density u converges
approximately to u− = 0.061 as ξ → −∞. One may check that this
is the value that approximately satisfies the relation (19).

Next we consider an example of a localized traveling wave corre-
sponding to the case of Theorem 3(ii). First, let

γ(s) = 0.005(s−3 + 1), k(m) = 10m2. (34)

Then, for any given u0 > 0, one may easily see that

− lim
m→0

γ′
(m

u0

)

k(m) = ∞.

Therefore, Theorem 3(ii) implies that, for any given wave speed c > 0,
there exists a pulse type traveling wave solution of infinite population
mass having the speed. Therefore, the waves are not distinguishable
in terms of the population size or the boundary condition u−. The
only measure to distinguish them is the wave speed. In Figures 5(c)
and 5(d), two pulse type traveling waves are displayed with wave
speeds c = 0.0077 and 0.0039, respectively. Roughly speaking, we
may say from these examples that a faster traveling wave is bigger
than a slower one.

Finally we consider blowing up solutions in Theorem 3(iii). Let

γ(s) = 0.005(s−1 + 1), k(m) = 10m4. (35)

Then, for any u0 > 0, we have

− lim
m→0

γ′
(m

u0

)

k(m) = 0,

and hence Theorem 3(iii) implies that there is no traveling wave
solution for any given boundary data 0 ≤ u− < ∞. In Figures 5(e)
and 5(f), two examples of blowing up solution of (30) with wave
speeds c = 0.0224 and 0.0112, respectively. One may observe that
the population u(ξ) increases as ξ → −∞.
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(a) Front type traveling wave with
(32), (33) and c = 0.01
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(b) Front type traveling wave with
(32), (33) and c = 0.005
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(c) Pulse type traveling wave with
(34), (33) and c = 0.0077
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(d) Pulse type traveling wave with
(34), (33) and c = 0.0039
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(e) Blowing up solution with
(35), (33) and c = 0.0224
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(f) Blowing up solution with
(35), (33) and c = 0.0112

Fig. 5. [Three cases with
∫ 1

0
1

k(m)
dm = ∞] Front type traveling waves are given

in (a) and (b) with different wave speed. The pulse type traveling waves in (c)
and (d) are of infinite population mass. Figures (e) and (f) are examples that
traveling wave solutions blow up. One may observe a logarithmic growth of the
population u(ξ) as ξ → −∞. In these cases there is no traveling wave solution for
any boundary value u− < ∞.

7. Discussions

Chemotaxis is the phenomenon whereby biological organisms move
toward or away from higher concentration of signaling chemicals such
as pheromone or nutrients. Most of chemotaxis models are based on
the assumption that organisms measure the concentration gradient.
There are several models on sensing spatial or temporal gradients of
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chemical concentrations. However, it is still puzzling if micro-scale
organisms such as bacteria really recognize the macro-scale concen-
tration gradient of chemicals.

In this paper we propose a new theory for the chemotaxis phe-
nomenon without the usual assumption of gradient-sensing. In the
context of Adler’s [1,2] traveling wave band phenomenon, the micro-
scopic scale organism, or Escherichia coli, was assumed to disperse
more actively to find food if there is not enough food, i.e., the dis-
persal is driven by starvation. In this case the individuals have the
intention to move to other place without knowing the direction with
more food and hence the movement is in a complete random manner.
However, this conditional eagerness for migration produces advec-
tion and we have still observed chemotaxis phenomenon. In fact, we
have easily obtained all previously obtained traveling waves using our
model.

The chemotaxis phenomenon of single-celled organisms has at-
tracted attention because of its role in various biological phenomena
including multicellular organisms (see [13]). For example, the move-
ment of sperm towards the egg during fertilization or the cell position-
ing during embryonic development is sometimes guided by chemical
signals [10,12]. The invasion of tumor cells and their stimulation for
new blood vessel growth are also guided by chemotactic phenomena
[6,7,19]. The theory in this paper suggests that motility control is
another possibility to guide cell migration. We have seen that, even if
bacteria do not sense the concentration gradient, they may escape a
place and move to a preferred place by simply increasing their motil-
ity. This behavior may give exactly the same chemotactic term of
the Keller-Segel model. In other words, if cell motility is activated in
one place and deactivated in another place, then cell migration to a
specific place can be obtained.

Appendix A. Derivation of a starvation driven diffusion

In this section we introduce a short derivation of a starvation driven
diffusion (see [5] for detailed discussions). Consider a random walk
system with a constant walk length ∆x and a constant jumping time
interval ∆t. Let 0 < γ(xi) ≤ 1 be the probability for a particle to
depart a grid point xi at each jumping time. (For a usual random
walk system every particle departs at each jumping time and hence
γ = 1.) Each particle moves to one of two adjacent grid points, xi+1

or xi−1, randomly. Let U(xi) be the number of particles placed at the
grid point xi. Then, the particle density is u = U/∆x. Hence the net
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flux that crosses a middle point xi+1/2 :=
xi+xi+1

2 is

J
∣

∣

∣

xi+1/2

=
γ(xi)|∆x|u(xi)

2|∆t| − γ(xi+1)|∆x|u(xi+1)

2|∆t|

∼= −|∆x|2
2∆t

(γu)x

∣

∣

∣

xi+1/2

.

The corresponding diffusion equation comes from the conservation
law

ut = −∇ · J =
|∆x|2
2∆t

(γu)xx.

After a time rescaling we obtain the desired equation

ut = (γu)xx.

Notice that the probability γ depends only on the departing point
xi, which indicates the concentration gradient is not measured. If
the probability depends on nearby points, then it implies gradient
information is used to decide the migration probability. For more
discussion including other cases, see Okubo and Levin [26, §5.4].
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