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Abstract

Existence, uniqueness and regularity of the global weak solution to the Burgers
equation with a reaction term is shown when the reaction term is given as a time
independent point source and produces heat constantly. An explicit solution is ob-
tained and used to show the long time asymptotic convergence of the solution to
a steady state. For the heat equation case without any convection the solution di-
verges everywhere as time increases and hence it is the first order convection term
that gives the compactness of the solution trajectory of the Burgers equation with
reaction.
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1 Introduction

In many occasions a solution to an elliptic equation is understood as the
longtime asymptotic limit of a solution to a parabolic equation. A study of such
a convergence provides a good chance to understand the connection between
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the two groups of partial differential equations. However, there are subtle issues
in studying such longtime asymptotics, which are overlooked in many cases.
The purpose of this paper is to develop an explicit example to understand
such subtle issues related to the roles of advection and diffusion. Consider the
heat equation with a positive heat source:

ut − uxx = δ, x ∈ R, 0 < t,

u(x, 0) = u0(x), x ∈ R,
(1.1)

where the heat source δ = δ(x) is the time independent Dirac delta measure
and the initial data u0 is in L1(R). Notice that it is not the initial value, but
the source that is remembered by the elliptic limit of the parabolic problem.
Formally, one can see that the total heat energy increases constantly, i.e.,

d

dt

∫
u(x, t)dx =

∫
δ(x)dx = 1.

Therefore, the solution does not converge in L1(R) as t → ∞. Then, can we
expect a pointwise convergence? 1

Intuitively one might guess that as t → ∞ the solution u would approach one
of the steady states. Here, a steady state solution, say ω, of course satisfies

−ωxx = δ

so that it can be written as a sum of the fundamental solution of Laplace’s
equation and a harmonic function h(x):

ω(x) = −|x|/2 + h(x). (1.2)

However, this guess for the asymptotic behavior as t → ∞ is wrong. Observe
the solution u, which is explicitly given by

u(x, t) =
1√
4πt

∫

R

e−y2/4tu0(x− y) dy +
∫ t

0

1
√
4π(t− τ)

e−x2/4(t−τ) dτ.

The first term is from the initial heat distribution and vanishes as t → ∞.
The second term is from the inhomogeneous heat source and equals

√
t/π at

x = 0, which diverges to +∞ with order O(
√
t ) as t → ∞. If x 6= 0, by

introducing ξ = x2/4(t− τ), the second term is written as

|x|
4
√
π

∫ ∞

x2/4t
ξ−3/2e−ξ dξ.

1 The answer depends on the space dimensions. For example, the answer is affir-
mative if the space dimension is n ≥ 3. See [16] for more discussions.
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Then, for a fixed x, the lower limit of integration x2

4t
→ 0 as t → ∞ so that

again the second term diverges to +∞ as t → ∞ since the integral
∫ 1
0 ξ−3/2dξ

diverges. Therefore the solution u diverges everywhere as t → ∞, and the
solution trajectory cannot be compact in any Lp space even on compact sets. A
common belief is that diffusion is an elementary process that carries the effect
of a heat source away from its point of application. The example given here
shows that this is not true. The diffusion alone does not carry our constantly
produced heat away from the heat source and hence the temperature blows
up.

One might ask that, if a first order convection term is added, will it make the
solution trajectory compact? Again intuitively one might guess “no” since only
a lower order term is added to the second order equation and the higher order
term usually decides intrinsic properties. In the aspect of regularity, the second
order diffusion term ‘uxx’ plays the main role so that one might expect the
compactness of the solution trajectory would also be decided by the second
order diffusion term. However, the guess is wrong again and this paper is
devoted to this issue. The role of diffusion and convection has been intensively
studied without an inhomogeneous source term but is less understood with
one. Notice that it is not the initial distribution but the inhomogeneous source
term that decides the asymptotic behavior and connects an elliptic problem
to a parabolic one.

The purpose of this paper is to provide a clear view on the role of diffusion and
convection when a non-autonomous reaction term produces heat constantly.
Specifically we will consider the viscous Burgers equation with a positive heat
source:

ut + uux − uxx = δ, x ∈ R, 0 < t,

u(x, 0) = u0(x), x ∈ R,
(1.3)

where the initial data u0 is in C1(R) ∩ L1(R) ∩ W 1,∞(R). The first main
result of this paper is proof of existence, uniqueness and regularity of the
solution to (1.3), Theorem 3.2, which will be obtained by constructing the
solution explicitly. The explicit solution of the homogeneous Burgers equation
has served as the foundation of the nonlinear theory since the pioneering
work of E. Hopf [14]. Similarly, the explicit formula for the solution of this
inhomogeneous case can be used to understand the dynamics of diffusion and
convection in the presence of a heat source.

One may easily check that

w(x) =




2/(

√
2− x), x ≤ 0,√

2, 0 < x
(1.4)

is a continuous steady state solution of (1.3), which is strictly positive ev-
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erywhere. Note that the steady state solution (1.2) of the heat equation (1.1)
cannot be nonnegative for any harmonic function h(x). Hence this steady state
solution with a convection term makes more sense in the presence of a nonneg-
ative heat source. The second main result of this paper is a proof of asymptotic
convergence of solutions to the steady state (1.4) as t → ∞ in every Lp norm
on compact sets, Theorem 3.5. Hence it is not the higher order diffusion, but
the lower order convection that makes the solution trajectory compact. This
result shows that our intuition, which usually based on the familiarity with
problems without sources, may fail in the presence of a nonnegative source.

The role of diffusion and convection has been intensively studied without a
source term. For example, consider a convection-diffusion equation

ut + uqux − (um)xx = 0, m, q > 0.

Since there is no heat source in this example, the solution vanishes as t → ∞
and the scale of decay is decided by the dominating factor:

‖u(t)‖∞ = O(t
−1
α+1 ) as t → ∞ with α = min{m, q}. (1.5)

See [5,9–11,22] and references therein for further discussions. In particular, for
the Burgers equation case, m = q = 1, higher order asymptotics has been
obtained using the Cole-Hopf transformation [6,17–19].

The decay rate in (1.5) indicates which one is the dominant factor of the
evolution. For example, if m < q, the dynamics is dominated by the diffusion
and, if q < m, then by the convection. Hence, the Burgers equation is the
case under which the two of them are balanced. However, it is only for the
homogeneous case; when there is a constant heat source, compactness of the
solution trajectory is given by the convection, not by the diffusion, for the
‘balanced’ Burgers equation case. Hence, a better understanding seems needed
for the dynamics of diffusion and reaction in the presence of a heat source.

Parabolic equations with a source term have been studied when the source
term is mild enough so that it is integrable in some sense with respect to time
and space. Hence the total heat is finite and the solution may decay asymp-
totically with the same rate as the homogeneous case. For diffusion equations
with a mild source term, one can find an asymptotic profile in a similar way
to the case without a source term [8,21]. For convection-diffusion equations,
Schonbek [20] proved existence of a unique mild solution and its decay in
Lp-norm. However, little is known when the source term is strong enough to
change the asymptotics of the solution. Using a contraction mapping argu-
ment, Dix [7] proved local well-posedness of inhomogeneous viscous Burgers
equation. For example, his result yields that our problem (1.3) is locally well-
posed in L2-norm. But as far as the authors know, asymptotic behavior of
inhomogeneous viscous Burgers equation has not been studied.
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The blow up of the heat equation (1.1) is closely related to the nonexistence of
a positive steady state. Nonexistence of a positive solution has been intensively
studied for nonlinear elliptic problems such as

−∆u = up, −∆u = up + f(x), or −∆u = −V (x)u+ up,

where the range of p depends on the dimension n. For n ≤ 2, the nonexistence
was shown for all p < ∞ and, for n ≥ 3, the range of p depends on the
dimension n, the potential V and the source f . For detailed discussions readers
are referred to [1–3,12]. In the aspect of our result, a natural extension of these
nonlinear elliptic problems is finding a positive solution of them after adding
an advection term. Such a study may connect the theory of nonlinear elliptic
problems to parabolic ones with reaction.

The paper is organized as follows. First a natural candidate for the solution
of (1.3) is constructed in an explicit way via the Cole-Hopf transformation
in Section 2. Then, in Section 3, this candidate solution is shown to be the
unique weak solution. It is also shown in the section that the weak solution
converges pointwise to the steady state solution (1.4). In appendix, the explicit
solution with the zero initial value is given numerically to demonstrate how
the solution converges to the steady state.

2 Cole-Hopf transformation for the Burgers equation with source

Consider the Cole-Hopf transformation

Θ(x, t) := exp
{
− 1

2

∫ x

−∞
u(y, t) dy

}
, Θ0(x) := exp

{
− 1

2

∫ x

−∞
u0(y) dy

}
.

If u satisfies (1.3) with u0 ∈ C1(R) ∩ L1(R) ∩W 1,∞(R), then Θ0 ∈ C2(R) ∩
W 2,∞(R) and the transformation Θ satisfies






Θt −Θxx = −1
2
H(x) Θ, x ∈ R, 0 < t,

Θ(x, 0) = Θ0(x), x ∈ R,
(2.1)

where H(x) is the Heaviside function. The solution of this transformed prob-
lem is constructed by combining two solutions on domains {0 < x} and
{x < 0}.

Let R be the solution on the right side domain {0 < x}, which satisfies the
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following initial-boundary value problem:






Rt − Rxx = −1
2
R, 0 < x, 0 < t,

R(x, 0) = Θ0(x), 0 ≤ x,

R(0, t) = g(t), 0 < t.

The boundary condition g(t) will be decided later and we assume it is con-
tinuously differentiable for now. The inhomogeneous right side is due to the
point source and we rescale R. Define

R̃(x, t) := et/2 R(x, t),

which satisfies 




R̃t − R̃xx = 0, 0 < x, 0 < t,

R̃(x, 0) = Θ0(x), 0 ≤ x,

R̃(0, t) = et/2g(t), 0 < t.

One may find the solution to this problem in [15, p18 and p22]). If one returns
back to R, then, for x > 0,

R(x, t) = e−t/2

[
1

2
√
πt

∫∞
0 Θ0(ξ)

(
e−(ξ−x)2/4t − e−(ξ+x)2/4t

)
dξ

+
∫ t
0

(
eτ/2g(τ)

)′
erfc

(
x

2
√
t−τ

)
dτ + g(0) erfc

(
x

2
√
t

)]
.

(2.2)

Similarly, let L be the solution on the left side domain {x < 0}, which satisfies






Lt − Lxx = 0, x < 0, 0 < t,

L(x, 0) = Θ0(x), x ≤ 0,

L(0, t) = g(t), 0 < t.

Then, for x < 0,

L(x, t) = −1
2
√
πt

∫∞
0 Θ0(−ξ)

(
e−(ξ−x)2/4t − e−(ξ+x)2/4t

)
dξ

+
∫ t
0 g

′(τ) erfc
(

−x
2
√
t−τ

)
dτ + g(0) erfc

(
−x
2
√
t

)
.

(2.3)

Now we decide the boundary condition g(t). Since Θ is continuously differen-
tiable, we impose a condition

Θx(0+, t) = Θx(0−, t) for 0 < t,

6



where 0+ and 0− denote the right and left side limits, respectively. Then we
have Rx(0+, t) = Lx(0−, t) for 0 < t. A direct computation shows

Rx(x, t) =
e−t/2

4
√
π t3/2

∫∞
0 Θ0(ξ)

(
(ξ − x)e−(ξ−x)2/4t + (ξ + x)e−(ξ+x)2/4t

)
dξ

−e−t/2√
π

∫ t
0

(
eτ/2g(τ)

)′
e−x2/4(t−τ)√

t−τ
dτ − e−t/2g(0)√

π
e−x2/4t√

t
,

(2.4)

Lx(x, t) =
−1

4
√
π t3/2

∫∞
0 Θ0(−ξ)

(
(ξ − x)e−(ξ−x)2/4t + (ξ + x)e−(ξ+x)2/4t

)
dξ

+ 1√
π

∫ t
0 g

′(τ) e−x2/4(t−τ)√
t−τ

dτ + g(0)√
π

e−x2/4t√
t

.

(2.5)
Hence the continuous differentiability of Θ implies that, for every 0 < t,

1
2

∫∞
0 ξ

(
Θ0(ξ)e

−t/2 +Θ0(−ξ)
)
e−ξ2/4t

t3/2
dξ − g(0) e−t/2+1√

t

=
∫ t
0

(
g(τ)/2 + g′(τ)

)
e−(t−τ)/2√

t−τ
dτ +

∫ t
0 g

′(τ) 1√
t−τ

dτ.
(2.6)

This integral equation decides a unique boundary condition g(t).

Proposition 2.1 There is a unique C1 function g(t) satisfying (2.6) for a
given Θ0 ∈ C2(R) ∩ W 2,∞(R) such that g(0) = Θ0(0). Furthermore, there
exist positive constants A and B such that

|g(t)| ≤ AeBt for all 0 ≤ t.

PROOF. Integration of the right hand side of (2.6) by parts gives

1
2

∫∞
0 ξ

(
Θ0(ξ)e

−t/2 +Θ0(−ξ)
)
e−ξ2/4t

t3/2
dξ − g(0) e−t/2+1√

t

=
√
2π g(0) erf

(√
t
2

)
+
∫ t
0

g′(τ)√
t−τ

(√
2π(t− τ) erf

(√
t−τ
2

)
+ e

−(t−τ)
2 + 1

)
dτ

for all 0 < t. Let h(τ) := g′(τ). Then the above equation can be written as an
Abel integral equation:

1√
π

∫ t

0

K(t, τ) h(τ)√
t− τ

dτ = f(t) for all 0 < t, (2.7)

where

K(t, τ) =
1

2

(√
2π(t− τ) erf

(√
(t− τ)/2

)
+ e−(t−τ)/2 + 1

)
,

f(t)=
1

2
√
π

∫ ∞

0
ξ(Θ0(ξ)e

−t/2 +Θ0(−ξ))
e−ξ2/4t

t3/2
dξ

−g(0)
(
e−t/2 + 1√

πt
+
√
2 erf

(√
t/2

))
.
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Then K(t, τ) is continuous, K(t, t) = 1 and
∂K

∂t
(t, τ) is bounded for all t and

τ such that 0 ≤ τ ≤ t < ∞.

Integration by parts and the choice of g(0) = Θ0(0) yield that

f(t) =
2√
π

∫ ∞

0

(
Θ′

0(2
√
t η)e−t/2 −Θ′

0(−2
√
t η)

)
e−η2dη −

√
2Θ0(0) erf

(√
t/2

)
,

f ′(t) =
2√
πt

∫ ∞

0

(
Θ′′

0(2
√
t η)ηe−t/2 +Θ′′

0(−2
√
t η)η −Θ′

0(2
√
t η)/2

)
e−η2 dη

− Θ0(0)√
πt

e−t/2.

Hence f(0) = 0 and |f ′(t)| ≤ C/
√
t for all 0 < t, where the constant C

depends only on Θ0. Therefore, we have

(Tf)(t) :=
1√
π

d

dt

∫ t

0

f(τ)√
t− τ

dτ

=
2√
π

d

dt

∫ t

0
f ′(τ)

√
t− τ dτ =

1√
π

∫ t

0

f ′(τ)√
t− τ

dτ

so that

|(Tf)(t)| ≤ C√
π

∫ t

0

1√
τ
√
t− τ

dτ = C
√
π,

i.e., (Tf)(t) is continous and bounded for t ≥ 0. Hence by [13, Theorem 5.1.3
and Theorem 5.1.4], there is a unique continuous solution h(t) of the Abel
integral equation (2.7) satisfying

|h(t)| ≤ e2Mt ‖Tf‖L∞([0,∞)) ≤ C
√
π e2Mt

where M := supτ≤t

∣∣∣∂K
∂t
(t, τ)

∣∣∣. Finally if we let g(t) := Θ0(0) +
∫ t
0 h(τ) dτ then

we can easily verify that g satisfies all the properties in the statement. ✷

Therefore, with this g, the solution of (2.1) is well defined and given by

Θ(x, t) =





R(x, t), 0 ≤ x,

L(x, t), x < 0,
(2.8)

where the functions R and L are given in (2.2) and (2.3) respectively.

Example 2.2 (Explicit boundary condition for u0 ≡ 0) In certain cases
the boundary condition g(t) satisfying (2.6) is given explicitly. Notice that the
right hand side of (2.6) is a sum of two convolutions:

{(
g(τ)/2 + g′(τ)

)
∗ e−τ/2

√
τ

}
(t) +

{
g′(τ) ∗ 1√

τ

}
(t).
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The Laplace transform with respect to t on the both sides of (2.6) yields that

∫∞
0 Θ0(ξ)e

−ξ
√

s+1/2 +Θ0(−ξ)e−ξ
√
s dξ − g(0)

(
1√

s+1/2
+ 1√

s

)

= (G(s)/2 + sG(s)− g(0)) 1√
s+1/2

+ (sG(s)− g(0)) 1√
s
,

where G(s) is the Laplace transform of g(t). The solution of this algebraic
equation is given by

G(s) =

√
s+ 1/2

s+ 1/2 +
√
s(s+ 1/2)

∫ ∞

0
Θ0(ξ)e

−ξ
√

s+1/2 +Θ0(−ξ)e−ξ
√
s dξ. (2.9)

Now Proposition 2.1 and [4, Theorem 6.27] allows us to take the inverse
Laplace transform to recover the function g(t). For instance, if u0 ≡ 0, then

Θ0 ≡ 1 and G(s) = 1/
√
(s+ 1/4)2 − (1/4)2. Hence the inverse Laplace trans-

form is

g(t) = e−t/4 I0(t/4), (2.10)

where I0 is the modified Bessel function of the first kind. ✷

By definition, the transformed initial value satisfies Θ0(−∞) = 1 formally. If
we impose a stronger condition, that is,

x (Θ0(x)− 1) → C as x → −∞ (2.11)

for some real constant C, then the boundary condition g(t) satisfies a common
asymptotic behavior as the following lemma shows. In terms of the original
initial value u0, the condition (2.11) holds, for example, if

|u0(x)| = O(|x|−2−ǫ) as x → −∞

for some ǫ > 0. In this case the constant C is zero:

|x| |Θ0(x)− 1| ≤ |x|
(
exp

{
1

2

∫ x

−∞
|u0(y)| dy

}
− 1

)
≃ |x|

∫ x

−∞
|u0(y)| dy

. |x|
∫ x

−∞
|y|−2−ǫ dy ≃ |x|−ǫ → 0 as x → −∞.

The conclusion in the following lemma is essential to obtain the asymptotics
of u in the following section.

Lemma 2.3 Let g(t) be the boundary condition obtained in Proposition 2.1.
If Θ0 satisfies the condition (2.11), then

lim
t→∞

√
t g(t) =

√
2/π and lim

t→∞
t3/2 g′(t) = −1/

√
2π.
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PROOF. (Limit of
√
t g(t)) Let

GK(s) :=

√
s + 1/2

s+ 1/2 +
√
s(s+ 1/2)

,

G[f ](s) :=
∫ ∞

0

(
f(ξ) e−ξ

√
s+1/2 + f(−ξ) e−ξ

√
s
)
dξ.

Then, by (2.9), the Laplace transform of g(t) is

G(s) = GK(s)G[Θ0](s).

Also let

G1(s) := GK(s)G[1](s) =
1

√
(s+ 1/4)2 − (1/4)2

then its inverse Laplace transform,

g1(t) := L−1{G1(s)} = e−t/4 I0(t/4),

satisfies the conclusion. Now consider the remaining part

G2(s) := G(s)−G1(s) = GK(s)G[Θ0−1](s).

Then we can easily verify that G2(s) decays algebraically as s → ∞ so that by
[4, Theorem 6.30], it has the inverse Laplace transform g2(t). We claim that
lim
t→∞

t g2(t) = −C/
√
2. Because

lim
t→∞

t g2(t) = lim
s→0

sL{t g2(t)} = − lim
s→0

sG′
2(s),

it suffices to show lims→0 sG
′
2(s) = C/

√
2. Changing the variable η = ξ

√
s,

we have

G[f ](s) =
∫ ∞

0
f(ξ) e−ξ

√
s+1/2 +

1√
s

∫ ∞

0
f
(
− η√

s

)
e−η dη,

G′
[f ](s) = − 1√

4s+ 2

∫ ∞

0
f(ξ) ξe−ξ

√
s+1/2 dξ − 1

2s

∫ ∞

0

η√
s
f
(
− η√

s

)
e−η dη.

Hence by the Dominated Convergence Theorem, the assumption (2.11) yields
that

lim
s→0

sG′
[Θ0−1](s) = C/2.

Using two easy observations lim
s→0

√
sG′

K(s) = −1 and lim
s→0

GK(s) =
√
2, finally

we have

sG′
2(s) =

(√
sG′

K

)(√
sG[Θ0−1]

)
+GK

(
sG′

[Θ0−1]

)

→ (−1) · 0 +
√
2 · (C/2) = C/

√
2 as s → 0.
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Therefore lim
t→∞

t g2(t) = −C/
√
2, which in turn implies lim

t→∞

√
t g2(t) = 0. Now

the first statement follows:

lim
t→∞

√
t g(t) = lim

t→∞

√
t
(
g1(t) + g2(t)

)
= lim

t→∞

√
t g1(t) =

√
2

π
.

To prove the second statement, we claim that lim
t→∞

t2 g′2(t) = C/
√
2. Because

lim
t→∞

t2 g′2(t) = lim
s→0

sL{t2 g′2(t)} = lim
s→0

s
d2

ds2
L{g′2(t)}

= lim
s→0

s
d2

ds2

(
sG2(s)− g2(0)

)
= lim

s→0
2sG′

2(s) + s2G′′
2(s)

=
√
2C + lim

s→0
s2G′′

2(s),

it suffices to show

lim
s→0

s2G′′
2(s) = lim

s→0
s2
(
G′′

KG[Θ0−1] + 2G′
KG

′
[Θ0−1] +GKG

′′
[Θ0−1]

)
(2.12)

is equal to −C/
√
2. The first two terms in (2.12) vanish because

s2G′′
KG[Θ0−1] =

(
s3/2G′′

K

) (√
sG[Θ0−1]

)
→ 1

2
· 0 = 0 as s → 0,

s2G′
KG

′
[Θ0−1] =

(
sG′

K

) (
sG′

[Θ0−1]

)
→ 0 · (C/2) = 0 as s → 0.

To compute the third term in (2.12), observe that

G′′
[f ](s) =

1

4(s+ 1
2
)
3
2

∫ ∞

0
f(ξ) ξ e−ξ

√
s+ 1

2 dξ +
1

4(s+ 1
2
)

∫ ∞

0
f(ξ) ξ e−ξ

√
s+ 1

2 dξ

+
1

4s2

(∫ ∞

0

η√
s
f
(
− η√

s

)
e−η dη +

∫ ∞

0

η√
s
f
(
− η√

s

)
η e−η dη

)
.

Then by the Dominated Convergence Theorem and the assumption (2.11),

s2GKG
′′
[Θ0−1] = GK

(
s2G′′

[Θ0−1]

)
→

√
2 · (−C/2) = −C/

√
2.

Therefore lim
t→∞

t2 g′2(t) = C/
√
2, which in turn implies that lim

t→∞
t3/2 g′2(t) = 0.

Hence the second statement follows:

lim
t→∞

t3/2 g′(t) = lim
t→∞

t3/2
(
g′1(t) + g′2(t)

)
= lim

t→∞
t3/2 g′1(t) = − 1√

2π
.

✷

Lastly we prove strict positivity of Θ, which is need to validate the inverse
Cole-Hopf transformation in the following section.
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Proposition 2.4 Let Θ0 ∈ C2(R) ∩ W 2,∞(R). The solution Θ in (2.8) is
strictly positive, i.e.,

Θ(x, t) > 0 for all x ∈ R and 0 ≤ t.

PROOF. First we show that the boundary condition Θ(0, t) = g(t) is strictly
positive for all 0 ≤ t. Assume the contrary. Then, because g(0) = Θ0(0) > 0,
there exists a point a > 0 such that g(a) = 0 and g(τ) ≥ 0 for all τ ≤ a. Then
for all t > a, integration by parts yields that

∫ a

0
g′(τ)

e−(t−τ)/2

√
t− τ

dτ = −
∫ a

0

g(τ)

2

(
e−(t−τ)/2

√
t− τ

+
e−(t−τ)/2

(t− τ)3/2

)
dτ − g(0)

e−t/2

√
t

and ∫ a

0
g′(τ)

1√
t− τ

dτ = −
∫ a

0

g(τ)

2

1

(t− τ)3/2
dτ − g(0)√

t
.

Applying the identities into (2.6), we have, for t > a,

1

2

∫ ∞

0
ξ
(
Θ0(ξ)e

−t/2 +Θ0(−ξ)
)e−ξ2/4t

t3/2
dξ +

∫ a

0

g(τ)

2

e−(t−τ)/2 + 1

(t− τ)3/2
dτ

=
∫ t

a

(
g(τ)/2 + g′(τ)

) e−(t−τ)/2

√
t− τ

dτ +
∫ t

a
g′(τ)

1√
t− τ

dτ.

Note that the left hand side has a uniform, positive lower bound for all t ≥ a.
However, if we take the limit as t ↓ a, the right hand side vanishes, which is a
contradiction. Therefore Θ(0, t) = g(t) > 0 for all 0 ≤ t.

The strict positivity of Θ follows from the maximum principle because Θ0(x) ≥
e−‖u0‖1/2 > 0 and the boundary condition is strictly positive. ✷

3 Global weak solution and its asymptotic behavior

The weak solution of the Burgers equation with a point source (1.3) is con-
structed in this section using the solution Θ of the transformed problem (2.1),
which has been derived in the previous section. We start with the definition
of a weak solution of (1.3).

Definition 3.1 A function u(x, t) defined in R×(0,∞) is said to be a (global)
weak solution of (1.3) if u ∈ C([0,∞);H1(R) ∩L∞(R)) and u satisfies (1.3)
in the sense of distributions, i.e.,

∫ ∞

0

∫

R

u φt +
1

2
u2 φx − ux φx dx dt+

∫ ∞

0
φ(0, t) dt−

∫

R

u0(x)φ(x, 0) dx = 0

12



for all test functions φ ∈ C∞
0 (R× [0,∞)).

We now show that the inverse Cole-Hopf transform of Θ is the unique weak
solution of (1.3).

Theorem 3.2 If the initial value u0 is in C1(R) ∩ L1(R) ∩W 1,∞(R), there
exists a unique weak solution of (1.3) and the solution is given by

u(x, t) = −2
Θx(x, t)

Θ(x, t)
, (3.1)

where the function Θ is given in (2.8). The solution is in C∞(R\{0}×(0,∞)).

PROOF. (Regularity) We have verified that Θ is well defined and strictly
positive under the conditions on u0; hence u := −2Θx/Θ is well defined. Since
Θ is a solution of the homogeneous heat equation for x < 0 and x > 0, it is in
C∞(R \ {0} × (0,∞)). Hence, it is obvious that u ∈ C∞(R \ {0} × (0,∞)).

(Existence) Now we show that u is a weak solution of (1.3). By the regularity
of u,

−
∫ ∞

0

∫

R

ux φx dx dt =
∫ ∞

0

∫

R

uxx φ dx dt+
∫ ∞

0
(uxφ)(0+, t)− (uxφ)(0−, t) dt.

From the definition of u and Θ, we also have

ux(0+, t)− ux(0−, t) = −2
ΘxxΘ− (Θx)

2

Θ2

∣∣∣∣
x=0+

x=0−

= − 2

Θ(0, t)

(
Θt(0+, t)−Θt(0−, t)

)
− 1

= −2∂t
(
lnΘ(0+, t)− lnΘ(0−, t)

)
− 1.

On the other hand, by a simple computation, we can verify that that u is a
classical solution of the viscous Burgers equation (without a source term) if
x 6= 0 and 0 < t. Hence we have

∫ ∞

0

∫

R

(
u φt +

1

2
u2 φx − ux φx

)
dx dt+

∫ ∞

0
φ(0, t) dt−

∫

R

u0(x)φ(x, 0) dx

=
∫ ∞

0

(
(uxφ)(0+, t)− (uxφ)(0−, t) + φ(0, t)

)
dt

= −2
∫ ∞

0

∂

∂t

(
lnΘ(0+, t)− lnΘ(0−, t)

)
φ(0, t) dt

= 2
∫ ∞

0

(
lnΘ(0+, t)− lnΘ(0−, t)

)
φt(0, t) dt = 0.

Therefore u is a weak solution of (1.3).
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(Uniqueness) Let u, v be two weak solutions with the same initial data u0.
Then e := u− v satisfies

∫ ∞

0

∫

R

e φt +
1

2
(u+ v)e φx − ex φx dx dt = 0

for all test functions φ ∈ C∞
0 (R × [0,∞)). Let φ(x, t) = e(x, T )H(T − t) for

a fixed T > 0. Since this function is not a test function, we cannot directly
apply it. However, using an usual approximation procedure, we may have

‖e(T )‖22 +
∫ T

0
‖ex(t)‖22 dt = −1

2

∫ T

0

∫

R

(u+ v) e ex dx dt

≤ 1

2

∫ T

0
‖(u+ v)(t)‖∞ ‖e(t)‖2 ‖ex(t)‖2 dt

≤ 1

4

∫ T

0
‖(u+ v)(t)‖2∞ ‖e(t)‖22 dt+

1

4

∫ T

0
‖ex(t)‖22 dt.

Since T > 0 is arbitrary, we have ‖e(t)‖2 = 0 for all 0 < t by Gronwall’s
inequality. ✷

Next we consider the asymptotics of Θ, which consists of two lemmas for R
and L, respectively.

Lemma 3.3 If Θ0 satisfies (2.11), then
√
t R and

√
t Rx converge uniformly

on compact sets and the limits are

lim
t→∞

√
t R(x, t) =

x

2
√
π

∫ ∞

0

√
2

π

e−
τ
2 e−

x2

4τ

τ 3/2
dτ =

√
2

π
e
− x√

2 ,

lim
t→∞

√
t Rx(x, t) = − 1

2
√
π

∫ ∞

0

√
2

π

e−
τ
2 e−

x2

4τ

τ 1/2
dτ = − 1√

π
e
− x√

2 .

PROOF. Assume 0 < x ≤ A for some A > 0. First we prove the uniform
convergence of

√
t R. Integration by parts gives that, from (2.2),

√
t R(x, t)

=

√
t e−

t
2

√
π

(∫ ∞

− x
2
√

t

Θ0(2
√
t η + x) e−η2 dη −

∫ ∞

x
2
√

t

Θ0(2
√
t η − x) e−η2 dη

)

+
x

2
√
π

∫ t

0

√
t g(t− τ)

e−
τ
2 e−

x2

4τ

τ 3/2
dτ.

Because the first term vanishes uniformly, we may ignore it. For the second
term, if we can take the limit t → ∞ inside the integral, Lemma 2.3 gives
the limit in the statement. But it needs some analysis to validate the limit
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process. Observe that

∣∣∣∣
√
t R(x, t)−

√
2

π
e
− x√

2

∣∣∣∣

=
x

2
√
π

∣∣∣∣∣∣

∫ t

0

√
t g(t− τ)

e−
τ
2 e−

x2

4τ

τ 3/2
dτ −

∫ ∞

0

√
2

π

e−
τ
2 e−

x2

4τ

τ 3/2
dτ

∣∣∣∣∣∣

≤ x

2
√
π

∫ t

0

∣∣∣∣∣∣

√
t g(t− τ)−

√
2

π

∣∣∣∣∣∣
e−

τ
2 e−

x2

4τ

τ 3/2
dτ +

x

2
√
π

∫ ∞

t

√
2

π

e−
τ
2 e−

x2

4τ

τ 3/2
dτ.

Changing the variable η = x
2
√
τ
, we can rewrite the second term and find its

uniform bound:

2nd term =
2
√
2

π

∫ x
2
√

t

0
e
− x2

8η2 e−η2 dη ≤ 2
√
2

π

∫ A
2
√

t

0
e−η2 dη =

√
2

π
erf
(

A

2
√
t

)
,

which vanishes uniformly. The first term needs more care to analyze. Because

√
t −

√
t− τ ≤ τ√

t
for all t ≥ τ > 0,

the first term is bounded by

x

2
√
π

∫ t

0

∣∣∣∣
√
t− τ g(t−τ)−

√
2

π

∣∣∣∣
e−

τ
2 e−

x2

4τ

τ 3/2
dτ+

x

2
√
π
√
t

∫ t

0
g(t−τ)

e−
τ
2 e−

x2

4τ

τ 1/2
dτ.

(3.2)
Again by changing the variable η = x

2
√
τ
, the first term in (3.2) becomes

2√
π

∫ ∞

x
2
√

t

∣∣∣∣
√
t− τ g(t− τ)−

√
2

π

∣∣∣∣ e
− x2

8η2 e−η2 dη. (3.3)

By Lemma 2.3, for any fixed ǫ > 0, there exists T1 > 0 such that |
√
t g(t)−√

2
π
| ≤ ǫ for all t ≥ T1. Also choose T2 > 0 such that erf

(
A

2
√
T2

)
≤ ǫ. Assume

t ≥ T1+T2. Now split the integral of (3.3) into two parts:
∫∞

A

2
√

t−T1

+
∫ A

2
√

t−T1
x

2
√

t
dη.

Then in the first part, η ≥ A
2
√
t−T1

≥ x
2
√
t−T1

so that t−τ = t− x2

4η2
≥ T1. Hence

the first part is bounded by

2√
π

∫ ∞

A

2
√

t−T1

ǫ e
− x2

8η2 e−η2 dη ≤ 2√
π

∫ ∞

0
ǫ e−η2 dη = ǫ.

Because the first term in the integrand of (3.3) is bounded by
∥∥∥∥
√
t g(t)−

√
2
π

∥∥∥∥
∞
,

ignoring it, the second part is bounded by

2√
π

∫ A

2
√

t−T1

0
e−η2 dη = erf

(
A

2
√
t− T1

)
≤ erf

(
A

2
√
T2

)
= ǫ.
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Therefore the first term in (3.2) vanishes uniformly. Lastly, the second term
in (3.2) has a uniform bound

A

2
√
π
√
t

∫ ∞

0
‖g‖∞

e−τ/2

τ 1/2
dτ =

A ‖g‖∞√
2
√
t
.

Now we consider the uniform convergence of
√
t Rx. From Rx in (2.4), we have

√
t Rx(x, t)

=
e−

t
2

√
π

(∫ ∞

− x
2
√

t

Θ0(2
√
t η + x) ηe−η2 dη +

∫ ∞

x
2
√

t

Θ0(2
√
t η − x) ηe−η2 dη

)

− 1

2
√
π

∫ t

0

(
2
√
t g′(t− τ) +

√
t g(t− τ)

) e−
τ
2 e−

x2

4τ

τ 1/2
dτ − g(0)√

π
e−

t
2 e−

x2

4t .

The first and the third term vanish uniformly so we may ignore them. For the
second term, if we can take the limit as t → ∞ inside the integral, by Lemma
2.3, we have the required limit. The limit process, which is in fact uniform on
compact sets, can be justified in a similar fashion as before. ✷

Lemma 3.4 If Θ0 satisfies (2.11), then
√
t L and

√
t Lx converge uniformly

on compact sets and the limits are

lim
t→∞

√
t L(x, t) =

√
2− x√
π

and lim
t→∞

√
t Lx(x, t) = − 1√

π
.

PROOF. (Uniform Convergence of
√
t L) Assume −A ≤ x < 0 for some

A > 0. First we prove the uniform convergence of
√
t L. Integrating L in (2.3)

by parts, we have

√
t L(x, t) =

−1√
π

∫ ∞

0
Θ0(−2

√
t η) e−η2−x2

4t

√
t
(
e

ηx√
t − e

− ηx√
t

)
dη

+
−x

2
√
π

∫ t

0

√
t g(t− τ)

e−
x2

4τ

τ 3/2
dτ.

As we did in the proof of Lemma 3.3, we can show that the second term

converges uniformly to
√
2/π. The only difficulty rises when we replace the

integrand
√
t g(t− τ) by

√
t− τ g(t− τ), in which case we have an additional

term

−x

2
√
π

∫ t

0

τ√
t
g(t− τ)

e−
x2

4τ

τ 3/2
dτ =

1

2
√
π

−x√
t

∫ t

0
g(t− τ)

e−
x2

4τ

√
τ

dτ.
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However, because
√
t g(t) is bounded, the above term is bounded by a constant

multiple of

A√
t

∫ t

0

e−
x2

4τ√
t− τ

√
τ
dτ ≤ A√

t

∫ t

0

1√
t− τ

√
τ
dτ =

Aπ√
t
,

which vanishes uniformly. For the first term, we claim that it converges uni-
formly to

−1√
π

∫ ∞

0
e−η2 2ηx dη = − x√

π
.

The difference between the first term and −x/
√
π is bounded by

1√
π

∫ ∞

0

∣∣∣Θ0(−2
√
t η)− 1

∣∣∣ e−η2−x2

4t

√
t
(
e

η|x|√
t − e

− η|x|√
t

)
dη

+
1√
π

∫ ∞

0
e−η2(1− e−

x2

4t )
√
t
(
e

η|x|√
t − e

− η|x|√
t

)
dη

+
1√
π

∫ ∞

0
e−η2

∣∣∣∣
√
t
(
e

ηx√
t − e

− ηx√
t

)
− 2ηx

∣∣∣∣ dη

=: I1 + I2 + I3.

Fix an ǫ > 0. Then there exists T > 0 such that

∣∣∣Θ0(−x)− 1
∣∣∣ ≤ ǫ for all x ≥ T .

Now we split the integral of I1 into two parts:
∫ T

2
√

t
0 +

∫∞
T

2
√

t

dη =: I ′1 + I ′′1 . In

I ′′1 , 2
√
t η ≥ T so that

I ′′1 ≤ 1√
π

∫ ∞

0
ǫ e−η2

√
t
(
e

η|x|√
t − e

− η|x|√
t

)
dη = ǫ e

x2

4t

√
t erf

( |x|
2
√
t

)

≤ ǫ e
A2

4t

√
t erf

( A

2
√
t

)
≤ ǫ eA

A√
π

if t ≥ A/4.

To estimate I ′1, we notice that by Taylor’s Theorem, there exists h∗ > 0 such
that eh − e−h ≤ 3h for all 0 ≤ h ≤ h∗. Assume t ≥ TA/(2h∗). Then in I ′1,

η|x|√
t

≤ ηA√
t
≤ TA

2t
≤ h∗

so that we have

I ′1 ≤
1√
π

∫ T
2
√

t

0

∣∣∣Θ0(−2
√
t η)− 1

∣∣∣ e−η2
√
t
3η|x|√

t
dη

≤ 3A√
π

∫ T
2
√

t

0

∥∥∥Θ0(x)− 1
∥∥∥
L∞((−∞,0])

ηe−η2 dη . A(1− e−
T2

4t ).
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Therefore I1 = I ′1+ I ′′1 vanishes uniformly. Estimation of I2 is straightforward:

I2 ≤
1√
π

∫ ∞

0
e−η2(1− e−

A2

4t )
√
t
(
e

ηA√
t − e

− ηA√
t

)
dη

= (1− e−
A2

4t ) e
A2

4t

√
t erf

( A

2
√
t

)
≤ (1− e−

A2

4t ) e
A2

4t
A√
π
.

Lastly, to estimate I3, we have by Taylor’s Theorem,

|eh − e−h − 2h| ≤ h2

2
(e|h| − 1) for all h ∈ R.

Hence, if we put h = ηx√
t
,

I3 ≤
1√
π

∫ ∞

0
e−η2

∣∣∣∣
√
t
(
e

ηx√
t − e

− ηx√
t

)
− 2ηx

∣∣∣∣ dη

≤ 1√
π

∫ ∞

0
e−η2 η

2A2

2
√
t
(e

ηA√
t − 1) dη

.
A2

√
t

∫ ∞

0
η2 e−η2(eη − 1) dη if t ≥ A2.

(Uniform Convergence of
√
t Lx) From Lx in (2.5), we have

√
πt Lx(x, t)

= −
∫ ∞

|x|
2
√

t

Θ0(−2
√
t η + |x|)ηe−η2 dη −

∫ ∞

−|x|
2
√

t

Θ0(−2
√
t η − |x|)ηe−η2 dη

+
∫ t

0

√
t g′(t− τ)

e−
x2

4τ

√
τ

dτ + g(0) e−
x2

4t .

(3.4)

Assume −A ≤ x < 0 for some A > 0. First we claim that the second term
in (3.4) vanishes uniformly. By Lemma 2.3, for any fixed ǫ > 0, there exists
T > 0 such that |g(t)| ≤ ǫ for all t ≥ T . Split the integral of the second term
in (3.4) into two parts:

∫ t−T
0 +

∫ t
t−T dτ =: I1+I2 and let I2 contain the explicit

term g(0) e−
x2

4t . Then integrating I2 by parts, we have

I2 =
∫ t

t−T

√
t g(t− τ)

(2τ − x2) e−
x2

4τ

4τ 5/2
dτ + g(T )

√
t

t− T
e−

x2

4(t−T ) .

If we assume t ≥ 2T ,

|I2| ≤
√
t
∫ t

t−T
‖
√
t g(t)‖∞

(2τ + A2)

4
√
t− τ τ 5/2

dτ +
√
2 ǫ

.

√
t√

t
√
t− T

+
(3t− 2T )

√
t

t3/2 (t− T )3/2
A2 + ǫ .

1√
t
+

A2

t3/2
+ ǫ.
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On the other hand, if we assume T ≥ 1/ǫ2, it holds that in I1

|I1| .
√
t
∫ t−T

0

‖t3/2 g′(t)‖∞
(t− τ)3/2

√
τ
dτ .

√
t− T√
T

√
t
≤ ǫ.

Now we claim that the first term in (3.4) converges uniformly to −1. Both
integrals in the term converge to −1/2 and they can be dealt in a similar way.
Here we will consider the second integral only and show that

J :=
∫ ∞

−|x|
2
√

t

Θ0(−2
√
t η−|x|)ηe−η2 dη →

∫ ∞

0
ηe−η2 dη =

1

2
uniformly as t → ∞.

Split the integral into two parts:
∫ 0

−|x|
2
√

t

+
∫∞
0 dη =: J1 + J2. Then J1 vanishes

uniformly:

|J1| ≤
∫ 0

−|x|
2
√

t

‖Θ0‖∞ |η|e−η2 dη .
∫ A

2
√

t

0
ηe−η2 dη =

1

2

(
1− e−

A2

4t

)
.

On the other hand, from the assumption (2.11), J2 converges to 1/2 uniformly:

∣∣∣∣J2 −
1

2

∣∣∣∣ ≤
∫ ∞

0

∣∣∣Θ0(−2
√
t η − |x|)− 1

∣∣∣ ηe−η2 dη

≤
∫ ∞

0

∥∥∥x
(
Θ0(x)− 1

)∥∥∥
L∞((−∞,0])

2
√
t η + |x|

ηe−η2 dη .
1√
t
.

Therefore the proof is complete. ✷

Now we are ready to show that the weak solution of (1.3) converges to a steady
state uniformly on compact sets. A steady state solution of (1.3) should satisfy

wwx − wxx = δ in R.

Assuming the boundary conditions w(−∞) = wx(−∞) = 0, integrating this
equation from −∞ to x yields that

1

2
w2(x)− wx(x) = H(x),

where H(x) is the Heaviside function. If x < 0, then H(x) ≡ 0 so that the
solution is w(x) = 2/(c− x) for some constant c. On the other hand, if 0 < x,
H(x) ≡ 1 so that the solution is w(x) ≡

√
2. Therefore assuming continuity

of the solution, we can find the steady state:

w(x) =




2/(

√
2− x) if x ≤ 0,√

2 if 0 < x.
(1.4)
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Theorem 3.5 Let u be the weak solution of (1.3) with an initial value u0 ∈
C1(R) ∩ L1(R) ∩ W 1,∞(R). If Θ0 satisfies (2.11), then for any compact set
K ⊂ R,

‖u(t)− w‖L∞(K) → 0 as t → ∞,

where the steady state w(x) is given in (1.4). Furthermore, for any 1 ≤ p ≤ ∞,

‖u(t)− w‖Lp(K) → 0 as t → ∞.

PROOF. By Theorem 3.2, the unique weak solution is given by u = −2Θx/Θ.
Hence, for 0 < x, Lemma 3.3 gives that

u(x, t) = −2

√
t Rx(x, t)√
t R(x, t)

→ −2
− 1√

π
e
− x√

2

√
2
π
e
− x√

2

=
1√
2

as t → ∞.

For x ≤ 0, Lemma 3.4 also gives that

u(x, t) = −2

√
t Lx(x, t)√
t L(x, t)

→ −2
− 1√

π

1√
π
(
√
2− x)

=
2√
2− x

as t → ∞.

The uniform convergence on compact sets is clear since the denominator con-
verges to a positive function. The L1-convergence on compact sets follows from
the uniform convergence and the Dominated Convergence Theorem. Finally
the Lp-convergence follows by interpolation. ✷

As a corollary of the pointwise convergence, we can prove that the solution is
uniformly bounded.

Corollary 3.6 Let u be the weak solution of (1.3) with an initial value u0 ∈
C1(R) ∩ L1(R) ∩W 1,∞(R). If Θ0 satisfies (2.11), then

u ∈ L∞(R× [0,∞)).

PROOF. From the hypothesis, u0 ∈ L∞(R). Now note that u satisfies the
following initial-boundary value problem:






vt + vvx − vxx = 0, 0 6= x ∈ R, 0 < t,

v(x, 0) = u0(x), x ∈ R,

v(0, t) = u(0, t), 0 < t.
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By Theorem 3.5, u(0, t) → w(0) =
√
2 as t → ∞ so that u(0, t) is bounded

for 0 ≤ t. Therefore by the maximum principle, we have

‖u‖L∞(R×[0,∞)) ≤ max
{
‖u0‖L∞(R),max

0≤t
|u(0, t)|

}
< ∞.

✷

Appendix: Heat propagation from a point source
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Fig. 1. Solid lines are the spatial profile of the solution at a given time t and dashed
lines are the steady state w in (1.4). These figures are from the explicit formula
(3.1), but not from a numerical simulation. The solution approaches to the steady
state from below.

The solution u of the Burgers equation with a point source (1.3), which is
given in Theorem 3.2, is explicit except the boundary condition g(t). For the
case with zero initial value, u0 ≡ 0, the boundary condition g(t) was explicitly
given by

g(t) = e−t/4 I0(t/4), (2.10)
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where I0 is the modified Bessel function of the first kind. In this section we will
numerically display how the solution evolves to the steady state w in (1.4).
The solution is explicitly given by

u(x, t) =




−2Rx(x,t)

R(x,t)
, 0 ≤ x,

−2Lx(x,t)
L(x,t)

, x < 0,

where R,L,Rx and Lx are given in (2.2), (2.3), (2.4) and (2.5), respectively,
and

Θ0 ≡ 1.

Since both the numerator and the denominator vanish as t → ∞, it is incon-
venient to numerically compute the solution directly from the formula for t
large. Instead, a modified formula obtained by multiplying

√
t to both the

numerator and the denominator is used:

u(x, t) =





−2

√
t Rx(x,t)√
t R(x,t)

, 0 ≤ x,

−2
√
t Lx(x,t)√
t L(x,t)

, x < 0.

Then by Lemmas 3.3 and 3.4, both the numerator and the denominator con-
verge to nonzero numbers so that numerical computation becomes robust.

In Figure 1, the solution of (1.3) with u0 ≡ 0 is drawn at each given time along
with the steady state w. One may observe that the point source generates heat
constantly near the origin and the nonlinear convection transports the heat
to the right, preventing the solution from blowing up.
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