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Introduction

The purpose of this paper is to examine the role of Korteweg’s theory of cap-
illarity [23] in predicting the steady motion of a rarefied gas where the motion
is induced by a temperature gradient on the boundary of the flow domain.
The theoretical treatment of problem of such a temperature gradient driven
flow dates back to the classical paper of Maxwell [29]. Maxwell noted that
he was looking for an explanation to the surface flow phenomena discovered
by Kundt and Warburg for gases and Helmholtz and Piotrowski for liquids.
Maxwell introduced a linear second gradient of temperature to the Cauchy
stress tensor thus realizing that it is the extra contribution to the tangential
stress that causes the gas motion adjacent to the domain wall. The velocity
of the gas is a slip velocity which Maxwell computed. In equations (55)-(59)
of his paper Maxwell derives what he termed the “final equations of motion”
and then remarks “I have not, however, attempted to enter into the calcula-
tion of the steady motion”. Maxwell also remarks “this phenomenon, to which
professor Osborne Reynolds has given the name of thermal transpiration was
discovered entirely by him. He was the first to point out that a phenomenon
of this kind was a necessary consequence of the kinetic theory of gases...”

In modern terminology the name thermal transpiration has been replaced
by thermal creep. More to the point we see from Maxwell’s paper that he
used the Boltzmann equation (where Maxwell gives full credit to Boltzmann)
to derive his higher gradient theory. Hence it is clear that Maxwell in 1879
preceded Hilbert’s expansion [7,8,35] (and of course the expansion of Chap-
man and Enskog [33–35,38,42] and Burnett [5,6]) in deriving a higher order
theory of stress from the kinetic theory of gases. In more recent papers Sone
and his collaborators [41,42] have continued Maxwell’s program and developed
a higher order theory of thermal stresses. Furthermore other higher gradient
theories are presented in the paper of Lockerby, Reese, and Gallis [25]. Hence,
in principle, if one was to use a continuum mechanical approach to thermal
creep Sone et al.’s expansion [41,42] would provide the equations for the anal-
ysis. On the other hand van der Waals [27] in 1894 introduced a variational
form of a second gradient theory which was later put in more general form as
a stress tensor in 1901 by Korteweg [23]. In recent papers [38–40] the third
author of this paper, based on Gorban and Karlin’s exact summation of the
Chapman-Enskog expansion [15–18,21] for a linearization of Grad’s 13 mo-
ment expansion [19,20], has suggested that the sum of the Chapman-Enskog
expansion has the appearance of Korteweg’s theory. In fact for the case of
isobaric motion where the product of density and temperature is a constant
the theories of Maxwell, Sone et al., Lockerby et al., Bobylev et al. [1–4], and
Korteweg all appear to be similar at the linear level. But, since Korteweg’s
theory in the form written by Dunn and Serrin [14] (which was in turn moti-
vated by [36,37]) gives a nonlinear, simple and frame indifferent version of the
higher order stress, it is the one we choose to use here.

In the literature on thermal creep one may find two recent themes evolving.
The first view is within the context of the kinetic theory of gases. This means
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solving the Boltzmann equation or moment approximation to the Boltzmann
equations motivated by Grad’s 13 moment expansion. Numerically computed
solutions of the linearized Boltzmann has been provided by Ohwada et al. [30,
31], Loyalka et al. [26–28]. Explicit solutions of Struchtrup et al.’s regularized
13 moment equations are provided in a series of papers [43–45] (See also the
paper of Karlin et al. [22] for a further discussion of R13). Inspection of the
results given in the paper of Takesi, Rana, Torrilhon, and Struchtrup [45]
shows qualitative agreement for their exact solutions and the numerical ones
for the linearized Boltzmann equation. The non-numerical papers known to
the authors are the works of C.-C.Chen et al. [9] and I.-K. Chen et al. [10–12,
46] where sharp estimates are obtained on the velocity of the flow in terms of
the data and Knudsen number. Again the linear Boltzmann equation is used
as the fundamental description for the gas motion. Of course the second theme
in the literature is continuum theory as reviewed by Lockerby et al. [24,25],
and this is the direction we pursue here.

Again we summarize our goal here: we use the non-linear Korteweg theory
to allow us to develop sets of non-linear ordinary differential equations for
thermal creep flow. Furthermore, for the case of half-plane flow, we give an
explicit solution to these nonlinear equations. For channel and wedge flow we
give a mixture of qualitative and quantitative results. We believe the material
here gives continuation of the issues raised by Lockerby, Reese, and Gallis [25]
as to the “usefulness” of higher order constitutive relations in describing rar-
efied gas flow, i.e., the “usefulness” is allowing non-linear problems in rarefied
flow to be represented as systems of non-linear ordinary differential equations
which can be analyzed and in some cases explicitly solved. Moreover, to return
to our earlier quote from Maxwell’s paper: unlike Maxwell, as is obvious from
the above remarks, we do attempt to give the calculation of non-linear steady
motion of the gas.

Contents

1 Balance laws for isobaric flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Boundary value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Rescaled equations for thin layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Rescaled equations of channel flow . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Rescaled equations of half-plane flow . . . . . . . . . . . . . . . . . . . . . . . 11

4 Self-similar solutions for flows over a wedge . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Numerical computation of the similarity equations . . . . . . . . . . . . . . . 16
4.2 The structure of similarity solutions . . . . . . . . . . . . . . . . . . . . . . . 19

5 Concluding remarks: Maxwell’s incomplete computation . . . . . . . . . . . . . . . 23
6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Finding appropriate similarity scales . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Maximum principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



4 Yong-Jung Kim et al.

1 Balance laws for isobaric flow

The balance laws of mass, momentum, and energy for steady flow in two space
dimensions (x, y) are given by

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (1.1)

∂

∂x
(ρu2 − T11) +

∂

∂y
(ρuv − T12) = 0,

∂

∂x
(ρuv − T12) +

∂

∂y
(ρv2 − T22) = 0,

(1.2)

∂

∂x
((e+

1

2
(u2 + v2))ρu) +

∂

∂y
((e +

1

2
(u2 + v2))ρv)

=
∂

∂x
(uT11 + vT12) +

∂

∂y
(uT12 + vT22)−

∂q1
∂x

− ∂q2
∂y

.
(1.3)

Here we have

ρ density,

(u, v) velocity,

Tij Cauchy stress tensor,

e specific internal energy,

θ temperature,

q heat flux,

p pressure,

c capillarity coefficient.

We impose constitutive relations as follows. The Cauchy stress

Tij = TEij + T Vij + TKij ,

where TEij , T
V
ij , T

K
ij are the elastic, viscous, and Korteweg contributions to the

Cauchy stress. Denote T V+K
ij := T Vij + TKij . We set

p = ρ θ,

TEij = −pδij ,
T Vij = λ(trD)δij + 2µDij,

where µ > 0, λ = − 2
3µ,

D11 =
∂u

∂x
, D12 = D21 =

1

2
(
∂u

∂x
+
∂v

∂y
), D22 =

∂v

∂y
,

and

TKij = {ρc∆ρ+ ρcρM + 2ρcMd⊗ d · ∇2ρ+ ρcθg · d}δij − cd⊗ d.



Thermal creep of a rarefied gas on the basis of non-linear Korteweg-theory 5

(Subscripts ρ, θ,M denote partial derivatives with respect to the quantities.)
Here, λ, µ are viscosity coefficients of a monatomic gas, c = c(ρ, θ,M) is the
surface tension coefficient, d = ∇ρ, g = ∇θ and M = d · d and we choose a
system of dependent variables so that the gas constant R = 1. The form of
TKij is taken from the paper of Dunn and Serrin [14]. The internal energy e
consists of two parts,

e = eE + eK ,

where

eE =
3

2
θ

is the classical elastic contribution to the internal energy and

eK =
c− θcθ

2ρ
d · d

is the Korteweg contribution to the internal energy. Finally, the heat flux is
given by

q = qF + qK ,

where
qF = −κg,

is the Fourier contribution to the heat flux and

qK = cρ tr(D)∇ρ

is the Korteweg contribution to the heat flux. We take a power law for the
capillarity coefficient,

c = Aρaθb,

where a, b are constants. For example, such power law constitutive relations
are familiar in the modeling of thermo-mechanical processes (see Tzavaras[47–
49]and the extensive references given there).

For comparison, observe Maxwell’s second gradient term given in his equa-

tion (55) is 9
2
µ2

ρθ∆θ, which for isobaric flow is proportional to −µ2

ρ2∆ρ+ non-

linear terms. Maxwell takes µ = µ0θ. This yields −µ2
0θ

4∆ρ and with ρc =
Aρa+1θb = Aρa−b+1 = Aθb−a−1 would require b−a−1 = 4, i.e., b−a = 5. We
note in addition Maxwell’s coefficient will be negative, i.e., −µ2

0θ
4 where as

Korteweg theory gives a positive coefficient. This is no surprise since Maxwell
has computed the linear term in Burnett coefficient which we know [2,3] to
have the “bad” sign. The point of the papers [38–40] is that the sum of the
Chapman-Enskog expansion will give the “good” positive sign.

Following Maxwell (see his equation (57) ) we consider isobaric flows for
which

p = 1

so that
ρθ = 1.

Isobaric flows will capture the essence of transpiration flow near a solid bound-
ary where there is no induced pressure gradient to drive the flow.
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2 Boundary value problems

We consider three boundary value problems: channel flow, half-plane flow,
and wedge flow illustrated in Figure 1. We prescribe the following boundary
conditions:

x

y

H

y = H/2

y = −H/2

(a) channel flow

x

y

(b) half-plane flow

x

y

ψ = ψ0

(c) wedge flow

x

y

ψ = π

2

(d) flat wedge = half-plane

Fig. 1 Three boundary value problems are considered in this paper and their domains are
as the above, (a,b) and (c). If the angle ψ = π

2
, the wedge-flow becomes half-plane flow (d).

(a) channel: θ = θ1|x|s, v(x, y) = 0, |y| = H/2, (2.1)

(b) half-plane: θ = θ1|x|s, v(x, y) = 0, y = 0, (2.2)

(c) wedge: θ = θ1r
s, (u, v) · n = 0, ψ = ±ψ0, (2.3)

where n = (− sinψ0, cosψ0) is the unit normal vector to the wedge and (r, ψ)
is the polar coordinates. Here and in that follows we take a domain x > 0
for (a,b) due to the symmetry of the problem with respect to y-axis. We also
take the upper half plane y > 0 for (c) by the same reason. The power s can
be chosen freely and this freedom will be used later to construct a similarity
solution in Section 4. Notice that the half-plane flow is a special case of the
wedge flow when ψ0 = π

2 as demonstrated in (d). The boundary conditions
are also identical for these two cases.

Consider a Navier-Stokes-Fourier fluid with

Tij = TEij + T Vij ,

q = qF ,

κ = κ0θ
η.
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Then, (u, v, θ) = (0, 0, Θ) will be an exact solution to three isobaric boundary
value problems if Θ is the solution of

∆Θη+1 = 0

satisfying the above boundary conditions. In other words, for boundary con-
ditions given by (2.1), (2.2) and (2.3) with the no-slip condition, not only will
the Euler equation produce no non-trivial motion but also the Navier-Stokes-
Fourier system as well. Since motion is experimentally observed, this points
to “incompleteness of continuum fluid dynamics” [25].

3 Rescaled equations for thin layer

We will analyze the isobaric motion in two different ways, one based on a
rescaling for motion close to the walls and the second based on self-similarity
for which we will recover equations for isobaric motion away from the walls as
well.

3.1 Rescaled equations of channel flow

Consider the channel flow problem and set

y = ȳH, x = x̄L, (3.1)

where L is a typical length scale along the walls. We are interested in the case
where

ǫ =
H

L

is a small parameter. Insertion of (3.1) into (1.1),(1.2),(1.3) immediately yields
to leading order in ǫ,

∂

∂ȳ
(ρv) = 0,

which incorporated with the boundary condition v = 0 on the walls, tells us

v ≡ 0.

Now (1.2),(1.3) are to leading order,

∂

∂ȳ
(T12) = 0, (3.2)

∂

∂ȳ
(T22) = 0, (3.3)

∂u

∂ȳ
(T12)−

∂q2
∂ȳ

= 0. (3.4)
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We look for a solution of the form

u = û(ȳ),
v = 0,

θ = x̄sθ̂(ȳ),
ρ = x̄−sρ̂(ȳ),

ρ̂θ̂ = 1,

(3.5)

where recall s is determined by the boundary condition (2.1). From (3.5) and

the chain rule we find T V11 = 0, T V12 = µ ū
′

H , T
V
22 = 0 and

ρc∆ρ =
ρ̂c

x2s

(s(s+ 1)

L2x̄2
ρ̂+

ρ̂′′

H2

)

,

ρcρM =
ρ̂cρ
x̄3s

( ρ̂2

x̄2L2
+
ρ̂′2

H2

)

,

ρcθg · d =
ρ̂cθ
x̄s

( −s
x̄2L2

− ρ̂′2

ρ̂2H2

)

,

−cd⊗ d =
−c
x̄2s











ρ̂2

x̄2L2

−ρ̂ρ̂′
x̄LH

−ρ̂ρ̂′
x̄LH

ρ̂2

H2











. (3.6)

Insert (3.6) into the expression for TKij and then read off (to leading order in
ǫ) equations (3.2), (3.3),

∂

∂ȳ

(

µû′ +
cρ̂ρ̂′

Lx̄2s+1

)

= 0 (3.7)

and
∂

∂ȳ

(cρ̂ρ̂′′

x̄2s
+
cρρ̂ρ̂

′2

x̄3s
− cθρ̂

′2

x̄2ρ̂
− cρ̂′2

x̄2s

)

= 0. (3.8)

Here, since c = Aρaθb, c is independent of M and so we set cM = 0.
We have taken κ(θ) = κ0θ

η and hence to have a constant Prandtl number
we set µ(θ) = µ0θ

η. Examination of (3.7) tells us to force the same power of
x̄ in both terms we need

µ = µ0θ
η = µ0x̄

sη θ̂η,

c

x̄2s+1
=
Aρ̂a−bx̄−s(a−b)

x̄2s+1
= Aρ̂a−bx̄−s(a−b)−2s−1

to have the same exponent for x̄, i.e.,

sη = −s(a− b)− 2s− 1.

In the rest of this section we set s = 1 and hence

b− a = η + 3. (3.9)
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For example, for the case of Maxwell molecules, i.e., η = 1,

b− a = 4, (Maxwell)

and, for hard sphere molecules, η = 1/2,

b− a =
7

2
. (Hard Sphere)

If we refer back to Section 1, we see the needed scaling is b−a = 4 as opposed
to the one predicted by Maxwell himself (b − a = 5) from the kinetic theory
of gases.

We then see that (3.7) becomes

∂

∂ȳ

(

µ0θ̂
ηû′ +

Aρ̂a−b+1

L
ρ̂′
)

= 0

or

µ0θ̂
ηû′ +

Aρ̂a−b+1

L
ρ̂′ = const. (3.10)

We know however that for the channel flow problem the solution û, ρ̂ should be
even in ȳ and hence û′(0) and ρ̂′(0) must vanish. Thus the constant in (3.10)

is zero and with θ̂ρ̂ = 1 we have

µ0û
′ +

Aρ̂a−b+1+η

L
ρ̂′ = 0

and integration tells us

µ0û+
Aρ̂a−b+2+η

L(a− b+ 2 + η)
= const. (3.11)

Thus once ρ̂ is determined, û is known up to two constants.
We must now solve (3.8) subject to the boundary conditions ρ̂ = 1/θ1 at

ȳ = ±1/2. Again to get the same power of x̄ in each term we need

c

x̄2s
=
Aρ̂a−bx̄−s(a−b)

x̄2s
,

cρ
x̄3s

=
Aaρ̂a−b−1x̄−s(a−b−1)

x̄3s
,

cθ
x̄s

=
Abρ̂a−b+1x̄−s(a−b+1)

x̄s

to have the same exponent for x̄, i.e.,

−s(a− b)− 2s = −s(a− b− 1)− 3s = −s(a− b+ 1)− s,

which is indeed true. Thus (3.8) becomes

∂

∂ȳ

(

Aρ̂a−b+1ρ̂′′ + (Aaρ̂a−b −Abρ̂a−b −Aρ̂a−b)ρ̂′2
)

= 0 (3.12)
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or

ρ̂ρ̂′′ + (a− b− 1)ρ̂′2 =
C1

ρ̂a−b
, (3.13)

where C1 is a generic constant. Set

w = ρ̂′2

so that dw
dȳ = 2ρ̂′ρ̂′′. Then, (3.13) becomes

ρ̂dwdȳ

2 dρ̂dȳ
+ (a− b− 1)w =

C1

ρ̂a−b
,

or
dw

dρ̂
+

2(a− b− 1)w

ρ̂
=

2C1

ρ̂a−b+1
. (3.14)

Equation (3.14) admits the integrating factor ρ̂2(a−b−1). Multiply (3.14) by
this integrating factor to obtain

d

dρ̂
(ρ̂2(a−b−1)w) = 2C1ρ̂

a−b−3,

which we integrate to see

ρ̂2(a−b−1)w =
2C1ρ̂

a−b−2

a− b− 2
+ C2,

where C2 is also a constant. Hence we have

(dρ̂

dȳ

)2

= w =
2C1ρ̂

b−a

a− b− 2
+ C2ρ̂

−2(a−b−1)

= ρ̂b−a
( 2C1

a− b− 2
+ C2ρ̂

b−a+2
)

. (3.15)

For b− a > 3, as in the case of Maxwell molecules and hard sphere molecules,
take C1 > 0, C2 > 0 so that (3.15) gives us the phase plane portrait in Figure
2 where dρ̂

dȳ = 0 when 2C1

a−b−3 +C2ρ̂
−a+b+2 = 0. Hence the crossing point on the

ρ̂ axis moves as we adjust the ratio C1

C2
. We derive the graph given by (3.15)

and note the intersection with the vertical line ρ̂ = 1
θ1
. We desire the travel

time between the points of intersection equal to 1, i.e., − 1
2 < ȳ < 1

2 . This is

accomplished by adjusting our ratio C1

C2
since this will monotonically increase

travel time from zero as we move the phase portrait to the right. This proves
existence of a solution of (3.13) satisfying ρ̂(12 ) = ρ̂(− 1

2 ) =
1
θ1
. Hence we know

ρ̂ and from (3.11) we know û as well. Should we desire an explicit solution
to (3.15) we can substitute values of b − a, which reduces the problem to a
quadrature. For example, b− a = 4 for Maxwell molecules and,

(dρ̂

dȳ

)2

= ρ̂4
(

− C1

3
+ C2ρ̂

6
)

,
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ρ̂

dρ̂
dȳ

1
θ1

Fig. 2 The phase plane portrait given by (3.15).

1

ρ̂2

(

C2ρ̂
6 − C1

3

)− 1
2 dρ̂

dȳ
= ±1;

b− a = 7
2 for hard spheres and,

(dρ̂

dȳ

)2

= ρ̂7/2
(

− 4C1

11
+ C2ρ̂

6
)

,

1

ρ̂7/4

(

C2ρ̂
6 − 4C1

11

)− 1
2 dρ̂

dȳ
= ±1.

Finally we note that a sketch of the velocity profile is easily obtained from
the phase-plane portrait given in Figure 2. Notice that as we move along
the trajectory in the figure, say from top to bottom, beginning and ending
at ρ̂ = 1/θ1, ρ̂ decreases to what would be the value at ȳ = 0 and then
symmetrically increases again. Thus, since the exponent

a− b+ 2 + η

in equation (3.11) is negative, it tells us that the profile for û will increase,
reach a maximum at ȳ = 0, and then symmetrically decrease. But one easily
sees that this is consistent with numerically computed profile given in Figure
8 of [31].

3.2 Rescaled equations of half-plane flow

In our analysis of half-plane flow we anticipate a boundary layer of height H
and where again L is a typical length along the wall. Hence the derivation of
equations in (3.10) and (3.13) for û and ρ̂ is exactly the same as for channel
flow. In both (3.10) and (3.13) there are constants of integration and we impose
the far field conditions

ρ̂′, û′ → 0 as ȳ → ∞ (3.16)
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that yield these constants to be zero. Hence û is once again determined by
(3.12) where as ρ̂ is given as a solution of

ρ̂ρ̂′′ + (a− b− 1)ρ̂′2 = 0, (3.17)

ρ̂(0) =
1

θ1
. (3.18)

Division by ρ̂ρ̂′ in (3.17) gives

ln ρ̂′ + ln ρa−b−1 = C

and allows us to explicitly solve (3.17) and (3.18) to find

ρ̂(ȳ) =
(

C3ȳ +
( 1

θ1

)a−b) 1
a−b

, C3 = (a− b)eC . (3.19)

Substitute (3.19) into (3.11) and we can read off the explicit solution for the
half-plane problem,

µ0û+
A(C3ȳ + θb−a1 )

a−b+2+η
a−b

L(a− b+ 2 + η)
= const. (3.20)

Recall (3.9):
b− a = η + 3.

Hence the exponent in (3.20) is 1
4 for Maxwell molecules and 3

8 for hard spheres
when s = 1. Furthermore the constant C3 is negative for all cases. Now (3.20)
becomes

µ0û− A

L
(C3ȳ + θ41)

1
4 = const (3.21)

for Maxwell molecules, and

µ0û− A

L
(C3ȳ + θ

8
3

1 )
3
8 = const (3.22)

for hard spheres. Therefore, the negative sign of C3 shows that the gas flow
moves to left in the domain x > 0 if no slip boundary condition is imposed.

We notice that unlike the numeric and analytic results of Ohwada et al.
[31], Loyalka et al. [26–28] and Struchtrup et al. [44,45] equation (3.20) gives
a (i) sublinear growth of |û| in ȳ as opposed to a graph of the form (ii)
û = const0 +

∑

i≥1 consti exp(−βiȳ) when βi > 0. The reason for (ii) is an
immediate result of their model. The authors use a linear model and as is well
known from the theory of constant coefficient evolution equations, if there are
no oscillations (damped or undamped), then all bounded solutions must be
of the form (ii). Hence, there is no inconsistency between (i) and (ii). Both
provide the magnitude of û as a monotone increasing, concave function of ȳ.
One might question the growth of û for large ȳ. But of course once ȳ becomes
large (say of order 1

ǫ ), then the original scaling arguments used to derive the
ordinary differential equation for û and ρ̂ are no longer valid. This motivates
deriving a system of ordinary differential equations where the scaling in ǫ is
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not used and we shall do this in the next section. Finally, in both Sections 3.1
and 3.2, we have ∂q2

∂ȳ = 0.

If we wish to compute q1, we note that since qK1 is zero to leading order in
ǫ, the dominant term is given by qF1 which for the half-plane flow yields

qF1 = −κ(θ)∂θ
∂x

=
−κ0sθ̂η+1

L
=

−κ0sρ̂−(η+1)

L

=
−κ0s
L

(C3ȳ + θb−a1 )
η+1

b−a ,

which again gives exponents 1
2 for Maxwell molecules and 3

8 for hard spheres
and hence gives sublinear growth in ȳ.

4 Self-similar solutions for flows over a wedge

As noted in Section 3.2 the result derived from Korteweg theory given by (3.20)
will become inconsistent with their derivation for large y where as the results
of Loyalka et al., Struchtrup et al., and Ohwada et al. [31] will inevitably
reflect the linearity assumption of their underlying systems of equations. This
motivates us to derive a system of ordinary differential equations for isobaric
flow not based on the smallness of y or linearity.

It is well-known that the conservation laws given in (1.1)–(1.3) have the
similarity structure along a variable ξ = y

x . Therefore, we may consider a simi-
larity solution in terms of polar coordinates. First, we rewrite the conservation
laws in polar coordinates r and ψ. The velocity vector field is written as

(u, v) = w1er + w2eψ = (w1, w2)℘(≡ w),

where er = (cosψ, sinψ) and eψ = (− sinψ, cosψ) are unit vectors in polar co-
ordinate system and the subscript ‘℘’ in (w1, w2)℘ is to denote this coordinate
system. The stress tensors are written as

TEij = −pδij

T V = µ

(

2∂w1

∂r − 2
3∇ ·w 1

r
∂w1

∂ψ + ∂w2

∂r − w2

r

1
r
∂w1

∂ψ + ∂w2

∂r − w2

r 2
(

1
r
∂w2

∂ψ + w1

r

)

− 2
3∇ ·w

)

TKij = ρ∇ ·
(

c(ρ, θ)∇ρ
)

δij − c(ρ, θ)∇ρ⊗∇ρ.

The mass conservation (1.1) is written as

∇ · (ρw) =
1

r

∂

∂r
(rρw1) +

1

r

∂(ρw2)

∂ψ
= 0. (4.1)

The momentum conservation (1.2) is written as

∇ · S =





1
r

(

∂
∂r (rS11)

)

+ 1
r (

∂
∂ψS12 − S22)

1
r

(

∂
∂r (rS12)

)

+ 1
r (

∂
∂ψS22 + S12)



 = 0, (4.2)
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where S is a symmetric tensor given by

S = ρw ⊗w − T V+K .

Now, we will construct a special solution in a form of

ρ = rα ρ̃(ψ),
w1 = rγ w̃1(ψ),
w2 = rγ w̃2(ψ),

θ = rβ θ̃(ψ),

T V+K
ij = rδ T̃ij(ψ),

(4.3)

and ρ̃θ̃ = 1. The powers are given by

α =
−1

2η + 1
, β =

1

2η + 1
, γ =

−η
2η + 1

, δ = −1, (4.4)

where
µ = µ0θ

η, c(ρ, θ) = Aρaθb = Aθb−a

and
b− a = 3 + 2η. (4.5)

The choice of the powers above are from similarity structure of the problem,
which is briefly discussed in the Appendix. In particular, notice the difference
from the previous choice in (3.9).

The first step is to find equations for ρ̃, θ̃, T̃ij, and w̃ := (w̃1, w̃2)℘ by
substitution of the ones in (4.3) into the balance of mass and momentum.
First the mass flux is written as

ρw = rα+γ ρ̃w̃.

Hence, the mass conservation, ∇ · (ρw) = 0, is written as

(α+ γ + 1)ρ̃w̃1 + (ρ̃w̃2)
′ = 0, (4.6)

where the ordinary differentiation above is with respect to ψ variable.
There are three tensors for momentum conservation. Similar substitutions

give

ρw ⊗w = rα+2γ ρ̃w̃ ⊗ w̃, (4.7)

T V = rβη+γ−1T̃ V ,

T̃ V = µ0θ̃
η

( 4γ−2
3 w̃1 − 2

3 (w̃2)
′ (w̃1)

′ + (γ − 1)w̃2

(w̃1)
′ + (γ − 1)w̃2

−2γ+4
3 w̃1 +

4
3 (w̃2)

′

)

, (4.8)

TK = rβ(b−a−2)−2T̃K , T̃K = Aρ̃a−b
(

β2(1− (b− a))ρ̃2 +

(

ρ̃ρ̃′′ + (a− b)(ρ̃′)2
))

δij +Aρ̃a−b
(

−β2ρ̃2 βρ̃ρ̃′

βρ̃ρ̃′ −ρ̃′2
)

. (4.9)

The powers in (4.4) give

α+ 2γ = βη + γ − 1 = β(b − a− 2)− 2 = −1 = δ.
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Therefore, the tensor S satisfies S = r−1S̃ with

S̃ = ρ̃w̃ ⊗ w̃− T̃ V − T̃K .

The momentum conservation is written as

∇ · S = 0 ⇒
(

(1 + δ)S̃11 + S̃′
12 − S̃22

(1 + δ)S̃12 + S̃′
22 + S̃12

)

=

(

S̃′
12 − S̃22

S̃′
22 + S̃12

)

= 0. (4.10)

(Notice that the above choice of the power δ = −1 simplifies the momentum
conservation.) Therefore,

S̃′′
12 + S̃12 = 0, S̃22 = S̃′

12,

and hence we obtain

S̃12 = C1 cosψ + C2 sinψ

= ρ̃w̃1w̃2 − µ0ρ̃
−η(w̃′

1 + (γ − 1)w̃2)−Aβρ̃a−b+1ρ̃′, (4.11)

S̃22 = −C1 sinψ + C2 cosψ = ρ̃w̃2
2 − µ0ρ̃

−η
(4

3
w̃′

2 +
4− 2γ

3
w̃1

)

−Aρ̃a−b((1 + a− b)β2ρ̃2 + ρ̃ρ̃′′ + (a− b + 1)ρ̃′2 − 2ρ̃′2). (4.12)

Notice that we do not consider the equation for energy conservation. The
reason for this is both mathematical and physical. Of course the mathematical
basis for ignoring energy conservation is obvious: (4.6), (4.11) and (4.12) will
provide a closed system of ordinary differential equations in ρ̃, w̃1 and w̃2.
The physical basis for neglecting energy balance may be found in the paper
of Sone where he writes on the discrepancy of the Navier-Stokes system [41,
Section 3.1]. “Anyway, the heat-conduction equation is not appropriate to the
description of the temperature field of the problem ... the temperature field has
to be obtained simultaneously with the flow with the case of the continuity
and momentum equations.” Sone bases his remarks on order of magnitude
relations in the balance laws. Mathematically the energy equation would have
to be modified by the terms qK1 , qK2 and eK . Now just as in the more traditional
examples of isothermal and isentropic gas dynamics in absence of the heat
flux the balance of mass and momentum will imply the energy equality. This
is of course familiar in continuum thermodynamics (see C.M. Dafermos [13]).
Moreover, it is interesting to note that Maxwell himself weighed in on this
issue. He wrote “However, it is important this consideration may be in the
theory of specific heat and that of conduction of heat, it has only a secondary
bearing on the question of stresses in the medium; and as it would introduce
great complexity and much guess-work into our calculations...”
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4.1 Numerical computation of the similarity equations

The three equations in (4.6), (4.11) and (4.12), make a system that involves
first order derivatives of w̃1 and w̃2 and first and second order derivatives of
ρ̃. Hence, we obtain first order system of four equations

ρ̃′ = ω̃, (4.13)

w̃′
1 = (1− γ)w̃2 −

Aβ

µ0
ρ̃−η−2ω̃

+
ρ̃η

µ0
(ρ̃w̃1w̃2 − C1 cosψ − C2 sinψ), (4.14)

w̃′
2 = −(α+ γ + 1)w̃1 −

ω̃

ρ̃
w̃2, (4.15)

ω̃′ = ρ̃−1((b − a− 1)(β2ρ̃2 + ω̃2) + 2ω̃2) +
1

A
ρ̃b−aw̃2

2 −
ρ̃b−a−1

A
×

(

C2 cosψ − C1 sinψ + µ0ρ̃
−η((

4

3
β − 2γ)w̃1 −

4ω̃

3ρ̃
w̃2)
)

. (4.16)

We solve this problem on an interval [ψ0, π] with initial conditions

ρ̃(ψ0) = ρ̃0 > 0, w̃1(ψ0) = w̃10, w̃2(ψ0) = 0, ω̃(ψ0) = ω̃0, (4.17)

where ψ0 is the angle of wedge. Note that the aboveC1 and C2 are not arbitrary
constants. They have to be chosen appropriately. For example, the angular
component of the velocity vector should be zero at the other side of the wedge,
i.e.,

w̃2(2π − ψ0) = 0. (4.18)

Notice that we consider a symmetric wedge and hence a symmetric solution
with respect to x-axis. Therefore, the constants C1 and C2 should be chosen
to satisfy

w̃2(π) = 0. (4.19)

In the numerical examples and computations of this section C1 and C2 were
chosen in a way that (4.19) is satisfied. The existence of such C1 and C2 seems
to depend on the initial values in (4.17) and the wedge angle ψ0. We could
not show existence or uniqueness of such constants that give the symmetry to
a solution.

In Figure 3 the velocity vector fields of four similarity solutions are given
in xy-plane. In these examples, hard sphere case is considered with η = 1.
Two cases of wedge angles are considered with ψ0 = 0, π/6, where ψ0 = 0
should be considered as the limiting case that the wedge angle approaches to
zero. Since the power γ < 0, the far field velocity is zero. However, to generate
these flow under the isobaric assumptions, the temperature diverges as r → ∞
since β > 0 and the gas is a vacuum at the far field. The examples in Figures
3(a,c) are with slip boundary conditions and in Figures 3(b,d) are with no
slip boundary condition. In particular Figures 3(b,d) show that the similarity
solution is not stationary even if the velocity field is zero along the wedge.
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(a) slip boundary condition with ψ0 = π
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(d) no slip condition with ψ0 = 0

Fig. 3 Velocity vector fields of similarity solutions for wedge problem (4.13)–(4.19) in xy-
plane. Slip boundary condition w̃1(ψ0) = 1 is given for (a), and no slip boundary condition
w̃1(ψ0) = 0 is given for (b,c,d). The wedge angle is ψ0 = π/6 for (a), ψ0 = π

2
for (b), and

ψ0 = 0 for (c,d). The other boundary conditions are identical with w̃2(ψ0) = 0, ρ̃(ψ0) = 1
and ρ′(ψ0) = 0 and constants C1 and C2 have been chosen to satisfy w̃2(π) = 0.
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Fig. 4 [horizontal-axis: angle ψ]. Similarity solution of (4.13)–(4.18) with no slip boundary
condition. The first row is the case in Figure 3(b) with ψ0 = π/6 and the second row is in
Figure 3(d) with ψ0 = 0. Three cases of η = 0, 0.5, 1 are considered.
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Fig. 5 [horizontal-axis: distance from the horizontal surface.] Velocity vector fields of simi-
larity solution in rectangular xy-coordinates for a thin wedge are given in (a,b). The initial
conditions are identical to the case in Figure 3(d) with no slip boundary condition. The
half-plane case with the wedge angle ψ0 = π

2
as in Figure 1(d) is given in (c,d).

In Figure 4 the profiles of velocity w̃ = (w̃1, w̃2)℘ and the density ρ̃ are
given for the two cases with no slip boundary conditions. The first row corre-
sponds to the case in Figure 3(b), where three cases of η = 0, 0.5 and 1 are
displayed. The second row is the case in Figure 3(d). In these examples, we
have ρ̃ > 0 and w̃2 = 0 for η = 0 case. These observation will be proved in
Theorem 1. In these examples, one may also observe that ρ̃ has a unique local
minimum in the interval [ψ0, π]. Part of such behavior is shown in Theorem 2.

In Figure 5(a,b), velocity vector fields are given in rectangular coordinates
along a line x = 1 with 0 < y < 6. These figures correspond to the case in
Figure 3(d) with no slip boundary condition. One may observe the dynamics of
the velocity field away from the horizontal thin wedge plate with wedge angle
ψ0 = 0. In Figure 5(c,d), velocity vector fields are given similarly for the case
with ψ0 = π

2 . This is the flat wedge in Figure 1(d) that gives the half-plane
flow in Section 3.2. The specification of the simulation is same as Figure 3(c).
One may observe differences between this half-plane flow and the previous thin
wedge plate flow. First notice that the parallel component v to the surface in
(c) has the negative sign. This is the same sign obtained from (3.22), where
C3 in the formula is negative. The vertical component u in (d) has zero slope
on the boundary and hence is smaller than the horizontal component near the
surface. These two components become compatible beyond the thin layer near
the surface.
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Some of the simulation results agree with other linear theory results. For
example, the magnitude of the horizontal component of velocity increases in
the thin layer of the plate, say 0 < x < 1, and approaches to a maximum,
which agrees with the results in [45, Figure 6]. However, as x increases beyond
the thin layer, the velocity v decreases and converges to zero eventually. This
second part shows the difference of the nonlinear theory of this paper from the
linear theory.

4.2 The structure of similarity solutions

In this section properties of previously obtained similarity solutions are stud-
ied. We have observed several solution structures from numerical computations
in the previous section. For example, the gas density ρ̃ was positive and there
were at most two critical points in the interval [0, π]. The angular velocity
was identically zero w̃2 = 0 for the case with η = 0. We will show some of
these observations for the case of η = 0. We assume the wedge is symmetric
and hence the solution is also symmetric with respect to x-axis. Therefore, the
range of the angle of our interest is ψ0 ≤ ψ ≤ π. If η = 0, the powers in (4.4)
become

α = −1, β = 1, γ = 0, δ = −1, b− a = 3. (4.20)

For this case, we can reduce the system for similarity solutions to a single
second order ODE of ρ. First the conservation of mass, (4.6), is written as

(

ρ̃w̃2

)′
= 0 ⇒ ρ̃w̃2 = const.

Since w̃2(ψ0) = 0, this constant should be zero. Therefore, if the gas density
ρ(ψ) is positive on an interval [ψ0, τ ], then the angular velocity is zero in the
interval, i.e.,

w̃2(ψ) = 0, ψ0 < ψ < τ. (4.21)

One may observe this phenomenon from Figures 4(b) and (e). In the followings,
we will show that we may take τ = π unless the solution blows up.

The equations (4.11) and (4.12) are simplified as

C1 cosψ + C2 sinψ = −µ0w̃
′
1 −Aρ̃−2ρ̃′, (4.11)′

−C1 sinψ + C2 cosψ = −µ0

(4

3
w̃1

)

−Aρ̃−3(−2ρ̃2 + ρ̃ρ̃′′ − 4ρ̃′2). (4.12)′

The integration of (4.11)′ gives

−µ0w̃1 = −A1

ρ̃
+ C1 sinψ − C2 cosψ + C3,

where C3 is decided by initial values, i.e.,

C3 = −µ0w̃1(ψ0) +A
1

ρ̃(ψ0)
− C1 sinψ0 + C2 cosψ0.
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The substitution of µ0w̃1 into (4.12)′ gives

ρ̃′′ = 4
(ρ̃′)2

ρ̃
+

2

3
ρ̃− ρ̃2

A

(

−7

3
C1 sinψ +

7

3
C2 cosψ − 4

3
C3

)

. (4.22)

Let z = θ̃3 = ρ̃−3. Then, Eq. (4.22) is written as

z′′ + 2z =
1

A
(−7C1 sinψ + 7C2 cosψ − 4C3) z

2/3.

Let

R(ψ) :=
1

A
(−7C1 sinψ + 7C2 cosψ − 4C3) = B1 cos(ψ − ψ̄) +B2, (4.23)

where

B1 =
7

A

√

C2
1 + C2

2 > 0, B2 = − 4

A
C3, ψ̄ = tan−1

(

− C1

C2

)

.

Then, z satisfies

z′′ + 2z = R(ψ)z2/3. (4.24)

(Above notations are reserved and appear in the rest of paper.)

Theorem 1 Let α, β, γ, δ, a and b be given by (4.20) and η = 0. Then,
ρ̃(ψ) > 0 and w̃2(ψ) = 0 as long as ρ̃ is bounded.

Proof Let τ > ψ0 be the first point such that ρ(τ) = 0. Then, z := ρ̃−3 = θ̃3

is well defined for ψ0 < ψ < τ and satisfies

z′′ +
(

2− ρ̃R(ψ)
)

z = 0.

Density ρ̃ is bounded on [ψ0, τ) ⊂ [0, π] and thus all the coefficients of the
second order differential equation are bounded. Therefore z is bounded in
[ψ0, τ) which contradicts the assumption ρ̃(τ) = 0. Therefore ρ̃ > 0 for all
ψ > ψ0 as long as ρ̃ is defined. The same τ > ψ0 in (4.21) can be any angle
in the domain that ρ̃ is bounded and hence the second part of the theorem
holds. ⊓⊔

As discussed in previous sections, the global existence of a similarity so-
lution requires w̃2(π) = 0. The theorem guarantees the relation for the case
η = 0 as long as the density ρ̃ is bounded. However, the density may blow
up within the interval ψ ∈ (ψ0, π] depending on the choice of coefficients C1

and C2. The following lemma provides a necessary condition for the global
existence of a similarity solution.

Lemma 1 Let α, β, γ, δ, a and b be given by (4.20) and η = 0. If R(ψ) ≤ 0 in
[a1, a2], the gas density ρ̃ has no local maximum in [a1, a2] and, furthermore,
if a2 − a1 ≥ π√

2
, there exists a blow up angle ψb ∈ (a1, a2).
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Proof Let z1 := ρ̃−3 = θ̃3. Since R(ψ) ≤ 0 in the interval [a1, a2], we have

z′′1 + 2z1 = R(ψ)z
2/3
1 ≤ 0, ψ ∈ [a1, a2]. (4.25)

Therefore, by the maximum principle, z1 has no positive local minimum, i.e.,
ρ̃ has no positive local maximum. Now we assume a2 − a1 ≥ π√

2
and compare

z1 to

z2(ψ) := z1(a1) cos(
√
2(ψ − a1)) +

z′1(a1)√
2

sin(
√
2(ψ − a1)),

which satisfies z′′2 + 2z2 = 0, z2(a1) = z1(a1) and z
′
2(a1) = z′1(a1). We employ

a maximum principle [32, Theorem 14 of Chap.1] and conclude that z2 ≥ z1
on (a1, a2) (see Appendix). Now z2 attains a zero ψ1 such that

tan(
√
2(ψ1 − a1)) = −

√
2
z1(a1)

z′1(a1)
. (4.26)

Since the period of the function ‘tan(
√
2ψ)’ is π√

2
and a2 − a1 ≥ π√

2
, there

exists ψ1 ∈ (a1, a2) that satisfies (4.26), i.e., z2(ψ1) = 0. Since z1 ≤ z2 on
(a1, a2), there exists ψb ∈ [a, ψ1] such that limψ→ψb

z1(ψ) = 0. Therefore,
limψ→ψb

ρ̃(ψ) = ∞. ⊓⊔

Notice that even if a2 − a1 <
π√
2
, the solution may blow up depending on

the values of z1(a1) and z
′
1(a1). Hence the above lemma only gives a necessary

condition for the global existence of similarity solution. The choices of C1

and C2, together with initial conditions, decide the negative regions of R(ψ).
Hence, to expect a similarity solution, one should choose C1 and C2 in a way
that R(ψ) has positive values in a larger region. On the other hand, similarity
solutions have been constructed numerically for all the test cases with ψ0 > 0.
Hence it can be conjectured that for any given initial value in (4.17) and wedge
angle ψ0 > 0, there exists C1 and C2 that gives the global existence of the
similarity solution. However, we do not have its proof.

Next we consider the number of critical points of similarity solution.

Lemma 2 Let α, β, γ, δ, a and b be given by (4.20) and η = 0. If R(ψ) ≥ 0 in
[ψ̄, ψ̄+ τ ] ⊂ [0, π], θ̃ has a local maximum at ψ1 ∈ [ψ̄, ψ̄+ τ ], and ψ̄+ τ −ψ1 <
π√
2
, then there is no local minimum in the interval (ψ1, ψ̄ + τ).

Proof The proof is similar to the one for Lemma 1. This time we let z1 := d
dψ θ̃

3,

which is the derivative of the z1 in Lemma 1. Then from (4.25), we have

z′′1 +
(

2− 2

3
R(ψ)ρ̃

)

z1 = R′(ψ)ρ̃−2 = −B1 sin(ψ − ψ̄)ρ̃−2 ≤ 0

for ψ ∈ [ψ̄, ψ̄ + τ ]. Since ψ1 is a local maximum of θ̃, we have z1(ψ1) = 0
and z′1(ψ1) ≤ 0. One may easily check that any z1 cannot be constant on
(ψ1, ψ1+ǫ) for any ǫ > 0 and hence z′1(ψ) < 0 on (ψ1, ψ1+ǫ) for a small ǫ > 0.
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Hence we may assume z′1(ψ1) > 0 by taking a slightly larger angle if needed.
Now compare z1 to

z2(ψ) := −ǫ̃ sin(
√
2(ψ − ψ1)),

which satisfies z′′2 + 2z2 = 0 and z2(ψ1) = 0. By choosing a small ǫ̃, we have
0 > z′2(ψ1) ≥ z′1(ψ1). Furthermore, since z2 ≤ 0 and R ≥ 0 on [ψ1, ψ1 +

π√
2
],

z′′2 +
(

2− 2

3
R(ψ)ρ̃

)

z2 ≥ z′′2 + 2z2 = 0.

We employ the maximum principle [32, Theorem 14 of Chap.1] again and
conclude that z2 ≥ z1 on (ψ1, ψ̄+τ) (see Appendix). However, since ψ̄+τ−ψ1 <
π√
2
, z2 < 0 on (ψ1, ψ̄ + τ) and so is z1. Therefore, θ̃ has no critical point in

the interval. ⊓⊔
Lemma 2 lets us control oscillation behavior in the region ψ > ψ̄. Hence

we first set ψ̄ = ψ0 by fixing the ratio C1

C2
as

ψ̄ = tan−1(−C1

C2
) = ψ0, i.e., C1 = −C2 tan(ψ0). (4.27)

Hence we have one degree of freedom left in choosing the constants. The func-
tion R(ψ) is given by

R(ψ) = B1 cos(ψ − ψ0) +B2.

Since there should be a local maximum between two local minima, the distance
between two local minima should be larger than π√

2
.

From the numerical simulations of previous section we have observed that
there is at most one local minimum of ρ̃ and θ̃ in the interval (ψ0, π). Using
the previous two lemmas we show in the following theorem that a similarity
solution may have at most two local minima on (ψ0, π).

Theorem 2 Let α, β, γ, δ, a and b be given by (4.20) and η = 0. There exist
at most two local minima of θ̃ on [ψ0, π]. If the wedge angle ψ0 ≥ π− π√

2
, then

the local minimum is unique on [ψ0, π].

Proof Depending on the choice of constants C1 and C2, the sign of R(ψ)
changes. Notice that R(ψ) is a decreasing function on (ψ0, π). Hence there
may exists τ ∈ [ψ0, π] such that R(ψ) > 0 for ψ0 < ψ < τ and R(ψ) < 0
for τ < ψ < π. If π − τ > π√

2
, then Lemma 1 implies that the solution

blows up. Hence we may delete this case. Lemma 1 also implies that θ̃ has
no local minimum on (τ, π). Hence, if τ − ψ0 <

π√
2
, then there exists at most

one local minimum in (ψ0, τ) since the distance between two local minimum
points should be larger than π√

2
by Lemma 2. If ψ0 ≥ π − π√

2
, then, for any

0 ≤ τ ≤ π, τ − ψ0 < π√
2
and hence there is at most one local minimum.

Furthermore, since π
2 <

π√
2
, it is not possible to have three local minima even

if τ = π and ψ0 = 0. Hence, there are at most two local minima of θ̃. ⊓⊔
Notice that our numerical simulations provide a unique local minimum on

interval (ψ0, π). We could only show the uniqueness of the local minimum for
the case that ψ0 ≥ π − π√

2
and η = 0.
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5 Concluding remarks: Maxwell’s incomplete computation

In the introduction to this paper we have given a short description of Maxwell’s
derivation of what are now called the Burnett equations. Maxwell’s compu-
tation was for only linear terms and in fact he only displays one of the three
momentum equations (59) and his equations (as Maxwell noted correctly on p.
248) are missing the crucial shear stress. Hence it is natural to ask if Maxwell
had included the shear stress would he have derived the experimentally ob-
served motion? We see in the Korteweg theory the shear stress TK12 is linear
in ρ̂′, say as given (3.6), and it seems likely Maxwell would have recovered
this term as well. More striking however, since Maxwell was dealing with the
Burnett equations, as we have shown in Section 1, his coefficient would would
be the opposite sign of our A > 0. Hence, while Maxwell could have completed
his calculation he would have found a new type of “Bobylev instability” 100
years before Bobylev’s result, i.e., the gas would move but opposite to the
experimentally observed direction.

6 Appendix

6.1 Finding appropriate similarity scales

In this section we briefly discuss how the scales in (4.4) have been obtained.
To find a similarity solution in a form of

ρ = rαρ̃(ψ),

θ = rβ θ̃(ψ),
w1 = rγ1 w̃1(ψ),
w2 = rγ2 w̃2(ψ),

Tij = rδT̃ij(ψ),

(A.1)

we are looking for equations for ρ̃, θ̃, w̃1, w̃2 and T̃ij with the angular variable
“ψ” only. Our strategy is simple. If (i) each term in a balance law shares an
identical power of r after a substitution of (A.1) into (1.1),(1.2) and hence (ii)
the radial variable can be cancelled out after this substitution, then we may
expect a self-similar solution.

For example, the two terms in the mass balance law are written as

ρw1 = rαρ̃rγ1w̃1, ρw2 = rαρ̃rγ2w̃2.

Therefore, the first requirement is

α+ γ1 = α+ γ2, (6.1)

which gives γ1 = γ2 =: γ.
For the isobaric case, the powers α and β should satisfy the isobaric relation

α+ β = 0,
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and the elasticity contribution to the tensor Tij disappears since the pressure
p is constant. Now, there are three terms left in the momentum balance. The
scales of these terms in radial direction are given in (4.7)–(4.9). These three
scales give three equations

α+ 2γ = δ,

βη + γ − 1 = δ,

β(b − a− 2)− 2 = δ.

In this system, there are four unknowns, α, β, γ and δ, and four equations
including the isobaric relation. Hence one may expect a unique similarity scale.
Notice that the relation in (4.10) is simplified if δ = −1. If we choose the
Korteweg coefficient to be c(ρ, θ) = Aρaθb with b − a = 3 + 2η, then we may
have δ = −1. The similarity scales of the case are the ones given in (4.4).

6.2 Maximum principle

In this section we introduce one dimensional maximum principle [32, Theorem
14 of Chap.1] used in this paper in a simplified version, which suffices for our
situation. Let g and h be bounded and consider an operator

(L + h)[u] = u′′ + g(x)u′ + h(x)u.

Maximum principle: Let z1(x), z2(x) and w(x) be smooth functions on an
interval [a1, a2] with the following properties:

1. w > 0 on [a1, a2].
2. z1(a1) ≤ z2(a1) = γ1 and z′1(a1) ≤ z′2(a1) = γ2.
3. z′1(a1)w(a1)−z1(a1)w′(a1) ≤ γ2w(a1)−γ1w′(a1) ≤ z′2(a1)w(a1)−z2(a1)w′(a1).
4. (L+ h)[w] ≤ 0, (L+ h)[z1] ≤ (L+ h)[z2].

Then,
z1(x) ≤ z2(x) for a1 ≤ x ≤ a2.

This maximum principle has been used in the proof of Lemmas 1 and 2.
For the proof of Lemma 1, we take g(x) = 0, h(x) = 2, z2(a1) = z1(a1),
z′2(a1) = z′1(a1), and

w(x) = sin(
√
2(ψ − a1 + ǫ) ).

Then, we may apply the maximum principle on the domain [a1, a1 + π−2ǫ√
2
],

where ǫ can be arbitrary small. For the proof of Lemma 2, we take g(x) = 0,
h(x) = 2 − 2

3R(ψ)ρ̃, 0 = z2(a1) = z1(a1), 0 ≥ z′2(a1) ≥ z′1(a1), and the same
w. One can easily check that all assumptions in the theorem are satisfied.
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von S. Flügge), Bd. 12, Thermodynamik der Gase, Springer-Verlag, Berlin, 1958,
pp. 205–294. MR 0135535 (24 #B1583)

21. I.V. Karlin and A.N. Gorban, Hydrodynamics from Grad’s equations: what can we

learn from exact solutions?, Ann. Phys. 11 (2002), no. 10-11, 783–833. MR 1957348
(2004e:82050)

22. I.V. Karlin, A.N. Gorban, G. Dukek, and T.F. Nonnenmacher, Dynamic correction to

moment approximations, Physical Review E 57 (1998), no. 2, 1668–1672.
23. D.J. Korteweg, Sur la forme que prennent les équations dumouvements des fluides si
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