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Abstract. Network based conductivity reconstruction method is introduced using the third
Maxwell’s equation, or Faraday’s law, for a static case. The usual choice in electrical impedance
tomography is the divergence free equation of the electrical current density. However, if the elec-
trical current density is given, the curl free equation of the electrical field gives a direct relation
between the current and conductivity and this relation is used in this paper. Mimetic discretiza-
tion is applied to the equation, which gives the virtual resistive network system. Properties of
the introduced numerical schemes are investigated and its advantage over other conductivity
reconstruction methods is discussed. Numerically simulated results with an analysis of noise
propagation are presented.

1. Introduction

Suppose that Ω ⊂ R
d, d ≥ 2, is a bounded simply connected domain of an electrical

conductivity body with a smooth boundary ∂Ω and r0 : Γ ⊂ ∂Ω → R
+ is a given

boundary resistivity. The purpose of this paper is to develop a numerical algorithm to
find the isotropic resistivity distribution r : Ω → R

+ that satisfies

∇× (rF) = 0 in Ω,
r = r0 on Γ ⊂ ∂Ω,

(1.1)

when a single set of current density F : Ω → R
d and a boundary resistivity r0 on Γ ⊂ ∂Ω

are given. This curl free equation is the third Maxwell’s equation, or Faraday’s law, for
the static electromagnetism. The existence of such resistivity is clear if F is an exact
current density generated by an isotropic conductivity body. However, the existence fails
for a general vector field. It has been shown in two space dimension that, if the vector
field F and the boundary Γ are admissible in the sense of Definition 2.1, such a resistivity
distribution exists and is unique (see [19, Theorem 1]).

This problem is from a magnetic resonance imaging based electrical impedance to-
mography problem or MREIT for brevity (see [11, 14, 24, 27, 28]). For example, if an
injection current is applied to the boundary of a conductivity body, the voltage u satisfies
the following divergence free equation

∇ · (σ∇u) = 0 in Ω,
−σ∇u · n = g on ∂Ω,

(1.2)

where σ = r−1 is the conductivity, n is the outward unit normal vector to the boundary
∂Ω, and g is the normal component of the boundary current that satisfies

∫

∂Ω
gds = 0.

Then, the current density J and the voltage u satisfy Ohm’s law:

J = −σ∇u in Ω. (1.3)
1
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The system (1.2)–(1.3) has been used to construct the conductivity σ in an iterative way
when a current density J is given (see [15, 18] and Appendix A). However, we may
construct the conductivity directly by choosing Faraday’s law (1.1) since the conductivity
and the electrical current are explicitly involved in this equation. In this way we may
avoid the convergence issue caused by iterative arguments and obtain faster reconstruction
algorithm.

If the conductivity σ is a d×d symmetric or diagonal matrix, it is called an anisotropic
or orthotropic conductivity, respectively. We are interested in an isotropic conductivity
case in this paper which is a scalar valued one. Finding the conductivity image has been
one of central issues of inverse problems. The electrical impedance tomography (or EIT) is
now a classical example (see [1, 2, 5, 10] and references therein). The conductivity image
is constructed in EIT from boundary measurements of voltage and the elliptic equation
(1.2) gives a direct relation between the voltage and the conductivity. The uniqueness of
the conductivity σ that satisfies (1.2) for all possible boundary measurements is known
for the isotropic case in two and three space dimensions (see [23, 26]). However, for
an anisotropic conductivity case, the uniqueness is only given in equivalence classes by
diffeomorphisms (see [10]). The uniqueness of the conductivity that satisfies (1.2)–(1.3)
for a given current density J is well known when two sets of current density are given
[16] or a single set of current density is given with the boundary voltage or resistivity
[13, 17, 22].

The existence of the conductivity σ that satisfies (1.2) is usually assumed, but hardly
studied, in conductivity reconstruction problems since the data is supposed to be obtained
from an existing conductivity body. However, if the data contain a noise, the existence
should be the main concern and hence the first step is to specify a class of data that allows
the existence. The admissibility condition in Definition 2.1 has been introduced to classify
current data that provide the existence of a corresponding conductivity. It is known that
inverse problems are exponentially instable and EIT is a well known example. Recently
the limitation of obtainable resolution has been studied for linearized EIT problems by
Ammari et al. [3, 4]. For MREIT problems the Hölder conditional stability of (1.2) and
the stability of its linearized problem has been studied in [21, 22]. The stability of the
conductivity reconstruction of the original nonlinear MREIT problem has been obtained
within the class of admissible current data by Kim and Lee [19].

In this paper we develop a numerical algorithm which is based on a virtual resistive
network system (or VRN for brevity). For simplicity, we construct a rectangular VRN
in this paper. However, the algorithm comes from a contour integration of an arbitrary
network system and one may develop various shapes of network system depending on
the geometry of a given problem. Since the network system plays as a background of
the discretization, one may rotate it as in Figure 8 and obtain various reconstructed
images. This reconstruction algorithm has a nature of hyperbolic problems such as the
noise propagation along characteristics and the domains of dependence and influence
(see Figures 5 and 6). The computational cost of the algorithm is very low since the
conductivity is obtained from a cell by cell local computation. Hence, its extension to the
three dimensions is promising.
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Since the VRN method is a non-iterative method, its numerical simulation has been
compared with two other non-iterative methods, the equipotential line and direct integra-
tion methods [12, 13, 17]. All the computations are done with a single set of current data.
The key of the conductivity reconstruction is to reduce the noise propagation along char-
acteristic lines which is the source of noisy stripes in the reconstructed images. The VRN
method reduces the appearance of such stripes. However, if the noise level becomes as big
as 40%, such stripes still appear as in Figure 17. One may develop various shapes of net-
work system (see [20]) or apply two sets of current data with perpendicular characteristic
lines to reduce the appearance of the noisy stripes. A widely used reconstruction method
in MREIT is the harmonic Bz algorithm [24], which is an iterative method. A comparison
with the method is given in Appendix A. One can similarly observe the stripes of noise
in Figure 19. However, if two electrical current density are used, the image is improved
considerably.

2. A mimetic approach for the Maxwell-Faraday equation

Let Ω ⊂ R
2 be a bounded simply connected domain of a conductivity body and its

boundary ∂Ω be smooth. We consider a static electromagnetic field E in the body. First,
the electric field satisfies

∇× E = 0, (2.1)

which is the static Maxwell-Faraday equation. Therefore, there exists a potential u (or
voltage) that satisfies

E = −∇u.

Let σ : Ω → R
+ be an isotropic conductivity distribution of the body and r = σ−1 be its

inverse which is called the resistivity distribution. We assume that σ and r are bounded
away from zero. The current density J is given by Ohm’s law:

J = σE or E = rJ. (2.2)

We will denote the exact current density by J and a one with a noise by F. If a
vector field F does not contain any noise, i.e., F = J, there exists at least one resistivity
distribution r that satisfies

∇× (rF) = 0 in Ω,
r = r0 on Γ ⊂ ∂Ω,

(2.3)

which is the one that produced the given current. However, the uniqueness of such
resistivity fails if the boundary Γ does not cover enough region. Furthermore, if the given
current density F contains a noise, the existence part is not guaranteed, neither. Hence,
we should classify vector fields F and the correct portion of the boundary Γ ⊂ ∂Ω that
allows the existence and the uniqueness.

Definition 2.1. Consider a two dimensional vector field F = (f 1, f 2) ∈ C1,α(Ω) for
α > 0. Denote Γ+ := {x ∈ ∂Ω |F⊥ · n(x) > 0}, Γ− := {x ∈ ∂Ω |F⊥ · n(x) < 0},
Γ0 := {x ∈ ∂Ω |F⊥ · n(x) = 0} and Ω′ := Ω \ Γ0, where F⊥ := (−f 2, f 1) (see Figure
1). The vector field F is called admissible if F 6= 0 in Ω and Γ± are connected. The two
connected boundaries, Γ+ and Γ−, are called admissible boundaries.
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Γ−
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Γ0
1

Γ0
2Ω

Figure 1. Domain Boundary: The boundary of the domain is divided into four
parts depending on the given admissible vector field F in the sense of Definition
2.1.

It has been shown that there exits a unique resistivity distribution r : Ω → R
+ that

satisfies (2.3) if the vector field F and the boundary Γ are admissible (see [19]). Further-
more, the resistivity r is perturbed stably under a perturbation of the vector field F and
the boundary condition r0 as long as the pair F and Γ are admissible. It is also shown
that one may construct an admissible current density J for any given conductivity σ by
choosing a boundary current properly.

In the rest of this paper we will develop a numerical algorithm that constructs the
resistivity r from a given admissible data F. One of the simplest method is to discretize
(2.3) using a finite difference method (see Remark 3.2). The construction of the resistiv-
ity distribution is sensitive to noise and minimizing the computation error is critical in
obtaining a better resistivity image. In this paper we will use the idea of resistive network
system and Kirchoff’s voltage and current laws. This idea turns out to be an example of
mimetic discretization of the curl equation. Readers are referred to [6, 7, 8, 9] for more
information about mimetic discretization.

In mimetic discretization the potential u is assigned at vertices. Consider rectangular
mesh (xi, yj) ∈ R

2 with 0 ≤ i, j ≤ n in Figure 2. The potential values are assumed to
approximate uij ∼= u(xi, yj) (see Figure 2(a)). On the other hand, vector fields such as

the current density J or the electrical field E is assigned along edges. For example, Ei+ 1

2
j

is the component of the electrical field E in the direction connecting two mesh points
(xi, yj) and (xi+1, yj). Notice that (xi+

1

2 , yj) denotes the midpoint of this edge. Then, we
may set

Ei+ 1

2
j = −

ui+1 j − ui j

xi+1 − xi
, Ei j+ 1

2 = −
ui j+1 − ui j

yj+1 − yj
(2.4)

(see Figure 2(b)). The conductivity and the resistivity are given by Ohm’s Law, J = σE
or E = rJ. Therefore, it is natural to assign them along the edges. Hence, we set

J i+ 1

2
j = σi+ 1

2
jEi+ 1

2
j ,

J i j+ 1

2 = σi j+ 1

2Ei j+ 1

2 ,
or

Ei+ 1

2
j = ri+

1

2
jJ i+ 1

2
j,

Ei j+ 1

2 = ri j+
1

2J i j+ 1

2 .
(2.5)
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If F is divergence free, i.e., ∇ · F = 0, then it is convenient to consider a stream function
ψ that satisfies

F = ∇⊥ψ, where ∇⊥ :=

(

∂y
−∂x

)

.

The value of the stream function is assigned to the midpoint of each cell, i.e., ψi+ 1

2
j+ 1

2
∼=

ψ(xi+
1

2 , yj+
1

2 )(see Figure 2(c)). Then, F is given by

F i+ 1

2
j =

ψi+ 1

2
j+ 1

2 − ψi+ 1

2
j− 1

2

yj+
1

2 − yj−
1

2

, F ij+ 1

2 = −
ψi+ 1

2
j+ 1

2 − ψi− 1

2
j+ 1

2

xi+
1

2 − xi−
1

2

. (2.6)

If ∇ · F 6= 0, we will take the divergence free part of the Helmholtz decomposition of the
field F.

This mimetic approach is identical to the resistive network system given in Figure 3.
This resistive network has been virtually made from a continuum body as a discretization
method, which is the reason why we call it a virtual resistive network (or VRN for brevity).
The use of mimetic discretization reduces computation error. For example, the sum of
edge values of E along any closed loop in the network automatically becomes zero, which
is not the case of a finite difference method. In other words, Kirchoff’s law of voltage is
exactly satisfied and hence the main part of the computation error is from the data, but
not from the discretization of the problem.

ui j ui+1 j

ui j+1 ui+1 j+1

(a) potential function

Ei+ 1

2
j

Ei+1 j+ 1

2

(b) vector field

ψi+ 1

2
j+ 1

2 ψi+ 3

2
j+ 1

2

(c) stream function

Figure 2. Mimetic discretization: The potentials are assigned at vertices, the
electrical fields are assigned along the edges, and stream functions are in cells.

3. Rectangular VRN

We now derive a conductivity reconstruction algorithm using a rectangular uniform
VRN and investigate its property. This rectangular network system gives basic properties
of the algorithm clearly and easily. However, one may develop other shapes of VRN to
improve its performance. In fact, one of the main advantages of mimetic approach is
that it handles non-uniform discretization equally well. For a presentational simplicity
we consider a rectangular domain Ω = (0, 1)× (0, 1) and the boundary Γ = {0} × [0, 1]∪
[0, 1] × {0} ⊂ ∂Ω. However, one may handle any shape of domain by simply placing it
on the rectangular VRN. In fact, the simulations in Section 5 are for a circular domain
placed on the rectangular network developed in this section. The mesh points (xi, yj) are
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...

· · ·

(∗)

(a) rectangular VRN

ra

rb

rc

rd

F a

F b

F c

F d

(b) components of a cell

Figure 3. A rectangular network. If the resistivity values of boundary resistors
along two sides of the rectangular domain, the colored (or grey) ones, are given,
the others can be computed by a cell by cell local computation.

with 0 ≤ i, j ≤ n. Hence there are (n + 1)2 vertices, 2n(n + 1) edges, and n2 cells. We
assume that the boundary resistivity r0 is given along the edges on the boundary Γ (see
Figure 3(a)). In other words, 2n number of resistors are given initially and therefore, our
job is to decide the other 2n2 resistors.

Let D be the area of a cell (see Figure 3(b)). Then, the integration of (2.3) over the
area D gives

0 =

∫

D

∇× (rF)dx =

∮

∂D

rF(z)dz.

We will assume that each edge has the same length. Then, the resistor and resistivity are
equivalent. For a notational simplicity, we denote the resistor and the current density as
in Figure 3(b). Then, the above equation is written as

raF a + rbF b − rcF c − rdF d = 0, (3.1)

which is also called Kirchoff’s voltage law. Note that there are n2 number of cells and
hence n2 equations. Therefore the number of equations are not enough to decide 2n2

unknown resistors. If two sets of current data are given, say F1 and F2, then we obtain
2n2 equations and those unknowns can be decided. In that case the resistor rc gives a
conductivity in horizontal direction and rb in vertical direction. In other words, we may
actually obtain orthotropic conductivity. For our isotropic case, we assume

rb = rc. (3.2)

Then, the total number of unknowns are n2. Suppose that two resistors ra and rd have
been obtained in previous steps or initially. One can find such a cell from Figure 3(a),
which is at the left bottom corner. Then, the above relation gives

rb =
rdF d − raF a

F b − F c
if F b 6= F c. (3.3)

If rb and rc are obtained, then we have another cell with two given resistors and hence
we may continue and find all resistors. Notice that, if F b − F c ∼= 0, we cannot obtain
the resistivity correctly. The admissibility condition is actually related to avoid such a
situation (see Section 3.1).
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Remark 3.1 (Anisotropic Resistivity). An anisotropic resistivity is a case when the resis-
tivity is a symmetric matrix r = (rij). An orthotropic case is when it is a diagonal matrix,
where the rb and rc in Figure 3(b) represent the diagonal components. The assumption
(3.2) restricts the orthotropic case to the isotropic case.

Remark 3.2 (VRN versus FDM). A simple and natural idea to discretize the Maxwell-
Faraday equation (1.1) is to apply a finite difference method. If we apply the central
scheme, then the approximation of the curl equation at a vertex (xi, yj) is

ri+1 jF i+1 j
2 − ri−1 jF i−1 j

2

xi+1 − xi−1
−
ri j+1F i j+1

1 − ri j−1F i j−1
1

yj+1 − yj−1
= 0,

where F = (F1, F2). This relation has the same structure as the network relation (3.1).
The difference is that the network method uses the information more compactly and can be
easily applied even for non-rectangular network systems. We will also see that the network
approach gives us a better understanding of the reconstruction algorithm.

3.1. Admissibility of boundary condition.

Now we study the property of the rectangular VRN.We consider the rectangular domain
Ω = (0, 1)×(0, 1) and the boundary Γ = {0}×[0, 1]∪[0, 1]×{0} for the boundary condition.
This choice of boundary allows the existence of a cell with two given resistors (ra and rd

in Figure 3(b) ) all the time. If a different boundary is chosen, then the algorithm should
be modified appropriately. In the following discussion we fix the boundary Γ and consider
the effect of the direction of currents.

Notice that, if F b −F c ∼= 0 in (3.3), we cannot obtain the resistivity. The admissibility
condition in Definition 2.1 is related to avoiding such a situation. For example, the
condition F 6= 0 gives the minimum requirement to avoid the case. The boundary Γ0 is
the place for current injection. In our example with Γ = {0} × [0, 1] ∪ [0, 1] × {0}, the
corresponding Γ0 consists of two points (0, 1) and (1, 0) and hence the main direction of
current is the one connecting these two points. Hence the chance to have F b − F c ∼= 0 is
relatively small if the current data F is admissible.

In Figure 4 three examples of recovered conductivity are given. The boundary Γ is
fixed as above and three different current densities are considered, where the currents
were injected through two electrodes on the boundary denoted with arrows in the figures.
The case of Figure 4(c) is the only case that the boundary Γ is admissible. Note that the
conductivity has been reconstructed completely only for this case. This example explains
the importance of having an admissible boundary and current density in reconstructing
the conductivity.

3.2. Domain of dependence and influence.

In the construction algorithm the conductivity of a given cell is obtained after a series
of cell by cell computations. In the algorithm the conductivity at a given cell is decided
by the cells on its left and below. We may call this region the domain of dependence
of the conductivity at x (see Figure 5(a)). Therefore, the noise of current data in this
region is the source of the error of the conductivity at x. Similarly, the noise at a give
cell propagates to the cells on its right and above. We may call this region the domain of
influence of the information at x (see Figure 5(b)).
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(a) nothing recovered (b) partly recovered (c) fully recovered

Figure 4. Two dimensional isotropic conductivity has been recovered with Ω =
(0, 1) × (0, 1) and Γ = {0} × [0, 1] ∪ [0, 1] × {0}. Injection currents are applied
through two electrodes denoted by arrows. The boundary Γ is admissible only
for the case (c) and the conductivity is fully recovered. Noise is not added in
these examples.

x

Ω

(a) domain of dependence

x

Ω

(b) domain of influence

Figure 5. The domain of dependence of a conductivity value and the domain of
influence of the data at a point x ∈ Ω are in the figures. The show a hyperbolic
nature in the curl equation (2.3).

The domains of dependence and influence represent a hyperbolic nature of the problem.
A wider region of dependence allows a chance to get a noise mixed and dissipate. Later we
will see that, if the network is parallel to characteristic lines, the domains of dependence
and influence make a stripe along the characteristic line and the recovered image also
consists of many stripes of noise. Hence, it is important to design a network in a way to
avoid such a situation.

3.3. Characteristic lines.

We may treat the boundary Γ as the image of a curve Γ : [0, 1] → ∂Ω. Define x : Ω̃ ⊂
[0, 1]×R

+ → Ω such that

ẋ(s, t) = F⊥(x(s, t)), (3.4)

x(s, 0) = Γ(s) ⊂ ∂Ω, (3.5)

where ẋ := ∂
∂t
x. Notice that

0 = ∇× (rF) = −F⊥ · ∇r +
(

∂xF
y − ∂yF

x
)

.
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Therefore,

∂

∂t
r(x(s, t)) = ẋ(s, t) · ∇r = ∂xF

y − ∂yF
x = ∇× F(x(s, t)).

We may find r by integrating the above from the boundary,

r(x(s, t)) = r(x(s, 0)) exp

(
∫ t

0

∇× F(x(s, τ)) dτ

)

, (3.6)

where x(s, 0) ∈ Γ ⊂ ∂Ω and r(x(s, 0)) is the given boundary condition.
The curve x(s, ·) is called a characteristic line. One can easily see that this curve is an

equipotential line since the current density J and the electrical field E = −∇u are parallel
to each other for an isotropic conductivity case.

Remark 3.3 (Equipotential line method). The equipotential lines are easily obtained from
J for an isotropic case. Since the voltage u is constant on it, one may compute the voltage
first if the boundary voltage is given. Then, the conductivity is obtained by Ohm’s law.
We will call this algorithm the equipotential line method and related simulation images
are in Figures 12 and 15 (see [17]).

Remark 3.4 (Direct integration method). One may use the formula (3.6) to directly
compute the resistivity along characteristic lines. Reconstructed conductivity images by
such a direct integration are given in Figures 13 and 16. This is basically the same method
used by Ider et al. [13, Figure 6]. If two sets of current data are given, the performance
can be improved by integrating along non-characteristic lines (see [13, Figure 4]).

3.4. Noise propagation along characteristic lines.

ra

rbrc

rd

Figure 6. VRN and equipotential lines. If VRN is aligned along equipotential
lines, the conductivity reconstruction process becomes more sensitive to noise.

Consider a case that the virtual network is aligned along characteristic lines as in Figure
6. Then, since there is no electrical current along equipotential lines, we have Fa = Fc = 0.
Therefore, Eq. (3.1) becomes

rbF b − rdF d = 0 or rb = rdF d/F b.

Notice that only the information along the characteristic line is used to compute rb and
hence the domains of dependence and influence are restricted to the cells along the char-
acteristic line. Therefore, the algorithm has no regularizing effect, and VRN becomes like
the Direct Integration algorithm. In other words, it is important not to align the virtual
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network system in a direction which is parallel to the equipotential lines. Rotating a
network in the next section is one of the strategies to avoid such a situation locally.

4. VRN method based on stream functions

In the numerical simulations with regularized data we use a discretization method based
on stream functions. In this way we may handle the data flexibly without discretization
error. We briefly introduce the technique in this section.

4.1. Stream function.

Suppose that a current density F is given along network edges. If the network is rotated,
one should reassign the current density along new edges by interpolating the given data.
However, a new noise may appear in doing that and, more importantly, fundamental
physical laws such as Kirchoff’s current law can be broken. In this section we develop
an interpolation method based on the stream function that keeps Kirchoff’s current law
valid.

We solve (2.6) to find a stream function ψ inside the domain Ω. Let c = yj+1 − yj =
xi+1 − xi. Then, (2.6) is written as

cF i+ 1

2
j = ψi+ 1

2
j+ 1

2 − ψi+ 1

2
j− 1

2 , 0 ≤ i < n, 0 < j < n,

−cF i j+ 1

2 = ψi+ 1

2
j+ 1

2 − ψi− 1

2
j+ 1

2 , 0 < i < n, 0 ≤ j < n
(4.1)

(see Figure 7). Notice that there are n2 unknowns of ψi+ 1

2
j+ 1

2 with 0 ≤ i, j < n and
2n(n − 1) equations in (4.1) and hence the system is over determined. However, the
sum of incoming current and outgoing current at a given vertex should be identical in a
physically meaningful network, which is called Kirchoff’s current law and written as

F i+ 1

2
j − F i− 1

2
j + F i j+ 1

2 − F i j− 1

2 = 0, 0 < i, j < n. (4.2)

Since the noised current density may not satisfy this relation, we should do the Helmholtz
decomposition for the vector field and take the divergence free part (see Section 5.3.2).
Notice that there are (n − 1)2 number of interior vertices and hence we have (n − 1)2

equations in (4.2). Therefore, the total number of independent equations are

2n(n− 1)− (n− 1)2 = n2 − 1.

Now there is one extra unknown left, which reflects the fact that the stream function is
unique up to adding a constant. Hence we may ground it by using an extra equation
ψ

1

2

1

2 = 0 and decide the stream function uniquely. The value of stream function along the
outside of the domain can be solved by using the boundary current density (see Figure
7(a)). Notice that there are 4n exterior values for the stream function and 4n boundary
edges. Hence, one can easily obtain them using the relations in (4.1).

Remark 4.1. Notice that (4.1) is the network version of the relation F⊥ = ∇ψ and (4.2)
is the network version of zero divergence equation ∇ · F = ∇ × F⊥ = 0. Therefore, the
existence of ψi+ 1

2
j+ 1

2 is simply the network version of the existence of a potential.

Remark 4.2. The VRN based on stream function technique is equivalent to harmonic Bz

algorithm. Let H be the magnetic field. Then, the fourth law of Maxwell’s equation, or
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(a) ψ is defined at cell center

ψi− 1

2
j− 1

2 ψi+ 1

2
j− 1

2

ψi+ 1

2
j+ 1

2ψi− 1

2
j+ 1

2

F i− 1

2
j F i+ 1

2
j

F i j− 1

2

F i j+ 1

2

(b) stream function and current

Figure 7. The points marked by × are where ψ is defined.

Ampere’s law, is written as

∇×H = J.

In two space dimensions, we have ∂zH
y = ∂zH

x = 0 and hence
(

Jx

Jy

)

=

(

∂yH
z

−∂xH
z

)

,

i.e., the stream function is the z-component of the magnetic field. It is the magnetic flux
density B = µH that is measured by the MRI technology, where the coefficient µ is called
the permeability. Therefore, for a two dimensional current flow, the mimetic approach in
this paper is a way to reduce the intermediate data process and to minimise discretization
error (see [24] and Appendix A).

4.2. Network rotation.

In this section we consider a technique of rotating a network for two reasons. First,
the relation (3.3) is applicable only if F b − F c 6∼= 0. The choice of admissible boundary
(see Section 3.1) gives a better chance to avoid such a situation. However, if the current
density F contains a noise, the case of F b − F c ∼= 0 may appear in any place. We expect
such noise effects disappear in some regions by rotating the network. Another reason is
to avoid a region that the network is parallel to the characteristic lines. In this way we
may reduce the stripes of noises from reconstructed images. Notice that we may produce
several conductivity images even with a single set of current data if different rotation
angles are used. Comparing these images may help us to distinguish the effect of noise
and true conductivity.

If a stream function for a given current density F is obtained, one is ready to rotate the
network. In Figure 8(a) a network system is given before a rotation. In this example, the
domain Ω of the conductivity body is the circular disk tangent to the outside square and
is placed on the rectangular network. In Figure 8(b) this network system has been rotated
with angle θ = 45◦. In that case the edges and the center of each cell represent different
places of the body. Therefore, we should reassign the current data to each edge. To do
this we first interpolate the values of the stream function at the new centers of rotated
cells and then reassign the current along each edge by the relations in (4.1). In this way
we may reduce discretization error and satisfy Kirchoff’s current law. The purpose of
network rotation is not to find the best angle of rotation, but to distinguish the effect
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of noise and true conductivity by rotating a network with a relatively small angle. The
network rotation gives a series of images for the static conductivity.

(a) network before rotation θ = 0 (b) rotated body with θ = 45◦

Figure 8. If a network is rotated, the center of each cell is changed. The value
of the stream function at these new cell centers is interpolated. The current
density along a new edge is given by these values.

5. Numerical simulation

5.1. Simulation setup.

We took a target conductivity σ from a Matlab function for our numerical simulation,
which is given in Figure 9. This image has been frequently used by many authors. The
scale of the conductivity value is

0.1 ≤ σ ≤ 0.5,

where the range of corresponding resistivity is 2 ≤ r ≤ 10. In the simulation we compute
the resistivity distribution first using VRN method and then convert the images in terms
of conductivity for an easier comparison to other methods. The challenging part of this
target conductivity is the discontinuity that may parallel to the electrical current. The
physical size of the conductivity body used in the simulation is a circular disk with the
diameter of 50 centimeters.

The electrical current of 10mA was uniformly injected through the circular boundary
in the second quadrant, π

2
≤ θ ≤ π, where the origin is the center of the circular domain.

The same amount of current is uniformly extracted from the boundary in the fourth
quadrant, −π

2
≤ θ ≤ 0. The boundary Γ0 in Definition 2.1 consists of these two parts

of current injection and extraction. The boundary in the first quadrant, 0 < θ < π
2
,

becomes Γ+ and the one with −π < θ < −π
2
is Γ−. For the boundary condition we took

Γ = Γ−. This boundary condition can be extended to Γ0 exactly since the boundary
itself is a characteristic line (see [19]). In fact we took the boundary data in the region
3π
4
< θ < 7π

4
.

The exact current density J has been obtained by solving a forward problem using a
network system, which are displayed in Figure 10. It is well known that the network
forward solver is equivalent to a FDM forward solver (see Remark 3.2 or Strang [25]).
The advantage of using network forward solver is to minimize discretization error. We
have obtained a current density J = (Jx, Jy) with the size of

1.1× 10−3 [A/m] ≤ |J| ≤ 4.6× 10−2 [A/m].
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Figure 9. True conductivity image used in the simulation. The circular domain
tangent to the outside square is used.

(a) Jx: x-component of current (b) Jy: y-component of current

Figure 10. The current J is obtained by solving the forward problem using
128 × 128 mesh grids. The number of cells inside the circular domain is 11,934.

(a) equipotential lines (b) stream lines

Figure 11. The equipotential and stream lines of the current density J.

The dimension [A/m] of a current density fits to our two dimensional model. Using the
relations in (4.1) and (4.2) we may compute the corresponding stream function ψ. In Fig-
ures 11(a) and (b), the equipotential lines and the stream lines are given, respectively. The
streams lines are level curves of a corresponding stream function, which are perpendicular
to equipotential lines.

5.2. Multiplicative and additive noises.

We add a noise to the current data in the following simulations to test the stability of
algorithms. We add two kinds of noises, which will be called multiplicative and additive
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noises. The multiplicative noise of p% is a random noise computed by
( p

100
|J(x)|

)

X,

where −1 ≤ X ≤ 1 is the random variable with a uniform distribution. The size of the
multiplicative noise is proportional to the size of current J.

The additive noise follows a normal distribution of average µ = 0 and a standard
deviation s.d. > 0, say N(µ = 0, s.d.). (Note that the standard deviation is usually
denoted by σ, but we have already used it for conductivity.) Summing them up gives the
current density data used in the simulation:

F = J+
( p

100
|J|

)

X +N(0, s.d.). (5.1)

As a measure of additive noise we consider the ratio of signal to standard deviation,

S/D :=
averaged current Signal per edge

standard Deviation of noise
. (5.2)

There are 23, 863 network edges in the interior circular domain and the average current
used in the simulation is about 0.078mA. For example, in the second simulation of Figure
18 an additive noise with a standard deviation s.d. = 0.003mA has been added to each of
the edges and hence the ratio is S/D ∼= 26.

5.3. Comparison of reconstructed images.

In this section we test the performance of the VRN method and compare it with the
equipotential line method (Remark 3.3) and the direct integration method (Remark 3.4).
In Section 5.3.1, we reconstruct the conductivity image from a noised current density
without any noise regularization. This test shows clearly how a noise propagates. In
Section 5.3.2 the noised data are regularized by convoluting them with a kernel and
then taking the divergence free part of the Helmholtz decomposition. These three tested
methods reconstruct the conductivity without iteration and hence the computation time
is shorter than iterative ones. In Appendix A we also compare to the harmonic Bz MREIT
method which is a widely used iterative method.

5.3.1. Simulation before regularization. The images in Figure 12 are reconstructed con-
ductivity distributions obtained by the equipotential line method. One can clearly observe
the stripes along equipotential lines from the reconstructed images. These show that the
noise of current density along the equipotential lines stays in them. In Figure 13 the
conductivity images have been reconstructed by the direct integration method given by
the formula (3.6). These reconstructed images have the same structure as the ones by
the equipotential line method. Notice that equipotential lines and characteristic lines are
identical for the isotropic conductivity case and the noise inside a characteristic line stays
in them. The performance of these two methods are compatible.

In Figure 14, reconstructed conductivity images by the VRN method are given. For
the case with 1% multiplicative noise, the conductivity image has been almost exactly
recovered. For the case with 5% noise, a wide and relatively thin band appears in the
direction of characteristic lines. However, the narrow and thick stripes of the other meth-
ods have been disappeared and one may still observe the small and large anomalies in
the domain. A problematic region is the left lower part of the domain. This is a region
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1% multiplicative noise 5% multiplicative noise additive, S/D = 260

Figure 12. Equipotential line method without a noise regularization

1% multiplicative noise 5% multiplicative noise additive, S/D = 260

Figure 13. Direct integration given in Eq. (3.6) without a noise regularization

1% multiplicative noise 5% multiplicative noise additive, S/D = 260

Figure 14. Virtual Resistive Network (VRN) without a noise regularization

that the electrical current is parallel to the discontinuity lines of conductivity. The small
anomalies in the lower middle regions of the domain are not observed because of this
region. The problematic region remains with the added additive noise, too.

5.3.2. Simulation after regularization. In this section we reconstruct the conductivity im-
age using regularized current data. We briefly explain the noise regularization method
used in this section. First we smooth the noised data by convoluting them with a kernel
given in matlab which averages 9 values of nearby cell with weights of





0.0251 0.1453 0.0251
0.1453 0.3183 0.1453
0.0251 0.1453 0.0251



 .
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Note that the current of a resistive network should satisfy Kirchoff’s current law (4.2),
which is equivalent to the zero divergence equation, ∇ · F = 0, in the continuum version.
However, the noised data do not satisfy the relation. We decompose the data into the
divergence free and curl free parts using the following Helmholtz decomposition algorithm.
Set

F =

(

∂yψ
−∂xψ

)

+

(

∂xφ
∂yφ

)

,

where the first part is divergence free and the second one is curl free. Therefore,

∆ψ = −∇× F, ∆φ = ∇ · F, x ∈ Ω.

For the boundary condition, we take

∇ψ · n⊥ = g, ∇φ · n = F · n− g, x ∈ ∂Ω.

Notice that we only need ψ, which is a steam function. The normal component g of the
boundary current is the one in (1.2), which has been chosen for the experiment.

Conductivity images in Figures 15 and 16 are obtained by the equipotential line and
the direct integration methods, respectively. The reconstructed images are somewhat
improved in compare with the ones in Figures 12 and 13 by using the regularized noised
data. However, the improvement is not substantial and the overall properties of the
two methods are not changed. The noise propagation property along the characteristic
lines still gives severe damages to the image. On the other hand the images obtained
by the VRN method have been improved substantially more when the regularized data
is used. In fact one may obtain almost perfect conductivity imaged if the noise level
are same as the above. Conductivity images in Figures 17 and 18 are obtained by the
VRN method with increased noise levels. The three conductivity images in Figure 17
were obtained after adding multiplicative noises of 10, 20 and 40%, respectively. The
conductivity image is almost perfectly recovered when 10% multiplicative noise is added.
One may still observe the stripes along the characteristic lines as the noise level increases.
The three conductivity images in Figure 18 were obtained after adding additive noises of
signal-deviation ratios S/D = 78, 26 and 16, respectively. One may similarly observe the
improvement of recovered images with regularized current data. However, one may still
observe noise propagation along the characteristic lines as the noise level increases.

6. Discussions

An isotropic conductivity reconstruction algorithm has been developed in this paper
when the current density J is given in the whole domain. The motivation of this inverse
problem is from the magnetic resonance imaging based electrical impedance tomography
or simply MREIT. Many authors took the zero divergence equation (1.2) and the Ohm’s
law (1.3) to reconstruct the conductivity distribution. However, the Faraday’s law (1.1)
gives a direct relation between a current density, which is the choice of this paper. Dis-
cretization of this curl free equation has been studied relatively less than the divergence
free equation. We have constructed a rectangular resistive network system to discretize
the equation. Then, a contour integration on each rectangular cell boundary gives Kir-
choff’s voltage law. Using this network discretization the VRN (virtual resistive network)
method suggested in this paper successfully reconstructed the conductivity image.
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1% multiplicative noise 5% multiplicative noise 5%, S/D = 260

Figure 15. Equipotential line method with regularized noised data

1% multiplicative noise 5% multiplicative noise 5%, S/D = 260

Figure 16. Direct integration given in Eq. (3.6) with regularized noised data

10% multiplicative noise 20% multiplicative noise 40% multiplicative noise

Figure 17. VRN method with regularized multiplicative noises

additive, S/D = 78 additive, S/D = 26 additive, S/D = 16

Figure 18. VRN method with regularized additive noises



18 MIN GI LEE, MIN-SU KO, AND YONG-JUNG KIM

The introduced VRN method has two important features. First, the reconstruction pro-
cess depends only on local structure and is obtained by algebraic calculations in (3.3) for
n2 times. Notice that this computation is even simpler than solving the forward problem
in (1.2), and that having a fast algorithm is crucial in a three dimensional computation.
Second, the VRN method allows a larger noise level in compare with other methods. The
maximum noise level we have tested is a 40% multiplicative noise or an additive noise of

S/D :=
averaged current Signal per edge

standard Deviation of noise
∼= 16.

The simulations in the paper indicate that the key to a successful conductivity reconstruc-
tion is reducing the noise effect that propagates along equipotential lines. The equipo-
tential line and direct integration methods severely suffer because of it. The iterative
harmonic Bz method is more robust than these methods (see Figure 19). The VRN
method shows the most robust behavior among tested methods (see Figures 17 and 18).
However, stripes along equipotential lines still appear as the noise level increases.

One way to reduce such a symptom is to take another set of current data with different
direction of equipotential lines. Then, the noise propagation along characteristic lines
can be cancelled to each other. In fact, Ider et al. have used two sets of current data to
integrate the term in (3.6) along non-characteristic lines and successfully improved the
conductivity image from [13, Figure 6] to [13, Figure 4] with a 10% multiplicative noise.
The harmonic Bz algorithm is also designed to use two sets of Bz data for the same reason,
where its reconstructed images are given in Figure 20 using two sets of current data. One
may clearly observe the improvement in compare with the ones in Figure 19, which uses
single set of current data. There are many red dots in the recovered conductivity image
with 40% noise level. However, these dots are not aligned along equipotential lines. The
resolution of this images is comparable to the one in Figure 17. However, the dots in
Figure 17 are aligned along the characteristic lines since they are obtained single set of
current data.

Appendix A. Harmonic Bz algorithm (an iterative method)

The VRN method introduced in this paper is a non-iterative method and has been
compared with two other non-iterative methods. The advantages of non-iterative method
are the low computational cost and being free of convergence issues caused by iteration
arguments. On the other hand iterative methods have the advantage of flexibility. The
harmonic Bz MREIT algorithm [24] is a widely used method which has been successful
with experimental data. The original idea of the algorithm is to reconstruct the conduc-
tivity image with two sets of Bz data without measuring other two components of the
magnetic field, which is a big advantage in handling real experiments. In two space dimen-
sions, this Bz data are enough to obtain the electrical current, and hence the harmonic
Bz algorithm and the J-substitution method (see [16]) become equivalent.

The algorithm is based on iterative arguments. Let σ1 = 1 and σn be obtained in the
algorithm. To obtain σn+1, one should first solve the forward problem (1.2) with the given

conductivity σ = σn. Then, σn+1 is obtained from the relation (1.3), i.e., σn+1 := |F|
|∇u|

. In

Figure 19 reconstructed conductivity images are given after a normalization. These are
the images obtained after 20 iterations when the variation stays within a toleration range.
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10% multiplicative noise 20% multiplicative noise 40% multiplicative noise

Figure 19. Harmonic Bz method with single set of regularised noised data

10% multiplicative noise 20% multiplicative noise 40% multiplicative noise

Figure 20. Harmonic Bz method with two sets of regularised noised data

This method is less sensitive in the noise propagation along the characteristic lines than
the two compared methods. However, as the noise level increases, the stripes still appear
and the images obtained by the VRN method in Figure 17 show a better resolution.

Notice that the harmonic Bz algorithm is originally designed to use two sets of data. Let
F1 and F2 be two given current data. Then, the conductivity is updated by alternating the

two data as σ2n := |F2|
|∇u|

and σ2n+1 := |F1|
|∇u|

. Reconstructed images are given in Figure 20,

where the second current was obtained after rotating the boundary current by 90 degree.
One can see the considerable improvement and the stripes along the equipotential lines
are all disappeared. The image quality is now similar to the one in Figure 17, which were
obtained by the VRN method with single set of current data.
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