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Abstract. The Oleinik inequality for conservation laws and Aronson-
Benilan type inequalities for porous medium or p-Laplacian equations
are one-sided inequalities that provide the fundamental features of the
solution such as the uniqueness and sharp regularity. In this paper
such one-sided inequalities are unified and generalized for a wide class
of first and second order equations in the form of

ut = σ(t, u, ux, uxx), u(x, 0) = u0(x) ≥ 0, t > 0, x ∈ R,

where the non-strict parabolicity ∂
∂qσ(t, z, p, q) ≥ 0 is assumed. The

generalization or unification of one-sided inequalities is given in a
geometric statement that the zero level set

A(t;m,x0) := {x : ρm(x− x0, t)− u(x, t) > 0}
is connected for all t,m > 0 and x0 ∈ R, where ρm is the fundamental
solution with mass m > 0. This geometric statement is shown to
be equivalent to the previously mentioned one-sided inequalities and
used to obtain uniqueness and TV boundedness of conservation laws
without convexity assumption. Multi-dimensional extension for the
heat equation is also given.
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1. Introduction

Studies on partial differential equations, or PDEs for brevity, are
mostly focused on finding properties of PDEs within a specific dis-
cipline and on developing a technique specialized to them. However,
finding a common structure over different disciplines and unifying
theories from different subjects into a generalized theory is the direc-
tion that mathematics should go in. The purpose of this paper is to
develop geometric arguments to combine Oleinik or Aronson-Benilan
type one-sided estimates that arise from various disciplines from hy-
perbolic to parabolic problems. This unification of existing theories
from different disciplines will provide a true generalization of such
theories to a wider class of PDEs. It is clear that algebraic or analytic
formulas and estimates that depend on the specific PDE wouldn’t
provide such a unified theory and we need a different approach. In
this paper we will see that a geometric structure of solutions may
provide an excellent alternative in doing such a unification.

The main example of this paper is the entropy solution of an initial
value problem of a scalar conservation law,

∂tu+ ∂xf(u) = 0, u(x, 0) = u0(x), t > 0, x ∈ R. (1.1)

Dafermos [5] and Hoff [9] showed that, if the flux f is convex, the
entropy solution satisfies the Oleinik inequality,

∂xf
′(u)

(

= f ′′(u)ux
)

≤ 1

t
, t > 0, x ∈ R, (1.2)

in a weak sense. This is a sharp version of a one-sided inequality
obtained by Oleinik [14] for a uniformly convex flux case. This in-
equality provides a uniqueness criterion and the sharp regularity for
the admissible weak solution. However, if the flux is not convex, then
the Oleinik estimate fails.

One may find a similar theory from a different discipline of PDEs,
nonlinear diffusion equations,

∂tu = ∇·(φ(u,∇u)∇u) = 0, u(x, 0) = u0(x), t > 0, x ∈ R
n. (1.3)

This equation is called the porous medium equation (PME) if φ =
γuγ−1 with γ > 1, the fast diffusion equation (FDE) with γ < 1, and
the heat equation if γ = 1. Aronson and Bénilan [2] showed that, for
γ 6= 1, its solution satisfies a one-sided inequality

∆℘(u) ≥ −k
t
, k :=

1

n(γ − 1) + 2
, ℘(u) :=

γ

γ − 1
uγ−1. (1.4)
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This inequality played a key role in the development of nonlinear
diffusion theory that the Oleinik inequality did. The equation (1.3)
is called the p-Laplacian equation (PLE) if φ = |∇u|p−2 with p > 1
and its solution satisfies a similar one-sided inequality. However, these
inequalities depend on the homogeneity of the function φ.

The Oleinik inequality for hyperbolic conservation laws and the
Aronson-Benilan type inequalities for porous medium or p-Laplacian
equations are one-sided inequalities that provide key features of solu-
tions such as the uniqueness and sharp regularity. Even though these
key inequalities are from different disciplines of PDEs, they reflect the
very same phenomenon. However, this kind of one-sided estimates do
not hold without convexity or homogeneity assumption of the prob-
lem. Such a key estimate for a general situation has been the missing
ingredient to obtain theoretical progress for a long time in related
disciplines.

The purpose of this paper is to present a unified and generalized
version of such one-sided inequalities for a general first or second
order differential equation in the form of

ut = σ(t, u, ux, uxx), u(x, 0) = u0(x) ≥ 0, t > 0, x ∈ R, (1.5)

where the sub-indices stand for partial derivatives and the initial
value u0 is nonnegative and bounded. The main hypothesis on σ is
the parabolicity,

0 ≤ ∂

∂q
σ(t, z, p, q) ≤ C <∞, (1.6)

which is not necessarily uniformly parabolic. Here, we denote u, ux
and uxx by z, p and q, respectively.

The solution of (1.5) is not unique in general. For example, the
conservation law (1.1) is in this form with σ(t, z, p, q) = f ′(z)p and its
weak solution is not unique. However, it is well known that the zero
viscosity limit of a conservation law is the entropy solution. For the
wide class of problems in (1.5), one can still consider zero-viscosity
limits as follows. Let ε > 0 be small and uε(x, t) be the solution to a
perturbed problem

∂tu
ε = σε(t, uε, uεx, u

ε
xx), uε(x, 0) = uε0(x), t > 0, x ∈ R, (1.7)

where uε0 and σε are smooth perturbations of u0 and σ, respectively,
and σε satisfies

ε ≤ ∂

∂q
σε(t, z, p, q) ≤ C <∞. (1.8)

If σ is smooth, one may simply put σε = σ+εq. In fact σε is required
to be C2 with respect to q, C1 with respect to p, and C0 with re-
spect to z. For a conservation law case, σ = f ′(z)p is already smooth
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enough and such a perturbation is standard. The convergence of the
perturbed problem is known for many cases including PME and PLE.
The focus of this paper is the structure of the limit of uε as ε → 0
and hence we assume such a convergence.

Let ρm be a nonnegative fundamental solution of (1.5) with mass
m > 0, i.e.,

ρm(x, t) → mδ(x) as t → 0 in L1(R).

The idea for the unification of the one-sided inequalities comes from
the observation that they are actually comparisons with fundamen-
tal solutions, where a fundamental solution satisfies the equality. For
example, the Oleinik inequality can be written as ∂xf

′(u(x, t)) ≤
∂xf

′(ρm(x, t)) for all x ∈ supp (ρm(t)). Similarly, the Aronson-Bénilan
inequality becomes ∆(℘(u)) ≥ ∆(℘(ρm)) for all x ∈ supp (ρm(t)).
This observation indicates that the unified version of such one-sided
inequalities should be a comparison with fundamental solutions.

The unification process is to find the basic common feature, which
will be given in terms of geometric concept of connectedness of a level
set. First we introduce the connectedness of the zero level set in a
modified way.

Definition 1. The zero level set A := {x ∈ R : e(x) > 0} is con-
nectable by adding zeros, or simply connectable, if there exists a con-
nected set B such that A ⊂ B ⊂ {x ∈ R : e(x) ≥ 0}.
In other words, if we can connect the zero level set A := {x ∈ R :
e(x) > 0} by adding a part of zeros of the function e(x), we call it
connectable or simply connected. For example, if the graph of e is as
given in Figure 1, its zero level set is connectable by adding zeros.
In other words we are actually interested in sign changes. In this
paper the connectedness the level set is always in this sense. Notice
that, for a uniformly parabolic case that ∂

∂qσ > ε > 0, the usual

connectedness is just enough. However, to include the case ∂
∂qσ ≥ 0,

we need to generalize the connectedness as in the definition.
Finally, we are ready to present the unified version of the one-sided

inequalities.

Theorem 1 (Geometric one-sided inequality). Let u(x, t) be the
nonnegative zero-viscosity solution of (1.5)-(1.6), ρm(x, t) be the fun-
damental solution with mass m > 0, and em,x0

(x, t) := ρm(x−x0, t)−
u(x, t). Then, the zero level set A(t;m,x0) := {x ∈ R : em,x0

(x, t) >
0} is connectable for all m, t > 0 and x0 ∈ R.

The proof of Theorem 1 is given in Section 2 using the zero set
theory (see [1,13]). Main parts of this paper come after the proof. It
is shown that the connectedness of the level set is equivalent to the
Oleinik inequality for a conservation law with a convex flux, Theorem
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Fig. 1. The zero level set A := {x ∈ R : e(x) > 0} of the function e(x) in the
figure is not connected. The set {x ∈ R : e(x) ≥ 0} is not connected neither.
However, the set A is connectable by adding zeros in the sense of Definition 1.

5, and the Aronson-Benilan inequality for the porous medium and the
fast diffusion equation, Theorem 8. In this way we may see that the
connectedness of the level set is a true unification of the one-sided
inequalities from different disciplines.

The estimates for solutions of PDEs are usually obtained by using
analytical relations, but not geometrical ones. However, the geometric
approach in this paper will show that they are equally useful and
convenient. In fact, in certain situations, geometric relations provide
simple and intuitive way to estimate solutions. One of the purposes of
this paper is to develop geometric approaches to estimate solutions of
PDEs. In Section 3, the connectivity of the zero level set in Theorem 1
is developed to obtain geometric steepness estimates of the solution. A
bounded solution is compared to fundamental solutions in Theorem
4. The steepness comparison can be considered as an estimate of
solution gradients. However, in a delicate situation as in the theorem,
geometric arguments may provide a relatively simple and intuitive
way to estimate of solutions which is not possible by usual analytical
approaches.

The steepness comparison is used as a key to show the uniqueness
of the solution to a conservation law without convexity in Theorem
6. It is shown in the theorem that, if the zero level set in Theorem
1 is connected for all fundamental solutions, it is the unique entropy
solution even without the convexity assumption. This steepness com-
parison also shows that the total variation of the solution is uniformly
bounded for any given time and bounded domain in Theorem 7. Such
an estimate is well known for a convex flux case, where the Oleinik
inequality is the key for the estimate. Hence it is not surprising that
the geometric generalization of the Oleinik inequality gives a similar
TV estimation without the convexity assumption.

The challenge of the geometric approach of this paper is to ex-
tend it to multi-dimensions. The main difficulty is that there is no
multi-dimensional version of a lap number theory nor a zero set the-
ory. In fact, the number of connected components of zero level set
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has no monotonicity property, which is the reason why there is no
multi-dimensional version of such theories. However, our interest is
a special case of comparing a general bounded solution u(x, t) to a
fundamental solution ρm(x, t). Such connectedness will provide the
steepness comparison for multi-dimensions. In fact, it is proved in
Theorem 9 that the level set is convex for the heat equation. A brief
discussion for an extension of theory to multi-dimensions is given in
Section 6.

2. Proof of the geometric one-sided inequality

In this section we prove Theorem 1. The proof depends on the mono-
tone decrease of the lap number or the number of zero points (see [1,
13,15]). For an equation in a divergence form, the lap number theory
is more convenient. Since our equation (1.5) is in a non-divergence
form, the zero set theory is more convenient. The following lemma is
a simplified version of Angenent [1, Theorem B].

Lemma 1 (zero set theory). Let e(x, t) be a nontrivial bounded
solution to

et = a(x, t)exx + b(x, t)ex + c(x, t)e, e(x, 0) = e0(x),

where a ≥ ε for some ε > 0 and a, a−1, at, ax, axx, b, bt, bx, c are
bounded. Then, for all t > 0, the zeros of e(x, t) are discrete and
the number of zeros are decreasing as t→ ∞.

We will apply this lemma to the difference e(x, t) := ρm(x, t) −
u(x, t) and show that the zero level set A := {x : e(x, t) > 0} is
connected (or connectable) for all t > 0. The number of sign changes
of e(x, t) for a small t > 0 is at most two since ρm(x, t) is a delta
sequence as t → 0 and u(x, 0) is bounded and nonnegative. Hence
what we need is a special case of the zero set theory. Notice that the
zero set is just the boundary of the zero level set and hence the theory
can be written in terms of the number of connected components of
the zero level set. This is the idea that can be naturally extended to
multi-dimensions. The following corollary is the one we need for our
purpose.

Corollary 1. Under the same assumptions in Lemma 1, A(t) :=
{x ∈ R : e(x, t) > 0} is connected for all t > 0 if A(0) is connected.

Proof. If A(0) = R or A(0) = ∅, then the initial value e0(x) has no
zero point. Therefore, e(x, t) has no zero for all t > 0 by the zero
set theory (or by the maximum principle) and hence A(t) is also
connected. Suppose that A(0) is a half real line. Then, e(x, t) has at
most one zero and hence A(t) is also connected. Suppose that A(0)
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is a bounded interval. Then, e(x, t) has at most two zero points. If
e(x, t) has no or a single zero, then A(t) is connected. Let e(x, t) has
two zeros, x1(t) < x2(t). Then, the zero set theory implies that e(x, τ)
has two zeros x1(τ) < x2(τ) for all 0 < τ < t. Since e(x, t) has the
same sign on the domain bounded by τ = 0, τ = t, x = x1(τ) and
x = x2(τ), A(t) is an interval and hence connected. ⊓⊔

Consider a solution u(x, t) of

∂tu = σ̃(x, t, u, ux, uxx), u(x, 0) = u0(x) ≥ 0, t > 0, x ∈ R, (2.1)

where the initial value u0 is nonnegative and bounded. We consider
a parabolic case that satisfies

0 ≤ ∂

∂q
σ̃(x, t, z, p, q) ≤ C. (2.2)

In this notation, σ̃ is allowed to have x dependency and hence is a
generalized form of (1.5)–(1.6). For the uniqueness of the problem
we consider the zero-viscosity limit as usual. Let ε > 0 be small and
uε(x, t) be the solution to a perturbed problem

∂tu
ε = σ̃ε(x, t, uε, uεx, u

ε
xx), u

ε(x, 0) = uε0(x), t > 0, x ∈ R, (2.3)

where uε0 and σ̃ε are smooth perturbations of u0 and σ̃, respectively,
and σ̃ε satisfies

ε ≤ ∂

∂q
σ̃ε(x, t, z, p, q) ≤ C <∞. (2.4)

Notice that the perturbed problem is a special case of the original
problem. Hence the properties of the solutions of (2.1) hold true for
solutions of perturbed problem. However, certain properties hold for
the perturbed problem only, which will be discussed below.

The regularity of the solution uε of the perturbed pr:20oblem, the
convergence to a weak solution uε → u as ε→ 0, and the uniqueness
of the limit are known for several cases such as conservation laws,
porous medium equations, and p-Laplacian equations. We will call
the limit as the zero-viscosity limit. However, there is no such a theory
under the generality in (2.1-2.2). Therefore, to complete the theory for
an individual equation, such a zero viscosity limit should be obtained
first. The following study is about the structure of such the zero
viscosity limit when it does exist.

Let u(x, t) be the solution of (2.1) given as a zero-viscosity limit
of solutions uε of the perturbed problem (2.3), i.e.,

uε → u a.e. as ε→ 0.

The fundamental solution ρm(x, t) is also the one given as a zero vis-
cosity limit from the same perturbation process. Hence we assume
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that uε and ρεm are smooth solutions of the perturbed problem that
converges to u and ρm as ε → 0, respectively. These limits are solu-
tions of the original problem.

Theorem 2. Let u(x, t) be the nonnegative zero-viscosity solution of
(2.1)–(2.2), ρm,x0

(x, t) be a fundamental solution with ρm,x0
(x, 0) =

mδ(x − x0), and em,x0
(x, t) := ρm,x0

(x, t) − u(x, t). Then, the zero
level set A(t;m,x0) := {x ∈ R : em,x0

(x, t) > 0} is connectable for
all m, t > 0 and x0 ∈ R.

Proof. Let uε be the smooth solution of (2.3) that converges to u as
ε → 0. Similarly, let ρεm,x0

be the smooth solution that converges to
ρm,x0

as ε → 0. The proof of the theorem consists of two steps. The
first step is to show that the zero level set of the perturbed problem,

Aε(t;m,x0) := {x ∈ R : ρεm,x0
(x, t)− uε(x, t) > 0},

is connected. Let eεm,x0
(x, t) := ρεm,x0

(x, t)− uε(x, t). Then, subtract-
ing (2.3) from the corresponding equation for ρεm,x0

gives

∂te
ε
m,x0

= σ̃ε(x, t, ρεm, ∂xρ
ε
m,x0

, ∂2xρ
ε
m,x0

)− σ̃ε(x, t, uε, ∂xu
ε, ∂2xu

ε).

One may rewrite it as

∂te
ε
m,x0

= a(x, t)∂2xe
ε
m,x0

+ b(x, t)∂xe
ε
m,x0

+ c(x, t)eεm,x0
,

where

a(x, t)

:=
σ̃ε(x, t, ρεm,x0

, ∂xρ
ε
m,x0

, ∂2xρ
ε
m,x0

)− σ̃ε(x, t, ρεm,x0
, ∂xρ

ε
m,x0

, uεxx)

∂2xρ
ε
m,x0

− uεxx
,

b(x, t) :=
σ̃ε(x, t, ρεm,x0

, ∂xρ
ε
m,x0

, uεxx)− σ̃ε(x, t, ρεm,x0
, uεx, u

ε
xx)

∂xρεm,x0
− uεx

,

c(x, t) :=
σ̃ε(x, t, ρεm,x0

, uεx, u
ε
xx)− σ̃ε(x, t, uε, uεx, u

ε
xx)

ρεm,x0
− uε

.

The regularity of σ̃ε, the smoothness of the solutions uε and ρεm,x0
,

and the uniform parabolicity in(2.4) imply that a ≥ ε, at, ax, axx, b, bx
and c are bounded. It is clear that the number of connected com-
ponents of the zero level set Aε(t;m,x0) := {x ∈ R : ρεm,x0

(x, t) −
uε(x, t) > 0} is one for t > 0 small since ρεm,x0

(x, t) is a delta-sequence

as t→ 0 and the initial value uε0(x) is bounded and smooth. There-
fore, Corollary 1 implies that the set Aε(t;m,x0) is connected for all
m, t > 0 and x0 ∈ R.
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Next we show that the zero level set A(t;m,x0) := {x ∈ R :
em,x0

(x, t) > 0} is connectable. The advantage of the use of the con-
nectability in Definition 1 is that such a geometric structure is pre-
served after the above limiting process. Suppose that A(t;m,x0) is
not connectable. Then A(t;m,x0) has two disjoint components that
cannot be connected by simply adding zeros of em,x0

:= ρm,x0
(x, t)−

u(x, t). In other words there is a negative point of em,x0
between two

components of A(t;m,x0). Therefore, there are three points x1 <
x2 < x3 such that em,x0

(x1, t) > 0, em,x0
(x2, t) < 0 and em,x0

(x3, t) >
0. Since eεm,x0

→ em,x0
pointwise as ε → 0, there exists ε0 > 0 such

that eε0m(x1, t), e
ε0
m,x0

(x3, t) > 0 and eε0m,x0
(x2, t) < 0, i.e., Aε0(t;m,x0)

is disconnected. However, it contradicts the previous result and we
may conclude that

A(t;m,x0) := {x ∈ R : em,x0
(x, t) > 0}

is connectable. ⊓⊔
Theorem 1 is an immediate corollary of Theorem 2. All we have

to show is ρm,x0
(x, t) = ρm(x− x0, t).

Proof of Theorem 1: Let u(x, t) be the solution of (1.5), i.e.,

∂tu = σ(t, u, ux, uxx), u(x, 0) = u0(x), t > 0, x ∈ R,

and ρm,x0
be the fundamental solution with ρm,x0

(x, 0) = mδ(x−x0).
Then, since the equation is autonomous with respect to the space
variable, one may easily see that ρm,x0

(x, t) = ρm(x − x0, t), where
ρm(x, t) is the fundamental solution with ρm(x, 0) = mδ(x). There-
fore, the zero level set

{x : ρm(x− x0, t)− u(x, t) > 0} = {x : ρm,x0
(x, t)− u(x, t) > 0}

is connectable for all m, t > 0 and x0 ∈ R. ⊓⊔
The connectedness of the level set A(t;m,x0) has two parameters,

m and x0. One may freely choose the size and place of the fundamen-
tal solution ρm,x0

(x, t) using two parameters m > 0 and x0. These
free parameters provide sharp estimates of a solution u in terms of
the fundamental solution.

Before considering the implications of Theorem 1, we show certain
uniqueness property of the perturbed problem (2.3)–(2.4) using the
arguments in the proof of Theorem 2 and the zero set theory given
in Lemma 1.

Theorem 3. Let uε and vε be smooth bounded solutions to a regu-
larized problem,

∂tu
ε = σ̃ε(x, t, uε, uεx, u

ε
xx), ε ≤ ∂

∂q
σ̃ε(t, u, p, q) ≤ C, (2.5)

where t > 0, x ∈ R, and σ̃ε is smooth. Then,
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1. If uε(x, t0) = vε(x, t0) in an interval I ⊂ R for a given t0 > 0,
then uε ≡ vε on R×R

+.
2. If σ̃ε is autonomous with respect to the space variable x and uε(·, t0)

is constant in an interval I ⊂ R for a given t0 > 0, then uε(x, t) =
α(t), where α(t) is a solution of a ordinary differential equation
α′(t) = σ̃ε(t, α(t), 0, 0).

Proof. Let eε = vε − uε. Then, eε satisfies

eεt = a(x, t)eεxx + b(x, t)eεx + c(x, t)eε, (2.6)

e(x, 0) = vε(x, 0) − uε(x, 0),

where the coefficients,

a(x, t) :=
σ̃ε(x, t, vε, vεx, v

ε
xx)− σ̃ε(x, t, vε, vεx, u

ε
xx)

vεxx − uεxx
,

b(x, t) :=
σ̃ε(x, t, vε, vεx, u

ε
xx)− σ̃ε(x, t, vε, uεx, u

ε
xx)

vεx − uεx
,

c(x, t) :=
σ̃ε(x, t, vε, uεx, u

ε
xx)− σ̃ε(x, t, uε, uεx, u

ε
xx)

vε − uε
,

satisfy the conditions in Lemma 1. If uε(x, t0) = vε(x, t0) in an inter-
val I ⊂ R for a given t0 > 0, then eε should be a trivial one since the
zero set of eε(·, t0) is not discrete. Therefore, vε ≡ uε and the first
part of the theorem is obtained.

For the second part of the theorem, we suppose that uε(x, t0) is
constant for x ∈ [a, b] = I. Consider an ordinary differential equation

α′(t) = σ̃ε(t, α(t), 0, 0), α(t0) = u(a, t0) ∈ R.

Since a smooth perturbation σ̃ε(t, z, p, q) is assumed, ∂σ̃ε(t,z,0,0)
∂z is con-

tinuous and the classical ordinary differential equation theory gives
a unique solution for all t ≥ 0. Clearly, v(x, t) = α(t) is a solution of
(2.5), which agrees with u on I × t0. Therefore, the first part of the
theorem implies that u(x, t) = α(t) from the beginning. ⊓⊔

Note that the theorem does not hold without the uniform parabolic-
ity. The finite speed of propagation of a conservation law allows us to
construct a counter example easily. For example, if two initial values
agree on an interval, such an agreement persists at least certain finite
time due to the finite speed of propagation. Therefore, the support of
a fundamental solution ρm(x, t) is not the whole real line for a given
t > 0 in general. However, under the uniform parabolicity of the per-
turbed problem, the theorem gives the well-known phenomenon that
the support of the solution is the whole real line, i.e., supp (ρεm) = R.
As a result we have the following lemma.
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Lemma 2. Let ρεm(x, t) be the fundamental solution of (2.5). If m1 <
m2, then ρ

ε
m1

(x, t) < ρεm2
(x, t) for all x ∈ R and t > 0. Furthermore,

for any m0 > 0, x ∈ R and t > 0 fixed, ρεm(x, t) → ρεm0
(x, t) as

m→ m0.

Proof. Let eε(x, t) = ρεm2
(x, t) − ρεm1

(x, t) with m1 < m2. Then eε

satisfies (2.6) which is uniformly parabolic with an initial value (m2−
m1)δ. Hence the solution becomes strictly positive for all x ∈ R and
t > 0. Therefore, ρεm1

(x, t) < ρεm2
(x, t) for all x ∈ R and t > 0, and

‖ρεm1
(t)− ρεm2

(t)‖L1 = |m1 −m2|.

Since the problem is uniformly parabolic, the fundamental solution
ρεm(x, t) is continuous for all t > 0. Hence the L1 convergence implies
the point-wise convergence and the proof is complete. ⊓⊔

The lemma holds true for a perturbed problem which is uniformly
parabolic. One may expect a non-strict inequality ρm1

(x, t) ≤ ρm2
(x, t)

form1 < m2 without the uniform parabolicity. The point-wise conver-
gence ρm(x, t) → ρm0

(x, t) asm→ m0 may fail if ρm0
is discontinuous

at the given point.
Theorem 1 is about a comparison between u(x, t) and ρm(x−x0, t).

Since the fundamental solution itself is also a bounded solution for
all given t > 0, one may compare two fundamental solutions using
the theorem. We first obtain the shape of the fundamental solution of
(1.5) by comparing it to its space translation. The following corollary
says that the fundamental solution ρm(x, t) changes its monotonicity
only once.

Corollary 2 (Fundamental solutions have no wrinkles). Let
ρm be the fundamental solution of (1.5). Then there exists x̄ = x̄(t) ∈
R such that ρm(·, t) is increasing for x < x̄ and decreasing for x > x̄.

Proof. The fundamental solution is nonnegative and ρm(x, t) → 0 as
|x| → ∞. Therefore, ρm(·, t) may have infinite or an odd number of
monotonicity changes. Suppose that ρm(·, t) has 2n − 1 number of
monotonicity changes. Then, A(t) := {x ∈ R : ρm(x, t) − ρm(x −
x0, t) > 0} should have n components for x0 > 0 small enough.
Similarly, if the monotonicity of ρm(·, t) is changed infinitely many
times, then the set A(t) is still disconnected for x0 small enough.
Therefore, Theorem 1 implies that n = 1 and hence ρm(·, t) changes
its monotonicity only once. ⊓⊔

Lemma 3. Let ρεm(x, t) be the fundamental solution of the regularized
problem (2.5). If x̄ = x̄(t) is the maximum point of ρεm(·, t), then
ρεm(·, t) is strictly increasing on (−∞, x̄) and strictly decreasing on
(x̄,∞).
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Proof. Suppose that the monotonicity of ρεm(x, t) given in Corollary
2 is not strict on x < x̄. Then, there exist a < b < x̄ such that
ρεm(a, t) = ρεm(b, t) and hence ρεm(x, t) is constant on the interval [a, b].
Theorem 3 implies that ρεm(·, t) = α(t), which can not be a delta-
sequence as t→ 0. Therefore, the monotonicity of ρεm(·, t) is strict on
(−∞, x̄). Similarly, the fundamental solution is strictly decreasing on
(x̄,∞). ⊓⊔

Remark 1. The strict monotonicity of the fundamental solution ρm(·, t)
in Lemmas 2 and 3 is not expected for the general case (1.5)–(1.6).
The fundamental solutions of the hyperbolic conservation law in Sec-
tion 4, (4.5), provide such examples.

3. Steepness as a geometric interpretation

The Oleinik or the Aronson-Bénilan one-sided inequalities have an-
other geometric interpretation that fundamental solutions are steeper
than any other bounded solutions. The purpose of this section is to
show that the connectedness of the level set given in Theorem 1 pro-
vides the same steepness comparison for the general case. This steep-
ness comparison can be considered as a geometric version of estimates
of solutions gradient.

First we remind and introduce notations. Let u(x, t) be a bounded
solution of (1.5) and ρm(x, t) be the fundamental solution of mass
m > 0. The steepness of solution u at a point x = x1 is compared to
the one of the fundamental solution ρm at the point x = x2 with the
same value, i.e.,

u(x1, t) = ρm(x2, t),

and with the same monotonicity. The existence and the uniqueness of
such a point is from Lemma 3 if the problem is uniformly parabolic.
Then, by letting

ρm,x0
(x, t) := ρm(x− x0, t) with x0 := x1 − x2,

we have ρm,x0
(x1, t) = ρm(x2, t), i.e., the graphs of u(x, t) intersects

the graph of ρm,x0
(x, t) at x = x1. However, if the problem is not

uniformly parabolic, one need to state a little bit more generally due
to non-uniqueness and possible appearance of discontinuities. Hence,
at an intersection point, we may say

[minu(x1±, t),max u(x1±, t)] ∩ [min ρm,x0
(x1±, t),max ρm,x0

(x1±, t)],
6= ∅, (3.1)

where min v(x±, t) and max v(x±, t) respectively denote the mini-
mum and maximum of the left and right hand limit for given time t
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and point x. Of course, if u and ρm are continuous, then (3.1) implies
that

u(x1, t) = ρm,x0
(x1, t)

and the arguments in the following proof become simpler.
In the rest of this section we let [a, b] be the maximal interval

including x1 such that the relation (3.1) is satisfied. We employ the
notational convention that [a, b] := {a} if a = b. Note that Theorem
3 implies that a = b = x1 for perturbed problems. However, it is
possible that a 6= b for a problem without uniform parabolicity, where
an invicid conservation law is a good example. There are four possible
scenarios of intersecting two graphs (see Figure 2). When ρm,x0

and
u are discontinuous at x = x1, the corresponding four scenarios are
in Figure 3. In the figures, only the cases that ρm,x0

and u increase
at the intersection point are given. One may obviously figure out the
other cases that u and ρm,x0

decrease.
In the rest of this section we will show which scenarios are allowed

and which are not. The proofs are solely based on the connectedness
of the level set in Theorem 1 and are good examples that explain how
to use geometric arguments instead of analytic estimates. The proof
is intuitively clear. For example, if it is the case in Figure 2(d), then,
after shifting ρm,x0

to right a little bit, we can make the zero level
set {x ∈ R : ρm(x− x0 − ǫ, t)−u(x, t) > 0} disconnected. Hence, the
case is never allowed. If it is the case in Figures 2(b) or 2(c) and m
is large enough to satisfy ‖u(t)‖∞ ≤ ‖ρm,x0

(t)‖∞, then the level set
becomes disconnected before or after shifting ρm,x0

to left a little bit.
Hence, these two cases are not allowed at least for m > 0 large. In
the following theorem we state and prove this observation formally.

Theorem 4 (Fundamental solution is the steepest.). Let u(x, t)
be a bounded solution of (1.5), ρm be the fundamental solution of mass
m > 0, and (3.1) be satisfied for all a ≤ x1 ≤ b.

1. Suppose that both u(·, t) and ρm,x0
(·, t) are nonconstant increasing

functions on (a− ε, a). Then,
(a) If there exists ε > 0 such that u(x, t) > ρm,x0

(x, t) on (a− ε, a)
and ρm,x0

(x, t) < u(x, t) on (b, b + ε), then ρm(x, t) ≤ u(x, t)
for all x > b.

(b) If there exists ε > 0 such that u(x, t) < ρm,x0
(x, t) on (a−ε, a),

then ρm(x, t) ≤ u(x, t) for all x > b.
2. Suppose that both u(·, t) and ρm,x0

(·, t) are nonconstant decreasing
functions on (b, b+ ε). Then,
(a) If there exists ε > 0 such that u(x, t) > ρm,x0

(x, t) on (a− ε, a)
and ρm,x0

(x, t) < u(x, t) on (b, b + ε), then ρm(x, t) ≤ u(x, t)
for all x < a.

(b) If there exists ε > 0 such that u(x, t) < ρm,x0
(x, t) on (b, b+ε),

then ρm(x, t) ≤ u(x, t) for all x < a.
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(a) allowed (b) not allowed for large m

(c) not allowed for large m (d) never allowed

Fig. 2. Four possible scenarios at the intersection point when the solutions are
continuous. Solid lines are graphs of ρm,x0

(·, t) and dotted ones are of u(·, t).

(a) allowed (b) not allowed for large m

(c) not allowed for large m (d) never allowed

Fig. 3. Four possible scenarios at the intersection point when the solutions are
discontinuous. Solid lines are graphs of ρm,x0

(·, t) and dotted ones are of u(·, t).

Proof. The second part is of the dual statement of the first one and
we show the first part only. We may assume without loss that both
u and ρm,x0

strictly increase on (a − ε, a) after rearranging x0 if
needed. (This step is not needed for the perturbed problem due to
Lemma 3.) To show (1a), we assume that there exists α > b such
that ρm,x0

(α, t) > u(α, t) and derive a contradiction. Remind that
ρm,x0

(b + ε, t) < u(b + ε, t). We may assume u(·, t) and ρm,x0
(·, t)

are continuous at α and b + ε by rearranging α and ε if needed.
Then, the continuity of ρm,x0

and u at α and b + ε implies that
there exists small 0 < τ < ε such that ρm,x0

(α + τ, t) > u(α, t)
and u(b + ε, t) > ρm,x0

(b + ε + τ, t). Therefore, the zero level set
A := {x ∈ R : e(x, t) > 0} with e(x, t) := ρm,x0−τ (x, t) − u(x, t) is
not connectable since e(a, t) > 0, e(α, t) > 0 and e(b+ε, t) < 0, which
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contradicts Theorem 1. Therefore, there is no such α > b and hence
ρm(x, t) ≤ u(x, t) for all x > b.

The proof of (1b) is similar to (1a). The difference is in the com-
paring points. We similarly suppose that there exists α > b such
that ρm,x0

(α, t) > u(α, t). Remind that ρm,x0
(a − ε, t) > u(a − ε, t).

We assume u(·, t) and ρm,x0
(·, t) are continuous at α and a − ε by

rearranging α and ε if needed. Then, the continuity of ρm,x0
and

u at α and a − ε implies that there exists small 0 < τ < ε such
that ρm,x0

(α + τ, t) > u(α, t) and u(a − ε, t) < ρm,x0
(a − ε + τ, t).

We also have u(a, t) > ρm,x0
(a + τ, t) Therefore, the zero level set

A := {x ∈ R : e(x, t) > 0} with e(x, t) := ρm,x0−τ (x, t) − u(x, t)
is not connectable since e(a, t) < 0, e(α, t) > 0 and e(a − ε, t) > 0,
which contradicts Theorem 1. Therefore, there is no such α > b and
hence ρm(x, t) ≤ u(x, t) for all x > b. ⊓⊔

The previous theorem compares the steepness of a general bounded
solution u to the fundamental solution ρm and one may obtain infor-
mation or estimates of u from a fundamental solution. For example,
if the fundamental solution is continuous, then the general solution
should be continuous. If not, one can easily construct a situation
such as Figure 2(b) which violates Theorem 4. If the fundamental
solution contains decreasing discontinuities only, we can say that the
increasing discontinuity of a weak solution is not admissible. The en-
tropy condition of hyperbolic conservation laws is exactly the case. In
certain cases, the fundamental solution is given explicitly and hence
corresponding one-sided inequality is explicit. Oleinik and Aronson-
Bénilan type inequalities are such examples. However, even if there is
no such explicit inequalities, these steepness comparison in Theorem
4 may provide equally useful estimates for a general solution.

Remark 2. Theorem 4(1a) handles the case in Figure 2(b). Since u is a
bounded solution, there exists m > 0 such that ‖ρm(t)‖∞ > ‖u(t)‖∞.
In that case, u(x, t) can not be bigger than or equal to ρm(x, t) for
all x > a. In other words, such a case is possible only for m > 0
small. In Section 4, we will see that such a case is not possible at all
even for a small m for a convex conservation law case. However, the
case is possible for small m if the convexity assumption is dropped.
Theorem 4(1b) handles the cases in Figures 2(c) and 2(d). First, the
case 2(d) is excluded completely. The other case 2(c) can be possible
for m > 0 large.

Remark 3. The theorem does not exclude the case in Figure 2(a)
which is usually the case if not always. This relation shows that the
the fundamental solution ρm is steeper than the general solution u
and such a comparison should be between two points of the same
value. If the graph of the solution u can touch the graph of the fun-
damental solution ρm as in Figure 2(d), it implies that u is more
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concave than the fundamental solution ρm is. However, such a case
is excluded and hence we may say that the fundamental solution is
more concave than any other solution, which is another interpretation
of the steepness.

4. Scalar conservation laws

In this section we consider a scalar conservation law with a smooth
flux,

∂tu+ ∂xf(u) = 0, u(x, 0) = u0(x) ≥ 0, t > 0, x ∈ R. (4.1)

The flux f is assumed without loss to satisfy

f(0) = f ′(0) = 0. (4.2)

This conservation law is in the form of (1.5) with σ(x, z, p, q) =
−f ′(z)p, where (1.6) is satisfied with ∂qσ = 0.

The scalar conservation law serves us for two purposes. Its solution
gives a concrete example to review the steepness theory developed in
the previous section. The fundamental solution of a conservation law
has a rich structure and is an excellent prototype of a general case.
This nonlinear hyperbolic equation is also used to show that the
theory of this paper is more or less optimal and one can not expect
more than the theory under the generality in this paper.

The dynamics of solutions to the conservation law is well under-
stood if the flux is convex. However, for the general case without
convexity assumption, the theory is limited even for a scalar equa-
tion case. The main obstacle to develop a theory without convexity
assumption is that the Oleinik inequality does not hold for the case. H
owever, the geometric version of such one-sided inequalities obtained
in this paper holds true. We will apply it to hyperbolic conserva-
tion laws without convexity assumption and show that the solution
with connectable zero level set is unique and is the entropy solution.
We will also apply the the theory to obtain a TV boundedness of a
solution without the convexity assumption. This indicates that the
connectivity of the zero level set is the true generalization of the
Oleinik one-sided inequality.

4.1. Structure of fundamental solutions

The solution of an initial value problem of an autonomous linear
problem is given as the convolution between the initial value and the
fundamental solution. Unfortunately, there is no such a nice scenario
for nonlinear problems. However, the connectedness of the zero level
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set given in Theorem 1 can be successfully used to obtain key esti-
mates of a general solution by comparing it to a fundamental solution.
In fact, we have obtained a steepness estimate in Section 3 using the
connectedness of the zero level set and will obtain more of them in
following sections.

In this section we survey the structure of nonnegative fundamental
solution ρm(x, t) of mass m > 0 that satisfies

∂tρm = −∂xf(ρm), ρm(x, 0) = mδ(x), m, t > 0, x ∈ R. (4.3)

First, one may easily check that the fundamental solution satisfies

ρm(mx,mt) = ρ1(x, t), x ∈ R, t > 0. (4.4)

This relation shows that it is enough to consider the case with m = 1.
One can also read that solutions of different sizes live in a different
time scale, where the larger one lives in a slower time scale.

Remark 4. The similarity structure is well known for several cases
including hyperbolic conservation laws. Similarity structure is a rela-
tion between the time and the space variable. For example ρm(x, t)
can be obtained from its profile at t = 1 using an invariance relation.
The relation in (4.4) shows a different kind of similarity structure
among fundamental solutions of different sizes.

We first consider a convex flux that f ′′(u) ≥ 0 in a weak sense.
Then the fundamental solution is explicitly given by

ρm(x, t) =

{

g(x/t) , 0 < x < am(t),
0 , otherwise,

(4.5)

where g is called the rarefaction profile and is given by the inverse
relation of the derivative of the flux, i.e.,

f ′(g(x)) = x. (4.6)

The support of the fundamental solution is given by the equal area
rule

∫ am(t)

0
g(x/t)dx = m (4.7)

(see Dafermos [6]).
Since g is the inverse of an increasing function f ′, this rarefaction

profile g is also an increasing function. Therefore, one can clearly see
that the fundamental solution ρm(x, t) has the monotonicity structure
given in Corollary 2 with x̄(t) = am(t). In particular the decreasing
part of the fundamental solution is simply the single discontinuity
from the maximum to zero value. However, if f ′ has a discontinu-
ity, then g is not strictly monotone. Hence the strict monotonicity
in Lemma 3 fails in this case. Let m1 < m2. Then it is clear that
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(a) convex-concave envelops (b) a graph of a fundamental solution

(c) convex-concave envelops (d) a fundamental solution at a later time

Fig. 4. Envelopes and corresponding fundamental solution

ρm1
(x, t) ≤ ρm2

(x, t) and ρm1
(x, t) = ρm2

(x, t) for 0 < x < am1
(t).

Hence, the strict monotonicity in Lemma 2 also fails. Suppose that
f ′(u) is constant in an interval. Then, g′ has a discontinuity and
hence the fundamental solution may have a increasing discontinuity.
Therefore, the strict monotonicity in Lemmas 2 and 3 holds for the
perturbed problems only and Corollary 2 is the one we may expect
for a general case without the uniform parabolicity.

The steepness comparison in Section 3 shows that the cases in
Figures 2(b,c) and 3(b,c) are not allowed for m large. However, we
can clearly see that those cases are not allowed even for small m
with convexity assumption. For example, since ρm1

(x, t) = ρm2
(x, t)

for 0 < x < min(am1
(t), am2

(t)), such a case is not allowed for any
m > 0 if it is not for large m. On the other hand, we will observed in
the rest of this section that a conservation law without the convexity
assumption provides examples that such cases may happen for small
m. We start with a brief review of the structure of the fundamental
solution.

The explicit formula (4.5) is valid only with convexity assump-
tion. The fundamental solution without it is given in [8,11]. We will
briefly review its structure to use as an example to view the general
theory. Using the convex-concave envelopes of the flux, one may find
the left and the right side limit of a discontinuity of a fundamental
solution, where the maximum of the fundamental solution is used
as a parameter. Let h(u; ū) be the lower convex envelope of f on
the interval [0, ū], which is the supremum of convex functions η such
that η(u) ≤ f(u) on the interval. This envelope is piecewise linear
or identical to f(u) (see Figure 4(a)). It is shown in [8] that, if the
convex envelope h(u; ū) has a linear part that connects two values,
say 0 and u3 as in Figure 4(a), then the fundamental solution has
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a increasing discontinuity that connects 0 and u3, as in Figure 4(b),
at the moment when ū is the maximum of the fundamental solution
ρm(·, t).

The upper concave envelope k(u; ū) is the infimum of the concave
functions such that η(u) ≥ f(u). Similarly, if the concave envelope
k(u; ū) has a linear part connecting two values, say 0 and u1 or u2 and
ū as in Figure 4(a), then the fundamental solution has decreasing dis-
continuities connecting 0 and u1 or u2 and ū, as in Figure 4(b). The
exact place of the discontinuities and the profile of the continuous
part depend on the dynamics of envelopes at earlier times. However,
the exact size of each shock can be found from the envelope at that
moment of a given maximum ū > 0. At a later time, when the max-
imum ū of the fundamental solution is like the one in Figure 4(c),
the convex envelope is identical to f is the concave envelop is lin-
ear. Then the fundamental solution at that moment is like the one in
Figure 4(d).

Now we consider an example of the case in Figure 2(b) form large.
Let Figures 4(b) and 4(d) be respectively the graphs of ρm(x, t1) and
ρm(x, t2) with t1 < t2. First rewrite the relation in (4.4) as

ρma(ax, at) = ρm(x, t).

Then, we have
ρm(x, t2) = ρmt1/t2(t1x/t2, t1).

In other words, ρmt1/t2(x, t1) has the shape of Figure 4(d) after shrink-
ing it in x direction with a ration of t1/t2. If ρm(x, t1) plays the role
of u(x, t1) and ρmt1/t2(x, t1) of the comparing fundamental solution,
then it will give the scenario of Figure 2(b). Hence such a case is re-
ally possible for a general case with a large m. This observation also
indicates that the well-known similarity structure of fundamental so-
lution is valid only with the convexity assumption.

4.2. Equivalence to the Oleinik inequality

In this section we show that the connectedness of the zero level set
in Theorem 1 is equivalent to the one-sided Oleinik inequality (1.2)
which is valid only with a convex flux.

Theorem 5. Let f ′′(u) > 0 and ρm(x, t) be given by (4.5). Then a
non-negative bounded function u(x) satisfies the Oleinik inequality

f ′(u(x))− f ′(u(y))

x− y
≤ 1

t
, t > 0, x, y ∈ R (4.8)

if and only if the zero level set

A(t;m,x0) := {x ∈ R : ρm(x− x0, t)− u(x) > 0}
is connected (or connectable) for all x0 ∈ R and m > 0.
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Proof. In the following the time t > 0 is fixed and we will drop the
time variable from ρm for brevity. First, note that ρm(x) satisfies

f ′(ρm(x))− f ′(ρm(y))

x− y
=
f ′(g(x/t)) − f ′(g(y/t))

x− y
=

1

t

for all 0 < x, y < am(t). Since f ′′ > 0, f ′ is increasing and hence we
have A(t;m,x0) = {x ∈ R : f ′(ρm(x− x0))− f ′(u(x)) > 0}. Suppose
that the set A is not connected for some m > 0 and x0 ∈ R. After
an translation of u, we may assume x0 = 0. Then, there exist three
points x1 < x2 < x3 such that f ′(ρm(x1)) > f ′(u(x1)), f

′(ρm(x2)) <
f ′(u(x2)) and f

′(ρm(x3)) > f ′(u(x3)). Therefore, x1, x2 ∈ supp (ρm(t))
and

f ′(u(x1))− f ′(u(x2))

x1 − x2
>
f ′(ρm(x1))− f ′(ρm(x2))

x1 − x2
=

1

t
.

Hence the Oleinik inequality fails.
Now suppose that the Oleinik inequality fails. Then, there exist

x1 < x2 such that

f ′(u(x2))− f ′(u(x1))

x2 − x1
>

1

t
.

Let

x0 := (x1 + x2)/2 − t[f ′(u(x1)) + f ′(u(x2))]/2

and m be so large that am(t) > t sup(f ′(u(x))). Then, for x3 :=
x0 + am(t)− ǫ with a small ǫ > 0, we have

f ′(ρm(x1 − x0))− f ′(u(x1)) =
f ′(u(x2))− f ′(u(x1))

2
− x2 − x1

2t
> 0,

f ′(ρm(x2 − x0))− f ′(u(x2)) =
x2 − x1

2t
− f ′(u(x2))− f ′(u(x1))

2
< 0,

f ′(ρm(x3 − x0))− f ′(u(x3)) = (am(t)− ǫ)/t− f ′(u(x3)) > 0.

In other words the zero level set A(t;m,x0) is disconnected. ⊓⊔

Notice that the function u is not necessarily a solution of the
conservation law for the equivalence relation in the theorem. The
time variable t in the inequality (4.12) is related to the fundamental
solution ρm(x, t) only.
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Fig. 5. An illustration to explain the Oleinik entropy condition. For a simpler
illustration we have returned to the original case without the assumption in (4.2).

4.3. Uniqueness without convexity

In this section we consider a conservation law (4.1) with a nonconvex
flux. Let u(x, t) be a nonnegative bounded solution and have a discon-
tinuity at a point x0 such that lim

x→x0+
u(x, t) = ur and lim

x→x0−
u(x, t) =

ul. For an illustration, consider the graph of nonconvex flux given in
Figure 5. Suppose that you are moving from the left limit (ul, f(ul))
to the right limit (ur, f(ur)) along the line connecting the two points.
If the graph of the flux f(u) lies always on your left side, then the
discontinuity is admissible. For example, if the left and the right side
limit pair is (ul, ur) = (c, 0) as in Figure 5, then the discontinuity is
admissible. However, if (ul, ur) = (c, a) as in Figure 5, then the graph
of the flux f(u) is on your right side for a < u < b and hence the dis-
continuity is not admissible. This admissibility criterion is called the
Oleinik entropy condition. If discontinuities of a weak solution satisfy
the Oleinik entropy condition, then the weak solution is called the en-
tropy solution. It is well known that the entropy solution is unique
and identical to the zero-viscosity limit of its perturbed problem.

Suppose that the zero level set

A(t;m,x0) := {x ∈ R : ρm(x− x0, t)− u(x, t) > 0} (4.9)

is connected for all t,m > 0 and x0. In this section we will show
that such a weak solution is the entropy solution if the flux has a
single inflection point. However, for a general nonconvex flux, it can
be a non-entropy solution. For example, let u have a discontinuity.
Then, the steepness comparison in the previous section implies that
form > 0 sufficiently large, ρm(x, t) should have a larger discontinuity
of the same monotonicity since the case in Figure 3(a) is only the
possible one form large. Of course, discontinuities of the fundamental
solution are admissible ones since they are given by convex-concave
envelopes. Therefore, if a flux has a property that a jump smaller
than an admissible one with same monotonicity is always admissible,
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(a) convex-concave envelops (b) comparing ρm and u near an
inadmissible discontinuity

Fig. 6. Envelopes and corresponding fundamental solution

then u should be the entropy solution. For example, if the flux has a
single inflection point, one can easily check that it is the case.

For a general case, the story is quite different. For example, if the
flux is given as in Figure 5, the discontinuity (ul, ur) = (c, a) is not
admissible even though a larger one (ul, ur) = (c, 0) is admissible.
Furthermore, one may easily check that

u(x, t) =

{

c, x < σt,
a, x > σt,

σ =
f(c)− f(a)

c− a
, (4.10)

is a weak solution solution that makes the set A(t;m,x0) be con-
nected for all t,m, x0. Unfortunately, this is not an entropy solution
and hence the connectedness of the zero level set is not enough to sin-
gle out the entropy solution. However, we have the following lemma
which gives a clue to obtain the uniqueness.

Lemma 4. Let u(x) be a nonnegative bounded function and the zero
level set A(t;m,x0) in (4.9) be connected for all t,m > 0 and x0 ∈ R.
Then any discontinuity of u that connects u = 0 is admissible.

Proof. Let u(x) have a discontinuity at x = x1 and the left side
limit is ul > 0 and the right side limit is ur = 0. Suppose that the
discontinuity is not admissible. Then, since a part of the graph of the
flux is above the line connecting (0, 0) and (ul, f(ul)), the concave
envelope of the flux on the interval (0, ul+ε0) is not a line for a small
ε0 > 0. Let ρm(x, t) be the fundamental solution with the maximum
ul+ε0 at time t > 0 and x̄ be the maximum point. Let x0 = x1−x̄−ε1.
Then, it is clear that the set A(t;m,x0) becomes disconnected for a
small ε1 > 0. A diagram that shows the relation is given in Figure 6.
If ul = 0 and ur > 0, then one may consider the convex envelope and
obtain the nonconnectedness of level set A similarly. ⊓⊔

The connectedness of the set A(t;m,x0) allows us to single out the
zero-viscosity limit if the flux is convex or has a single inflection point.
For a general nonconvex case, Lemma 4 encourages us to consider
fundamental solutions with a nonzero far field.
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Theorem 6. Let ρcm be a solution to the conservation law (4.1) with
initial value ρcm(x, 0) = c + mδ(x), c ≥ 0, and u(x, t) be a weak
solution. Then, the zero level set

A(t;m,x0, c) := {x ∈ R : ρcm(x− x0, t)− u(x, t) > 0} (4.11)

is connected for all t,m, c > 0 and x0 ∈ R if and only if u(x, t) is the
entropy solution.

Proof. (⇒) Suppose that u(x, t) has a discontinuity that connects c
and d with c < d. Then, consider the fundamental solution ρcm which
is similarly constructed using the convex and concave envelopes of the
flux on the interval [c, ū], where ū is the maximum of the fundamental
solution. This procedure is identical to the earlier case with c = 0.
Then, we may repeat the previous process of Lemma 4 to show the
admissibility of this discontinuity. The detail is omitted.

(⇐) It is well known that the entropy solution is the zero-viscosity
limit of the perturbed problem. The zero level set A of a zero-viscosity
limit is connected by Theorem 1 for c = 0. For c > 0 we may repeat
the process since the zero set theory, Lemma 1 is valid independently
of c > 0. ⊓⊔

Remark 5. The connectedness of this zero level set can be used as an-
other admissibility criterion of a conservation law without convexity.
Furthermore, it gives a hope that the connectivity of the zero level set
can be used for an admissibility criterion for more general problems
in the form of (1.5)-(1.6).

4.4. Boundedness of total variation

The Oleinik inequality should be understood in a weak sense since
the solution is not necessarily smooth. Hence it is preferred to write
it as

f ′(u(x, t)) − f ′(u(y, t))

x− y
≤ 1

t
, t > 0, x, y ∈ R. (4.12)

Hoff [9] showed that the weak solution satisfying the Oleinik inequal-
ity is unique if and only if the flux f is convex. In other words, the
inequality (4.12) does not give an uniqueness criterion without con-
vexity of the flux. Furthermore, if the flux is not convex, the inequality
is not satisfied by the entropy solution.

The theoretical development for a nonconvex case has been limited
due to the lack of an Oleinik type inequality and, therefore, finding a
replacement of such an inequality has been believed as a crucial step
for further progress. There have been several technical developments
to find the right inequality (see [4,7,10,12]). These efforts are related
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to finding a constant C ≥ 0 such that a weak version of the Oleinik
inequality,

f ′(u(x, t)) − f ′(u(y, t)) ≤ x− y

t
+ C|TV (u(0)) − TV (u(t))|, (4.13)

is satisfied by the entropy solution. Here, TV (u(t)) is the total vari-
ation of the solution u at a fixed time t ≥ 0. The total variation is
defined by

TV (u(t)) := sup
P

∑

i

|u(xi, t)− u(xi+1, t)|,

where the sup is taken over all possible partitions P := {· · · < xi <
xi+1 < · · · }. It is clear that (4.13) is a weaker version of the Oleinik
inequality (4.12) and that it cannot give the uniqueness since even the
stronger original version does not give the uniqueness. The connect-
edness of the zero level set in Theorem 1 is the correct generalization
that gives the uniqueness for general flux without convexity assump-
tion, Theorem 6.

The boundedness of the total variation of a solution has been one
of the key estimates in the regularity theory of various problems.
The one-sided Oleinik inequality actually gives TV-boundedness on
any bounded domains for uniformly convex at any time t > 0 even
if it is not initially. (Notice that the inequality in (4.13) cannot be
used for such a purpose since TV (u(0)) is already included in the
estimate.) Without convexity the solution is not of bounded variation
in general (see [3,4,16]). Therefore, we need a correct assumption
that gives the BV-boundedness. Notice that, even if there is no lower
bound in the Oleinik estimate, the upper bound alone may control
the variation. Roughly speaking, in terms of fundamental solution
ρm(·, t), the variation of the solution in the domain of size of the
support of ρm(·, t) is smaller than the variation of the fundamental
solution due to the steepness comparison property in Theorem 4.

Let

C(t) = sup
c,m>0

2 supx(ρ
c
m(x, t)− c)

|supp (ρcm − c)| <∞, (4.14)

where ρcm is the fundamental solution in Theorem 6. The variation
of the fundamental solution on its support is 2 supx(ρ

c
m(x, t) − c)

and hence C(t) is the maximum ratio of variation of all possible
fundamental solutions. Therefore, one can easily see that TV (u(t)) ≤
C(t)|supp (u(t))| since the fundamental solution is the steepest one
and hence the variation of a solution u in a unit interval cannot be
bigger than C(t). For example, for the invicid Burgers equation case,
we have C(t) = 2

t and hence we have

TV (u(t)) ≤ 2

t
|supp (u(t))|,
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which is a way how the Oleinik one-sided inequality gives the TV-
boundedness. The following theorem is a summary of the TV esti-
mate.

Theorem 7 (TV boundedness). Let u(x, t) be a bounded solution
of (1.5), where the flux f is not necessarily convex. If C(t) given by
(4.14) is finite and u(x, t) is compactly supported, then

TV (u(t)) ≤ C(t)|supp (u(t))|. (4.15)

In general, the total variation in a bounded interval I = (a, b), is
bounded by

TV
(

u(t)|x∈I
)

≤ C(t)|b− a|. (4.16)

5. Porous medium equation

Let u(x, t) be the solution to the porous medium equation

∂tu = ∂2x(u
γ), u(x, 0) = u0(x) ≥ 0, t, γ > 0, x ∈ R. (5.1)

The fundamental solution of this equation is called the Barenblatt
solution and is explicitly given by

ρm(x, t) =
(

Cmt
1−γ

γ+1 − γ − 1

2γ(γ + 1)
|x|2t−1

)
1

γ−1

+
, γ 6= 1, (5.2)

where we are using the notation (f)+ := max(0, f). For γ = 1, the
fundamental solution is of course the Gaussian. The constant Cm is
positive and decided by the relation for the total mass

∫

ρm(x, t)dx =
m. For the fast diffusion regime, 0 < γ < 1, the inside of the paren-
thesis is positive for all x ∈ R

n and hence ρm is strictly positive
and C∞ on R

n. It is also well studied that the general solution u is
also strictly positive and C∞ on R. For the porous medium equation
regime, γ > 1, the fundamental solution ρm is compactly supported
and C∞ in the interior of the support. The solution u is also C∞

away from zero points.
For dimension n = 1, the Aronson-Bénilan inequality in (1.4) is

written as

∂2x℘(u) ≥ − 1

t(γ + 1)
, ℘(u) :=

γ

γ − 1
uγ−1, γ 6= 1, (5.3)

where ℘ is usually called pressure. One can easily check that the
pressure is an increasing function for all γ > 0 and the Barenblatt
solution satisfies the equality in (5.3). In the following theorem we
show that the connectedness of the zero level set in Theorem 1 is
equivalent to the Aronson-Bénilan one-sided inequality.
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Theorem 8. Let ρm(x, t) be the Barenblatt solution with 1 6= γ > 0
and u(x) be a non-negative bounded smooth function with possible
singularity at zero points. For the case 0 < γ < 1, u is assumed to be
positive. Then, the Aronson-Bénilan inequality (5.3) is satisfied if and
only if the zero level set A(t;m,x0) := {x ∈ R : ρm(x−x0, t)−u(x) >
0} is connected (in the sense of Definition 1) for all x0 ∈ R and
m > 0.

Proof. (⇒) Suppose that the set A(t;m,x0) is not connected for some
m > 0 and x0 ∈ R. After a translation of u(x), we may set x0 = 0.
Then, there exist three points x1 < x2 < x3 such that ρm(x1, t) >
u(x1), ρm(x2, t) < u(x2), and ρm(x3, t) > u(x3). Let ζ := ℘(u) −
℘(ρm) be the pressure difference. Suppose that the Aronson-Bénilan
inequality (5.3) holds. Then,

∂2xζ = ∂2x℘(u)− ∂2x℘(ρm) ≥ 0.

Note that the pressure function ℘ : u → γ
γ−1u

γ−1 is an increasing

function for γ > 0 and hence we have

ζ(x1) < 0, ζ(x3) < 0.

The maximum principle implies that ζ(x) < 0 on (x1, x3). However,
it contradicts to ζ(x2) > 0. Hence the Aronson-Bénilan inequality
should fail.

(⇐) Now suppose that there exists x2 such that ∂2x℘(u(x2)) <
− 1

t(γ+1) , i.e., the Aronson-Bénilan inequality fails at a point x2. Then,

since u is smooth away from zero points, there exist x1 < x2 < x3
and ǫ > 0 such that ∂2x℘(u(x)) < − 1

t(γ+1) − ǫ and u > 0 on [x1, x3].

Let h(x, t) = − 1
2t(γ+1)(x − x0)

2 + b, where two unknowns, x0 and b,

are uniquely decided by two relations,

h(x1, t) = ℘(u(x1)), h(x3, t) = ℘(u(x3)).

Consider the porous medium regime γ > 1 first. Then ℘(u(x1)) >
0 and, since h is not entirely negative, the constant b should be pos-

itive. Set Cm := γ−1
γ bt

γ−1

γ+1 . Then, Cm > 0 and

h(x, t) =
γ

γ − 1
Cmt

1−γ

γ+1 − 1

2(γ + 1)
(x− x0)

2t−1.

Therefore, h(x, t) = ℘(ρm(x − x0, t)) for ρm(x, t) > 0. Let ζm :=
℘(u)− ℘(ρm). Then,

∂2xζm < −ǫ, ζm(x1) = ζm(x3) = 0.

The strong maximum principle implies that ζm(x) > 0 for all x ∈
(x1, x3). Therefore, there exists m′ > m such that ζm′(x2) > 0. Since
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ρm′(x, t) > ρm(x, t) for all x in the interior of the support of ρm′(t),
we conclude that

ζm′(x1) < 0, ζm′(x2) > 0, ζm′(x3) < 0.

Therefore, the set A(t;m′, x0) is disconnected.
For the fast diffusion regime, 0 < γ < 1, we need a slightly more

subtle approach to obtain the positivity of the corresponding constant
Cm > 0. Since u is bounded, we may set −B := ℘(supu) < 0. Then,
℘(u(x)) ≤ −B for all x ∈ R. Since u is smooth, so is ℘(u). Suppose
that ∂2x℘(u) has minimum value at x2 and ∂

2
x℘(u(x2)) < − 1

t(γ+1) , i.e.,

the Aronson-Bénilan inequality fails. For a sufficiently small ε > 0,
there exists t1 < t such that ∂2x℘(u(x2)) = − 1

t1(γ+1)−2ε. Then, since u

is smooth, there exist x1 < x2 < x3 and ǫ > 0 such that ∂2x℘(u(x)) <
− 1

t1(γ+1)−ǫ for x ∈ (x1, x3). Let h
ε(x, t) := −

(

1
2t1(γ+1)+ε

)

(x−x′0)2+b,
where x′0 and b are uniquely decided by

hε(x1, t) = ℘(u(x1)), hε(x3, t) = ℘(u(x3)).

Since hε(x, t) has the minimum curvature of ℘(u) and shares the
same values at x1 and x3 with ℘(u), we have h

ε(x, t) ≤ ℘(u(x)) for all
x 6∈ (x1, x3). Since the curvature difference between h

ε and ℘(u) is less
than ε on the interval, we have hε(x, t) < 0 for all x ∈ R. By taking
smaller ε > 0 if needed, we obtain h(x, t) := − 1

2t1(γ+1) (x−x′0)2+b < 0

using the same boundary condition. Therefore, b < 0 and hence the

constant Cm := γ−1
γ bt

γ−1

γ+1

1 becomes positive. The same arguments for

the PME case show that there exists m′ > 0 such that A(t1;m
′, x′0)

is disconnected with t1 < t. Therefore there exists m > 0 and x0 that
make A(t;m,x0) be disconnected. ⊓⊔

The Aronson-Bénilan one-sided inequality is valid in multi-dimensions.
Hence it is natural to ask what is the corresponding equivalent con-
cept for the multi-dimensional case. Further discussions on this mat-
ter are in the next section.

6. Connectivity in multi-dimensions

In this section we discuss about a possibility to extend the one di-
mensional theory of this paper to multi-dimensions. Let u(x, t) be a
bounded nonnegative solution of

∂tu = F (t, u,Du,D2u), u(x, 0) = u0(x) ≥ 0, t > 0, x ∈ R
n, (6.1)

where the n× n matrix DqF (x, t, z, p, q) is positive definite, i.e.,

n
∑

i,j=1

(

DqijF (t, z, p, q)
)

ξiξj ≥ 0 (6.2)
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for all ξi ∈ R.
Remember that the one dimensional theory depends on non-increase

of the number of zeros or of the lap number. An advantage of the ar-
gument in Theorem 1 in compare with the one-sided inequalities is
that the connectivity is a multi-dimensional concept. Counting the
number of zeros is meaningless in multi-dimensions. A correct way
is to count the number of connected components of the zero level
set. However, the number of connected component does not decrease
in general in multi-dimensions. For example, let v be another solu-
tion with an initial value v0 and consider the number of connected
components of the set A(t) := {x ∈ R

n : v(x, t) − u(x, t) ≥ 0}.
Unfortunately, the number of connected components may increase
depending on the initial distributions and the situation is far more
delicate. Hence, an extension of the lap number theory or the zero
set theory to multi-dimensions should be a one classifying cases when
the number of connected components of the level set decreases.

The case of this paper is when v(x, t) = ρm,x0
(x, t) with x0 ∈ R

n

and m > 0, i.e., the zero level set is

A(t;m,x0) := {x ∈ R
n : ρm(x− x0, t)− u(x, t) ≥ 0}. (6.3)

Therefore, our chance to extend Theorem 1 to multi-dimensions comes
from the fact that ρm(x, t) has a special initial value, the delta dis-
tribution, which is the steepest one. If one can show that this set is
simply connected, then it may indicate that the fundamental solution
ρm is steeper than any other solution. In the following theorem we
will show that the zero level set A(t;m,x0) is convex for the heat
equation case.

Let u(x, t) be the bounded nonnegative solution of the heat equa-
tion

∂tu = ∆u, u(x, 0) = u0(x) ≥ 0, x ∈ R
n, t > 0. (6.4)

Let ρm(x, t) be the fundamental solution of the heat equation of mass
m > 0, i.e.,

ρm(x, t) = mφ(x, t), φ(x, t) =
1√
4πt

n e
−|x|2/4t,

where φ(x, t) is called the heat kernel. Then, the solution u(x, t) is
given by

u(x, t) = u0 ∗ φ(t) =
∫

u0(y)φ(x− y, t)dy.

Theorem 9. Let u(x, t) be the bounded solution of the heat equation
(6.4) and ρm(x, t) be the fundamental solution of mass m > 0. Then
the set A(t;m,x0) in (6.3) is convex or empty for all m, t > 0 and
x0 ∈ R.
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Proof. Since the heat equation is autonomous with respect to the
space variable x, it is enough to consider the case x0 = 0. First
rewrite the level set A as

A(t;m) = {x ∈ R
n : ψ(x, t) ≤ 1},

where ψ(x, t) := u(x,t)
ρm(x,t) is well-defined for all t > 0. Rewrite ψ(x, t)

as

ψ(x, t) =

∫

u0(y)

m

φ(x− y, t)

φ(x, t)
dy =

∫

u0(y)

m
e

2x·y
4t e

−|y|2

4t dy.

Differentiating ψ twice with respect to xi gives

∂2

∂x2i
ψ(x, t) =

∫

u0(y, t)

m

(yi
2t

)2
e

2x·y
4t e

−|y|2

4t dy ≥ 0.

Therefore, ψ is convex on a line segment which is parallel to the
coordinate system. Note that the heat equation is invariant under a
rotation and hence ψ is convex along any line segment. Suppose that
the zero level set A(t;m) is not convex. Then there exists x1, x2 ∈
A(t;m) such that (x1+x2)/2 /∈ A(t;m), which contradicts to the fact
that ψ is convex on the line that connects x1 and x2. Hence the set
A(t;m) is convex. ⊓⊔

This theorem gives us a hope to extend the one dimensional theory
to multi-dimensions under the parabolicity assumption (6.2).
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