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Abstract. The meaningful distance to biological organisms is not necessarily one measured by
the Euclidean metric but possibly one by a metric that counts the amount of resources such as food.
It is assumed in this paper that the distance for biological organisms is measured by the amount of
food between two places. A new chemotaxis model is introduced as an application of this “metric of
food”. It is shown that, if the walk length of a random walk system is given by such a metric, the
well-known traveling wave phenomena of the chemotaxis theory can be obtained without the typical
assumption that microscopic scale bacteria may sense the macroscopic scale gradient of a chemical
concentration. The uniqueness and the existence of a traveling wave solution are obtained.
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1. Introduction. Since food is one of the main reasons for the migration of
biological species, the distance that matters to the biological organisms is not solely
the Euclidean distance, but possibly one that counts the distribution of food. For a
given food concentration m(x) > 0 in one space dimension, the metric that measures
the amount of food between two points, i.e., for a, b ∈ R,

d(a, b) =
∣∣∣
∫ b

a

m(x)dx
∣∣∣, (Metric of Food)

is proposed as a candidate of such a distance and is called the metric of food in
this paper. Introducing such a metric in biology models may give us new insights to
biological phenomena and bring Riemannian geometry to mathematical biology which
was the motivation of this paper.

Random migration of a biological species is often modeled by a random walk
system, which converges to a diffusion equation. However, the randomness is in
choosing not necessarily the position, but often the objective of the migration such
as food. One way to understand such a random migration is to introduce a random
walk system where the walk length is given by the metric of food, rather than by the
Euclidean metric. In Section 2 a diffusion equation is derived from such a random
walk system and, in one space dimension, it is given by

ut =
( 1

m

( u

m

)

x

)

x
, x ∈ R, t > 0. (1.1)

This is the Laplace-Beltrami equation corresponding to the metric of food when the
density u is taken in terms of the Euclidean metric. The purpose of this paper is to
introduce this diffusion process in a chemotaxis model and show that this diffusion
can explain the traveling wave phenomena without other assumptions. In reality, the
correct metric could be somewhere between the metric of food and the Euclidean
metric. Since the effect of the Euclidean distance is known well, we will focus on the
effect of the metric of food.
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One of the fundamental assumptions in bacterial chemotaxis is that the indi-
vidual species may sense the gradient of a signalling chemical concentration such as
pheromone or food. It is a mysterious phenomenon that microscopic scale organisms
figure out the macroscopic scale concentration distribution and find the correct direc-
tion to migrate. Instead of taking such an assumption, we simply employ the diffusion
in (1.1) in a context of chemotaxis theory to explain the traveling wave phenomena
of chemotaxis. The chemotaxis model proposed in this paper is1

ut =
( 1

m

( u

m

)

x

)

x
, x ∈ R, t > 0,

mt = −κ(m)u,
(1.2)

where u ≥ 0 is the population density and κ(m) ≥ 0 is the consumption rate. Even
if the right side of the first equation models a pure random migration, it contains an
advection phenomenon if m is not constant as in (2.3). The consumption rate satisfies
three basic hypotheses for m > 0:

κ(m) > 0, κ′(m) ≥ 0, and lim
m→0

κ(m) = 0. (1.3)

These hypotheses imply that species does not produce any food, but consumes more
if there is more food, and does not consume at all if there is no food.

The Keller-Segel model [10] for the chemotactic traveling wave phenomenon is
written as

{
ut = (µ(m)ux − χ(m)umx)x,

mt = ǫmxx − κ(m)u.
(1.4)

In the original derivation of the model, the diffusivity µ and the chemosensitivity χ
are supposed to satisfy

χ(m) = −(1− a)µ′(m) and µ′(m) ≤ 0, (1.5)

where 0 < a < 1 is the ratio of effective body length, i.e., the largest distance between
receptors over the body length of bacteria. However, instead of this original derivation,
simplified ones are mostly used, where the diffusivity is mostly taken as a constant,
µ = µ0, and the chemosensitivity is usually taken as the Weber-Fechner law, χ(m) =
χ0

m . In other words, the relation (1.5) does not hold anymore. On the other hand,
Eq. (1.2) can be written in the form of Keller-Segel equations with µ(m) = m−2 and
χ(m) = m−3. Therefore, Eq. (1.5) is satisfied with a = 1

2 . Thus, the model equation
in (1.2) is closer to the original Keller-Segel equation in (1.4) than other simplified
ones even though the idea in its derivation is different.

The Keller-Segel model [9, 10] initiated mathematical studies on the dynamics of
bacterial chemotaxis. The motivation of the model was the experimental results of
Adler and his collaborators [1, 2, 3, 4]. A variety of mathematical models were in-
troduced to explain various traveling wave phenomena [7, 11, 12, 14, 18]. Especially,
many authors have studied the stability, existence, chemical diffusion limit [14], relax-
ation model [18], chemotactic motility on attractant concentrations [12] and general
Keller-Segel’s traveling wave solution [11]. In [15], authors studied for microscopic

1The purpose of this paper is to introduce the metric of food to biology models and to show the
corresponding diffusion operator in (1.1) may give a traveling wave phenomenon.
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and macroscopic chemotaxis models. We refer to [17] and [8, 13, 16] for issues on
shock formation and stability, respectively.

The existence and the uniqueness of a traveling wave solution of (1.2) and the
criteria to classify the types of traveling wave solutions are obtained in this paper. The
traveling wave solution is unique up to translation for each given boundary conditions
and wave speed. The asymptotic decay of consumption rate κ at m = 0 decides the
types of traveling wave solutions and plays an important role on the analysis. Roughly
speaking, the traveling wave solution for the food distribution m is always of the front
type, i.e., m− 6= m+, and the one for population distribution u is of the front type if
limm→0 κ(m)/m3 > 0 or of the pulse type otherwise.

The strategy of this paper is as follows. First, we transform the PDE system
(1.2) into an ODE system for a traveling wave solution (u,m) and derive necessary
boundary conditions and the wave speed to have a traveling wave solution. Then, an
ansatz for the population density distribution u is derived in terms of the resource
distribution m, which gives a single ODE for m(ξ) (See Proposition 3.4). Second, we
divide the whole real line problem into forward and backward ODE problems with an
initial value at ξ = 0, i.e., m(0) = m0. Monotonicity of m and a priori convergence
results of m at ξ = ±∞ are obtained, which are used to obtain the global existence.
Finally, we obtain the boundary values at ξ = −∞ for the wave profile (u,m). These
boundary values determine whether wave profile u is of the front type or of the pulse
type.

The rest of this paper is organized as follows. In Section 2, the diffusion equation
(1.1) is derived using a metric induced by food. In Section 3, we develop necessary
conditions for the existence of a traveling wave solution and other preliminary mate-
rial. In Section 4, the existence and the uniqueness of the traveling wave solution m
and u are obtained with criteria for pulse and front type wave. All types of traveling
wave solutions obtained in the paper are numerically computed in Section 5. Finally,
we summarize the results of this paper and further possibilities in Section 6.

2. Random walk with metric of food. A particle jumps to one of the two
adjacent positions of equal distance in a one dimensional random walk system. How-
ever, in modeling a random migration for biological organisms, a random walk system
where a biological species jumps to one of two adjacent preys or foods, but not po-
sitions, can be meaningful. To construct such a food based random walk system we
simply introduce a distance metric measuring the amount of food between two po-
sitions and consider a random walk system where the walk distance is given by this
metric of food.

Let m(x) > 0 be the distribution of food or resource in one space dimension
and a, b ∈ R be two distinct points. For convenience of statement we assume m is
uniformly bounded and continuous. Then, the distance between the two points can
be defined in a view point of resource distribution, which is

d(a, b) =
∣∣∣
∫ b

a

m(x)dx
∣∣∣. (2.1)

We call this distance the metric of food. In this section we will introduce a diffusion
equation based on this metric in two different ways.

First, we consider a random walk system in which the walk length is constant
with respect to this metric of food. Let a < b be adjacent jumping spots and ∆y be
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the given constant distance in the metric of food, i.e.,

∫ b

a

m(x)dx = ∆y.

Let ∆x = b − a be the walk length in the Euclidean distance. Then, by the mean
value theorem, there exists a ≤ x′ ≤ b that satisfies

∫ b

a

m(x)dx = m(x′)(b − a) = ∆y, or ∆x
∣∣
x=x′

=
∆y

m(x′)
.

In other words, the random walk system with a constant walk length in the metric
of food corresponds to a random walk system with nonconstant walk length in the
original Euclidean metric. The random walk model with nonconstant walk length has
been considered recently (see [5, 6]), which gives

ut =
( 1

m

( u

m

)

x

)

x
, x ∈ R, t > 0, (2.2)

where a constant coefficient part has been cancelled out after normalization. Note
that this equation models a purely random migration and the usual assumption of
gradient sensing by individual organisms is not used. However, the heterogeneity of
resource distribution naturally causes an advection phenomenon. In fact, this diffusion
equation is written as

ut =
( 1

m2
ux − u

mx

m3

)

x
=

( 1

m2

(
ux − u

m
mx

))

x
, (2.3)

and one may find the typical chemotaxis equation except for the nonconstant cofactor
1
m2 . The idea of the derivation can be extended to a multi-dimensional space which
results in

ut = ∇ ·
( 1

m
∇
( u

m

))
, x ∈ Rn, t > 0. (2.4)

Next, we derive the same equation from the view point of Riemannian geometry.
Consider a new variable y = y(x) given by

y(x) =

∫ x

0

m(s)ds. (2.5)

Then, for a < b,

y(b)− y(a) =

∫ b

0

m(s)ds−
∫ a

0

m(s)dx =

∫ b

a

m(s)ds = d(a, b).

In other words, the space R with the metric of food in (2.1) has been isometrically
embedded to the Euclidean space by the mapping in (2.5). The volume factor of this
transformation is simply the food distribution m(x). Now the population density in
terms of the new space of variable y is given by

v(y, t) =
u(x, t)

m(x)
,
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where dy
dx = m(x). Since the corresponding diffusion in y variable is the usual random

walk in the Euclidean space, the diffusion equation is simply

vt = vyy,

where the usual diffusivity constant was set to be d = 1 after a rescaling of time. Also
note that the food concentration in this rescaled space is constant since the volume
factor is m(x) and hence the linear diffusion obtained above is valid. If we convert the
new space variable y back to the original variable x, the Laplace operator becomes

vyy = xy(xyvx)x =
1

m

( 1

m
vx

)

x
, (2.6)

which is the Laplace-Beltrami operator. Therefore, u(x, t) satisfies

1

m
ut =

( 1

m
u
)

t
=

( u

m

)

yy
=

1

m

( 1

m

( u

m

)

x

)

x
,

which is the same random diffusion equation obtained in (2.2).

3. System of traveling waves and decoupled equation. In this section, we
discuss several structural properties of the traveling wave solution of (1.2). Traveling
wave solution with a given wave speed c ∈ R is written as

u(x, t) = u(x− ct), m(x, t) = m(x− ct),

where we use ξ := x−ct as the traveling wave variable of moving frame. We now plug
it into PDE system (1.2) and obtain an ODE system for the traveling wave solution:

cu′ = −
( 1

m

( u

m

)′)′

, (3.1)

cm′ = κ(m)u, (3.2)

where the notation prime, ′, denotes the ordinary differentiation with respect to the
variable ξ. We are looking for a traveling wave solution with the following boundary
conditions:

u′(ξ) → 0, m′(ξ) → 0 as ξ → ±∞,

u(ξ) → u± ≥ 0, m(ξ) → m± ≥ 0 as ξ → ±∞.
(3.3)

We will first find the necessary and sufficient conditions on the boundary values that
guarantee a positive traveling wave solution and then study its structure.

Remark 3.1. A few properties of the traveling waves can be obtained immediately.
First, since cm′ = κ(m)u > 0, the resource profile m(ξ) is strictly increasing if and
only if c > 0. Furthermore, if c = 0, there is no positive traveling wave solution.
We will consider the case with c > 0 only, and the other case is obviously obtained
due to the symmetry of the problem. Therefore, m+ > 0 is a necessary condition to
have a positive traveling wave solution with a positive traveling wave speed c > 0 since
m(ξ) should be an increasing function. Note that the equation (3.2) and the boundary
conditions (3.3) imply u+ = 0. Hence u+ = 0 is also a necessary condition. We
assume these necessary conditions in the rest of the paper, i.e.,

u+ = 0, m+ > 0. (3.4)
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We decouple the system (3.1)-(3.2) under the necessary boundary conditions (3.4)
and find an ordinary differential equation for m. Integrating (3.1) on [ξ,∞) gives

c(u+ − u(ξ)) = −
∫ ∞

ξ

( 1

m(ζ)

( u(ζ)

m(ζ)

)′)′

dζ

= −
[

lim
τ→∞

1

m(τ)

( u(τ)

m(τ)

)′

− 1

m(ξ)

( u(ξ)

m(ξ)

)′
]
.

(3.5)

Since m+ > 0 and we are looking for a traveling wave solution that satisfies

u′(ξ) → 0, m′(ξ) → 0, as ξ → ∞,

we have

lim
τ→∞

1

m(τ)

( u(τ)

m(τ)

)′

= lim
τ→∞

u′(τ)

m2(τ)
− lim

τ→∞

u(τ)m′(τ)

m3(τ)
= 0.

Since u+ = 0, it is derived from (3.5) that

−cu =
1

m

( u

m

)′

.

Substitute u = cm′/κ(m) into the equation above which is drawn from (3.2), then
multiply it by m, and one obtains

( u

m

)′

+ c2
mm′

κ(m)
= 0. (3.6)

Integrating the equation on (ξ,∞) gives

∫ ∞

ξ

( u(ζ)

m(ζ)

)′

dζ + c2
∫ ∞

ξ

m(ζ)m′(ζ)

κ(m(ζ))
dζ = 0.

The first term becomes
∫ ∞

ξ

( u(ζ)

m(ζ)

)′

dζ = lim
τ→∞

u(τ)

m(τ)
− u(ξ)

m(ξ)
= − u(ξ)

m(ξ)
.

Since κ(m) > 0 and m(ξ) is monotone, we may change the variable and obtain

c2
∫ ∞

ξ

m(ζ)m′(ζ)

κ(m(ζ))
dζ = c2

∫ m+

m(ξ)

η

κ(η)
dη.

Finally, we have obtained an ansatz for u:

u(ξ) = c2m(ξ)

∫ m+

m(ξ)

η

κ(η)
dη. (3.7)

Proposition 3.2. Three boundary conditions,

m− = 0, m+ > 0, u+ = 0, (3.8)

are necessary to have a positive traveling wave solution with a positive speed c > 0.
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Proof. Suppose that (u,m) is a traveling wave solution of (3.1)–(3.3) with a
positive speed c > 0. It is enough to show m− = 0 and the other two necessary
boundary conditions are already shown in Remark 3.1. Suppose that m− > 0. Then,
Eq. (3.2) gives

u = c
m′

κ(m)
,

and hence
∫ ∞

−∞

u(ξ)dξ = c

∫ ∞

−∞

m′(ξ)

κ(m(ξ))
dξ = c

∫ m+

m−

1

κ(η)
dη <

m+ −m−

κ(m−)
< ∞.

Therefore, u has a finite total population and hence u− = 0. To obtain a contradiction,
we recall the ansatz in (3.7):

u(ξ) = c2m(ξ)

∫ m+

m(ξ)

η

κ(η)
dη.

Taking limit as ξ → −∞ gives that

u− = lim
ξ→−∞

u(ξ) = c2 lim
ξ→−∞

m(ξ)

∫ m+

m(ξ)

η

κ(η)
dη = c2m−

∫ m+

m−

η

κ(η)
dη > 0,

which contradicts the above computation that u− = 0. Therefore, we conclude that
m− = 0.

There are four boundary values, u± and m±, in the traveling wave equation. The
proposition shows that, if the traveling wave speed is positive, c > 0, then there is
no freedom in choosing two boundary values, i.e., u+ = 0 = m−. The boundary
value m+ > 0 is a free parameter, which will be used in the following decoupled
equation. The last boundary value u− will be decided by the traveling wave speed
c > 0 in Theorem 4.4. In other words, there are two parameter family of traveling
wave solutions.

The ODE system (3.1)-(3.2) is decoupled by substituting (3.7) into (3.2). Then,
we obtain

m′(ξ) = 1
cκ(m(ξ))h(m(ξ),m+), ξ ∈ R,

m(0) = m0,
(3.9)

where 0 < m0 < m+ and

h(m,m+) = c2m

∫ m+

m

η

κ(η)
dη. (3.10)

Notice that a traveling wave solution has a free parameter of translation and two of
them are considered identical if one is a translation of the other. The initial condition
m(0) = m0 ∈ (0,m+) is taken to choose one of them.

Remark 3.3. The function h in (3.10) comes from the relation (3.7). Since
m− = 0 is a necessary condition, we have m(ξ) → 0 as ξ → −∞. Therefore,

lim
m→0+

c2m

∫ m+

m

η

κ(η)
dη

(
= lim

ξ→−∞
u(ξ) = u−

)
< ∞ (3.11)
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is a necessary condition to have a bounded traveling wave solution. This condition
restricts the range of a consumption rate κ that allows a traveling wave solution.

In the following proposition we show that the traveling wave solutions of (3.1)-
(3.2) and (3.9)-(3.10) with (3.7) are identical if the consumption rate κ satisfies (3.11).

Proposition 3.4. Let 0 < m0 < m+ and the consumption rate κ(m) satisfy (1.3)
and (3.11). (i) If (u,m) is a solution of (3.1)-(3.3), then m satisfies (3.9)-(3.10) after
an appropriate translation if needed. (ii) If m is a solution of (3.9)-(3.10) and u is
given by (3.7), then (u,m) is a solution of (3.1)-(3.2).

Proof. (i) Let (u,m) be a solution of (3.1)-(3.3). As we have already observed, m
satisfies (3.9)-(3.10) except for the initial condition m(0) = m0. However, since 0 =
m− < m0 < m+ and m increases continuously, there exists ξ0 such that m(ξ0) = m0.
Therefore, m(·+ ξ0) satisfies (3.9)-(3.10) including the initial condition.

(ii) Conversely, assume that m is a solution to (3.9)-(3.10) and u is given by (3.7).
By (3.7), we have

−
( 1

m(ξ)

( u(ξ)

m(ξ)

)′)′

= c2
( 1

m(ξ)
m′(ξ)

m(ξ)

κ(m(ξ))

)′

= c2
( m′(ξ)

κ(m(ξ))

)′

. (3.12)

Through (3.9) we obtain

c2
( m′(ξ)

κ(m(ξ))

)′

= cu′(ξ). (3.13)

Thus, (3.12) and (3.13) implies that u satisfies (3.1).
Remark 3.5. The following analysis of this paper is based on the decoupled

equations (3.7) and (3.9). Another option is to use the fact that (3.6) is in an exact
form. For example, (3.6) is written as

u′

m
− um′

m2
+ c2

mm′

κ(m)
= 0.

Let

U =
1

m
, M = − u

m2
+

c2m

κ(m)
.

Then, the equation is written as

Udu+Mdm = 0,

where

∂U

∂m
=

∂M

∂u
.

The traveling wave analysis in [19] is based on such an exactness property.

4. Existence and uniqueness in traveling wave solutions.

4.1. Global existence and uniqueness. In this section, we study the unique-
ness and the existence of a traveling wave solution (u,m) to (3.1)-(3.3) where the
boundary conditions are given at terminal points ξ = ±∞. However, the decoupled
system (3.9)-(3.10) has an interior value condition which naturally has the unique-
ness property. Remember that the boundary conditions in (3.8) are necessary ones for
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the existence of a traveling wave solution and hence we assume them in this section.
Therefore, the only undecided boundary value is u− ≥ 0.

Lemma 4.1 (Uniqueness and local existence). Let 0 < m0 < m+ and κ satisfy
(1.3) and (3.11). There exists ǫ0 > 0 such that (3.9)-(3.10) has a solution for |ξ| < ǫ0
and the solution is unique.

Proof. We consider a domain 0 ≤ m ≤ m+. Let

f1(m) = κ(m)m

∫ m+

m

η

κ(η)
dη, f2(m) = m

∫ m+

m

η

κ(η)
dη, and f3(m) =

m2

κ(m)
.

Clearly, fi’s are positive on (0,m+) and fi(m+) = 0 for i = 1, 2, 3. Sincem
∫m+

m
η

κ(η)dη

is bounded, (3.11), we have f1(0) = 0. Therefore, f1 has a positive maximum, M1 > 0,
on (0,m+). Similarly, since limξ→0 f2(ξ) is bounded, f2 has a positive maximum,
M2 > 0, on [0,m+). f3 is not necessarily bounded. However, for any ǫ > 0, it is
bounded on (ǫ,m+) and let M3,ǫ be the maximum on [ǫ,m+). We choose ǫ = m0

2 in
the estimates below.

Consider an open interval I :=
(
− m0

2cM1
, m+−m0

cM1

)
and a subspace of real valued

smooth functions defined on it,

Ω :=
{
m ∈ C1(I) : m(0) = 0, m′(ξ) ≥ 0,

m0

2
< m < m+

}
.

For m ∈ Ω, we define an operator L(m)(ξ) as

L(m)(ξ) := m0 +
1

c

∫ ξ

0

κ(m(ζ))h(m(ζ),m+)dζ.

We will use the Picard iteration method which is a standard way to obtain local
existence and uniqueness of fixed points for such integral operators.

◦ Invariance property (L : Ω 7→ Ω): First, we show L(Ω) ⊂ Ω. It is clear that

d

dξ
L(m)(ξ) ≥ 0 and L(m)(0) = m0.

We have

L(m)(ξ) = m0 +
1

c

∫ ξ

0

κ(m(ζ))h(m(ζ),m+)dζ

= m0 + c

∫ ξ

0

(
κ(m(ζ))m(ζ)

∫ m+

m(ζ)

η

κ(η)
dη

)
dζ ≤ m0 + ξcM1.

Therefore, for 0 < ξ < m+−m0

cM1
, we have L(m)(ξ) < m+. Let − m0

2cM1
< ξ < 0. Then,

L(m)(ξ) = m0 − c

∫ 0

ξ

(
κ(m(ζ))m(ζ)

∫ m+

m(ζ)

η

κ(η)
dη

)
dζ ≥ m0 + ξcM1 >

m0

2
.

Therefore, L(m) ∈ Ω and hence L(Ω) ⊂ Ω.
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◦ Contraction property: Let m, m̃ ∈ Ω. By a direct calculation,

|L(m)− L(m̃)| ≤ 1

c

∣∣∣∣
∫ ξ

0

κ(m(ζ))h(m(ζ),m+)dζ −
∫ ξ

0

κ(m̃(ζ))h(m̃(ζ),m+)dζ

∣∣∣∣

≤ 1

c

∫ |ξ|

0

∣∣κ(m(ζ))h(m(ζ),m+)− κ(m̃(ζ))h(m̃(ζ),m+)
∣∣dζ

≤ 1

c

∫ |ξ|

0

∣∣κ(m(ζ)) − κ(m̃(ζ))
∣∣ ∣∣h(m(ζ),m+)

∣∣dζ

+
1

c

∫ |ξ|

0

∣∣κ(m̃(ζ))
∣∣ ∣∣h(m(ζ),m+)− h(m̃(ζ),m+)

∣∣dζ

=: A1 +A2.

Since the consumption rate κ is C1, it is Lipschitz continuous and hence

‖κ‖Lip := sup
0≤x,y≤m+

|κ(x)− κ(y)|
|x− y| < ∞.

The upper bound of f2 gives

|h(m(ζ),m+)| = c2m(ζ)

∫ m+

m(ζ)

η

κ(η)
dη ≤ c2M2 < ∞.

We obtain the following estimate for A1 by combining these two:

A1 :=
1

c

∫ |ξ|

0

∣∣κ(m(ζ)) − κ(m̃(ζ))
∣∣ ∣∣h(m(ζ),m+)

∣∣dζ

≤ c‖κ‖Lip M2

∫ |ξ|

0

∣∣m(ζ) − m̃(ζ)
∣∣dζ. (4.1)

The monotonicity of κ and the upper bound of m and m̃ allow

κ(m̃(ζ)) ≤ κ(m+),

‖h(·,m+)‖Lip ≤ sup
m0
2

≤m≤m+

(∫ m+

m

η

κ(η)
dη +

m2

κ(m)

)

≤
∫ m+

m0
2

η

κ(η)
dη +M3,m0/2 < ∞.

Therefore,

A2 ≤ 1

c

∫ |ξ|

0

|κ(m̃(ζ))| ‖h(·,m+)‖Lip|m(ζ) − m̃(ζ)|dζ

≤ κ(m+)

c

(∫ m+

m0
2

η

κ(η)
dη +M3,m0/2

) ∫ |ξ|

0

|m(ζ) − m̃(ζ)|dζ.
(4.2)

It follows from (4.1) and (4.2) that

|L(m)(ξ)− L(m̃)(ξ)|

≤
(
c‖κ‖Lip M2 +

κ(m+)

c

( ∫ m+

m0
2

η

κ(η)
dη +M3,m0/2

))∫ |ξ|

0

|m(ζ)− m̃(ζ)|dζ

≤
(
c‖κ‖Lip M2 +

κ(m+)

c

( ∫ m+

m0
2

η

κ(η)
dη +M3,m0/2

))
|ξ| sup

−ξ<ζ<ξ
|m(ζ) − m̃(ζ)|.
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If we take the domain I so small that, for any ξ ∈ I,

|ξ| < 1

c‖κ‖Lip M2 +
κ(m+)

c

( ∫m+
m0
2

η
κ(η)dη +M3,m0/2

) ,

then L becomes a contraction mapping on Ω.
◦ (Local existence and uniqueness): Let

ǫ0 = min





m0

2cM1
,
m+ −m0

cM1
,

1

c‖κ‖Lip M2 +
κ(m+)

c

( ∫m+
m0
2

η
κ(η)dη +M3,m0/2

)



 ,

I0 = (−ǫ0, ǫ0),

Ω0 :=
{
m ∈ C1(I0) : m(0) = 0, m′(ξ) ≥ 0,

m0

2
< m < m+

}
.

Then, by the previous invariance and contraction properties of the operator L, there
exists a fixed point of L in Ω0 uniquely. Let L(m) = m ∈ Ω0. Then, one can easily
see that m′(ξ) = 1

cκ(m(ξ))h(m(ξ),m+) for ξ(−ǫ0, ǫ0).
Lemma 4.2. If the consumption rate κ satisfies (1.3), then

lim
m→0+

1

c
κ(m)h(m,m+) = 0. (4.3)

Proof. If the consumption rate κ satisfies

lim
m→0+

∫ m+

m

η

κ(η)
dη < ∞,

then the lemma is clear from (1.3). Let us assume

lim
m→0+

∫ m+

m

η

κ(η)
dη = ∞. (4.4)

By L’Hospital’s theorem and (4.4), we have that

0 ≤ lim
m→0+

1

c
κ(m)h(m,m+)

= lim
m→0+

cκ(m)m

∫ m+

m

η

κ(η)
dη = lim

m→0+

c
∫m+

m
η

κ(η)dη

1
κ(m)m

= lim
m→0+

−c m
κ(m)

−κ′(m)m+κ(m)
(κ(m)m)2

= lim
m→0+

cm3κ(m)

κ′(m)m+ κ(m)
.

Since κ′(m)m ≥ 0, we obtain

lim
m→0+

cm3κ(m)

κ′(m)m+ κ(m)
≤ lim

m→0+

cm3κ(m)

κ(m)
= 0.

Therefore, the limit in (4.3) holds.
Theorem 4.3 (Global Existence). Let m+ and c be positive constants and κ

satisfy (1.3) and (3.11). Then, for any m0 ∈ (0,m+), there exists m = m(ξ) that

11



satisfies (3.9)-(3.10). Furthermore, the solution is unique, 0 < m(ξ) < m+ for all
ξ ∈ R,

m(ξ) → 0 as ξ → −∞, and m(ξ) → m+ as ξ → ∞.

Proof. The uniqueness and the local existence has been obtained in Lemma 4.1.
Let (T−, T+) be the maximal domain of the solution. The continuity of κ and the
mean value theorem provide

lim
m→m+

κ(m)h(m,m+)

m+ −m
= lim

m→m+

κ(m)

m+ −m
c2m

∫ m+

m

η

κ(η)
dη = c2m2

+.

This indicates that κ(m)h(m,m+) ∼= c2m2
+(m−m+) when m is close to m+. Suppose

that there exists ξ0 > 0 such that m(ξ0) = m+. Then, after separating the variables
in the decoupled equation (3.9), we obtain

ξ0
c

=

∫ ξ0

0

1

c
dξ =

∫ m+

m0

1

κ(m)h(m,m+)
dm = ∞, (4.5)

where the integral has a singularity at m = m+. This is a contradiction and we may
conclude m(ξ) < m+ for all ξ > 0.

Next we will show that T+ = ∞ and m(ξ) → m+ as ξ → ∞. If not, there are
three possibilities:

A. T+ < ∞, m(T+) < m+,

B. T+ < ∞, m(T+) = m+,

C. T+ = ∞, m(ξ) → m∞ < m+ as ξ → ∞.

Case A is not possible since we may apply the local existence argument with m0 =
m(T+) < m+ and the initial time T+. Therefore, the domain (T−, T+) is not the
maximal one anymore. Since m(ξ) < m+ for all ξ ∈ R, Case B is not possible,
neither. Rewrite (4.5) as

∫ ξ

0

1

c
dξ =

∫ m(ξ)

m0

1

κ(m)h(m,m+)
dm.

If m(ξ) → m∞ < m+ as ξ → ∞, then the left side diverges and the right side is
bounded as ξ → ∞. Hence Case C is not possible.

Now we consider the domain ξ < 0. Note that

lim
m→0

κ(m)h(m,m+)

m
= lim

m→0

κ(m)

m
c2m

∫ m+

m

η

κ(η)
dη ≤ lim

m→0
c2

∫ m+

m

η dη =
c2m2

+

2
.

This indicates that κ(m)h(m,m+) . 1
2c

2m2
+m when m is close to 0. Suppose that

there exists ξ0 < 0 such that m(ξ0) = 0. Then, similarly,

ξ0
c

=

∫ ξ0

0

1

c
dξ =

∫ 0

m0

1

κ(m)h(m,m+)
dm = −∞, (4.6)

which is a contradiction. Therefore, m(ξ) > 0 for all ξ ∈ R. The last part is to show
that T− = −∞ and m(ξ) → 0 as ξ → −∞. If not, there are three possibilities:

D. T− > −∞, m(T−) > 0,

E. T− > −∞, m(T−) = 0,

F. T− = −∞, m(ξ) → m− > 0 as ξ → −∞.
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Similarly, Case D is not possible due to the local existence property. Case E is not
possible since m(ξ) > 0 for all ξ ∈ R. Rewrite (4.6) as

∫ 0

ξ

1

c
dξ =

∫ m0

m(ξ)

1

κ(m)h(m,m+)
dm.

If m(ξ) → m− > 0 as ξ → −∞, then the left side diverges and the right side is
bounded as ξ → ∞. Hence Case F is not possible, neither.

4.2. Necessary and sufficient conditions for traveling waves. We find
necessary and sufficient conditions on the boundary value for the existence of traveling
wave solutions in this section. We have shown in Theorem 4.3 that there always
exists a unique traveling wave solution m for each m(0) = m0 if the consumption rate
satisfies (1.3) and (3.11). Hence, our concern is the existence of the other component
u. The monotonicity of m implies that m is always of the front type. However, the
types of population distribution u is decided by the consumption rate κ and is either
of the front or the pulse type.

Theorem 4.4. Suppose that the consumption rate κ satisfies (1.3) and (3.11).
There exists a traveling wave solution (u,m) of (3.1)-(3.3) of wave speed c > 0 if and
only if the boundary conditions satisfy 0 = m− < m+ < ∞, u+ = 0 and

u− = c2 lim
m→0+

m3

κ(m)
< ∞. (4.7)

This traveling wave solution is unique up to a translation. Furthermore, if
∫ m+

0

1

κ(η)
dη < ∞, (4.8)

it has a finite total population
∫

R

u(ξ)dξ = c

∫ m+

0

1

κ(η)
dη. (4.9)

Proof. (⇒) Let (u,m) be a traveling wave solution of (3.1)-(3.3). We have shown
in Proposition 3.2 that 0 = m− < m+ < ∞ and u+ = 0 are necessary conditions.
Hence, it is left to show the other boundary condition. First consider a case that∫m+

0
η

κ(η)dη = ∞. Then, by the relation (3.7) and L’Hospital’s theorem, we obtain

lim
ξ→−∞

u(ξ) = lim
m→0+

c2m

∫ m+

m

η

κ(η)
dη

= lim
m→0+

c2

∫m+

m
η

κ(η)dη

1
m

= lim
m→0+

c2
m

κ(m)

1
m2

= c2 lim
m→0+

m3

κ(m)
.

Therefore, (4.7) is a necessary condition for the case. Next consider the other case
that

∫m+

0
η

κ(η)dη < ∞. Then,

lim
ξ→−∞

u(ξ) = lim
m→0+

c2m

∫ m+

m

η

κ(η)
dη = 0.

Hence it is left to check limm→0+
m3

κ(m) = 0 to show (4.7) is a necessary condition.

Suppose that there exists ǫ > 0 such that limm→0+
m3

κ(m) ≥ ǫ. Then,
∫m+

m
η

κ(η)dη ≥
13



∫m+

0 ǫη−2dη = ∞. Therefore, there is no such constant ǫ > 0 and hence lim
m→0+

m3

κ(m)
=

0.
(⇐) To show 0 = u+ = m− < m+ < ∞ and (4.7) are sufficient conditions, we

find a traveling wave solution with these boundary conditions. Let m be the unique
solution of (3.9) given by Theorem 4.3 and define

u(ξ) = c2m(ξ)

∫ m+

m(ξ)

η

κ(η)
dη.

Now we check the boundary conditions. First, we have, from Theorem 4.3,

lim
ξ→∞

m(ξ) = m+, lim
ξ→−∞

m(ξ) = 0.

Therefore, we also have

lim
ξ→∞

u(ξ) = lim
ξ→∞

c2m(ξ)

∫ m+

m(ξ)

η

κ(η)
dη = 0.

The computations in the previous part of this proof give

lim
ξ→−∞

u(ξ) = c2 lim
m→0+

m3

κ(m)
= u−.

Therefore, by Proposition 3.4 and these boundary values, the pair (u,m) satisfy (3.1)-
(3.3).

(Uniqueness) The uniqueness of solution m that satisfies (3.9) has been obtained
in Lemma 4.1 and the relation (3.7) gives u in a unique way. By Proposition 3.4, this
pair (u,m) is the unique traveling wave solution of (3.1)-(3.3).

(Finite total population) Eq. (3.2) gives

u = c
m′

κ(m)
,

and hence
∫

R

u(ξ)dξ = c

∫

R

m′(ξ)

κ(m(ξ))
dξ = c

∫ m+

0

1

κ(η)
dη.

Therefore, the population of the traveling wave solution is finite if
∫m+

0
1

κ(η)dη < ∞
and the total population is given by (4.9).

Remark 4.5. Consider a consumption rate given by a power law κ(m) = mp for

p > 0. If p < 3, the left boundary value u− is u− = limm→0+ c2 m3

κ(m) = 0 for any wave

speed c > 0. Hence, the traveling wave for the population u is of pulse type. If p = 3,
then u− = c2, which gives a font type traveling wave. If p > 3, there is no bounded
traveling wave solution. If p < 1, then (4.8) is satisfied and hence the traveling wave
solution has a finite population for any wave speed c > 0. Usually, the consumption
is not doubled even if the amount of food is doubled. Hence, the regime p < 1 is more
realistic in the context of chemotaxis.

Remark 4.6. Similar traveling wave phenomena when the dispersal was modeled
by a starvation driven diffusion, ut = (γ(mu )u)xx, have been recently studied (see
[19]). The motility γ is a departing probability depending on s = m

u and the type of a
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traveling wave is decided by γ and κ together. For example, if γ(s) → ∞ as s → 0 and∫m+

0
1

k(η)dη < ∞, the population of the traveling wave has a finite value, c
∫m+

0
1

k(η)dη,

where the boundary conditions should be 0 = u− = u+ = m− < m+ < ∞ for all c > 0.
In other words, the two theories give a similar conclusion. For the infinite total
population case, there are some similarities and differences between the two theories.
The equation (4.7) gives a relation among the boundary value u−, wave speed c > 0
and the consumption rate κ(m). The corresponding relation for the starvation driven

diffusion case is limm→0 γ
′
(

m
u−

)
k(m) = −c2. Here, we have many choices for γ. In

particular, if we choose γ(s) = 1
2s

−2, we obtain a relation

u3
− = c2 lim

m→0

m3

κ(m)
, (4.10)

which gives the same criterion for the types of traveling waves as (4.7). However, the
corresponding boundary value u− is the cubed root of the other.

5. Numerical simulations. In this section, we compare the shapes of traveling
wave solutions numerically when the consumption rate is given by a power law

κ(m) = mp, p > 0.

Four cases are tested with p = 0.5, 2, 3 and 4. We simply follow the steps in previous
sections numerically. We first construct m by numerically solving (3.9) with

m0 = 0.1, m+ = 1, c =
√
0.5 or

√
2.

The population distribution u is obtained from m by the relation in (3.7). Notice
that the boundary condition m+ is used in computation. However, one may observe

that the other boundary conditions u+ = 0,m− = 0 and u− = c2 limm→0+
m3

κ(m) are

satisfied by the numerical solutions.
◦ (Case #1. κ(m) = mp, 0 < p < 1: pulse type with finite total population):

Consider the case κ(m) = m1/2. Then,

h(m,m+) = c2m

∫ 1

m

ηdη =
2

3
c2m(1−m3/2),

and, therefore, m satisfies

m′ = cm2(1−m3/2), m(0) = 0.1, ξ ∈ R.

The solution of this ODE and the population u given by (3.7) are computed numer-
ically and given in Figure 5.1. One may observe that the traveling wave solution
satisfies the necessary boundary conditions, i.e.,

lim
ξ→±∞

u(ξ) = 0, lim
ξ→−∞

m(ξ) = 0 and lim
ξ→∞

m(ξ) = 1. (5.1)

The total population given by the relation (4.9) becomes

∫

R

u(ξ)dξ = c

∫ 1

0

η−1/2dη = 2c. (5.2)
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Fig. 5.1: Pulse type traveling wave with κ(m) = m1/2
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Fig. 5.2: Pulse type traveling wave with κ(m) = m2
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Fig. 5.3: Front type traveling wave with κ(m) = m3
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Fig. 5.4: Nonexistence of bounded traveling waves with κ(m) = m4

The total population of numerical solutions in Figures 5.1(a) and 5.1(b) are approxi-
mately 2.8275 and 1.4137, respectively, which is a good approximation of the relation
(5.2).

◦ (Case #2. κ(m) = mp, 1 ≤ p < 3: pulse type with infinite total population):
Consider the case κ(m) = m2. Then,

h(m,m+) = c2m

∫ 1

m

1

η
dη = −c2m ln(m).

Therefore, m satisfies

m′ = −cm2 ln(m), m(0) = 0.1, ξ ∈ R.

The solution of this ODE and the population u are computed numerically and are
given in Figure 5.2. This is a case that

u− = c2 lim
m→0+

m3

κ(m)
= c2 lim

m→0+
m = 0,

∫ 1

0

1

k(η)
dη =

∫ 1

0

η−2dη = ∞.

Hence, the traveling wave is a pulse type, but the total population is infinite. One may
observe that the traveling wave solution satisfies the necessary boundary conditions
(5.1). However, the convergence rate is very slow as ξ → −∞. In Figures 5.2(c)
and 5.2(d) the tails of these traveling waves are given. Notice the scale of x-axis in
comparison with Figures 5.2(a) and 5.2(b). Observe that the convergence speed of
the solution when ξ → −∞ is extremely slower than the one when ξ → ∞.

◦ (Case #3. κ(m) = mp, p = 3: front type with infinite total population):
Consider a case with κ(m) = m3. Then,

h(m,m+) = c2m

∫ 1

m

1

η2
dη = c2(1−m).

Therefore, m satisfies

m′ = cm(1−m), m(0) = 0.1, ξ ∈ R.

The graphs of u and m are given in Figure 5.3 and one may observe that the traveling
wave solution satisfies the necessary boundary conditions (5.1) except the one for
limξ→−∞ u(ξ). The limit u− is given by the relation (4.7),

u− = lim
ξ→−∞

u(ξ) = c2 lim
m→0+

m3

κ(m)
= c2.
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Hence, the population distribution u is a decreasing front type wave. One may observe
the limit u− = c2 from Figures 5.3(a) and 5.3(b). Remember that the front type
traveling wave is obtained only from the cubic nonlinearity such as κ(m) = m3.

◦ (Case #4. κ(m) = mp, p > 3: nonexistence of bounded traveling waves):
Consider a case with κ(m) = m4. Then,

h(m,m+) = c2m

∫ 1

m

1

η3
dη =

1

2m
c2(1−m2).

Therefore, m satisfies

m′ =
c

2
(1−m2), m(0) = 0.1, ξ ∈ R.

The solution of this ODE and the population u given by (3.7) are computed numer-
ically and given in Figure 5.4 and one may observe that the traveling wave solution
satisfies the necessary boundary conditions (5.1) except the one for limξ→−∞ u(ξ).
The limit u− is given by the relation (4.7),

u− = lim
ξ→−∞

u(ξ) = c2 lim
m→0+

m3

κ(m)
= c2 lim

m→0+

1

m
= ∞.

One may observe from Figures 5.4(a) and 5.4(b) that the solution u diverges as ξ →
−∞.

6. Conclusions. In this paper, we have examined an idea that migration dis-
tance that matters to biological organisms is not necessarily the Euclidean distance,
but possibly one that also counts the amount of food. As an extreme example, the
metric of food is introduced which counts the amount of food only and is defined by
(2.1). This metric is used to derive a diffusion equation (1.1) that models a nontradi-
tional random walk system where the walk length is given by the metric of food, but
not by the metric of space. As an application example of such a diffusion process,
a new chemotaxis model (1.2) has been studied in this paper. Most of chemotaxis
models are based on the mysterious assumption2 that microscopic scale organisms
may sense the macroscopic scale concentration gradient. In our model considered, we
took only the random diffusion operator without the usual assumption. However, if
the food distribution is not constant, the new diffusion operator produces advection
phenomena.

The main objective of this paper is to investigate the traveling wave solution of
the new chemotaxis model that satisfies (3.1)-(3.3). It is shown in Theorem 4.4 that
the necessary and sufficient conditions to have a bounded traveling wave solution with
a positive traveling wave speed c > 0 are

0 = u+ = m− < m+ < ∞ and u− = c2 lim
m→0+

m3

κ(m)
< ∞, (6.1)

where κ is the consumption rate that satisfies (1.3). The uniqueness of the traveling
wave solution is also proved. The food distribution m is always of the front type.
On the other hand the type of population distribution u depends on the consumption
rate κ. For example, if κ(m) = mp, the population distribution u is of the pulse type

2Keller and Segel took this assumption and called it mysterious in their seminal papers.
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with 0 < p < 3 and is of the front type with p = 3. However, if p > 3, there is no
bounded traveling solution. Furthermore, if

∫ m+

0

1

κ(m)
dm < ∞

(
or 0 < p < 1

)
, (6.2)

then the traveling wave has a finite total population. The relation among the total
population, the wave speed, and the boundary value m+ > 0 is given by (4.9). In
conclusion, we may say that the traveling wave phenomenon can be obtained only
from metric of food3.

Introducing a new distance metric to biology models connects the Riemannian
geometry and mathematical biology as we have observed in this paper for one space
dimension. Applying this idea to a multi-dimensional space may be quite challenging
and the theory of Riemannian geometry may provide us useful tools (see Appendix
A). We took a diffusion operator in a simplest form derived from food distribution
independent of time. The resulting traveling wave equation is in an exact form which
simplifies the analysis (see Remark 3.5). One may develop a similar diffusion theory
using a different distance metric and time dependent food distribution, which can be
more appropriate to chemotaxis models.

Appendix A. Metric of food in Rn and Laplace-Beltrami operator.

In this section we briefly discuss about the possibility and limitation of applying
the idea of Riemannian geometry to multi-dimensions. The distance between two
given points a, b ∈ Rn is defined as

d(a, b) = inf
γ

∫ 1

0

m(γ(t))|γ′(t)|dt, (A.1)

where γ is a smooth curve such that γ(0) = a and γ(1) = b. The curve that gives the
infimum is called the geodesic connecting the two points. The metric tensor gij and
the volume factor corresponding to the distance function above are

gij = m2δij ,
√
det(gij) = mn,

where δij is the Kronecker delta. Notice that the volume factor is not m(x), but
mn(x). This implies that the concentration of food with respect to the metric of food
is mn−1 which is constant only when n = 1. Having constant concentration with
respect to the new metric is a requirement to take the Laplace-Beltrami operator as
a random diffusion operator with respect to the given metric. Otherwise, the Laplace
equation on the manifold is not the corresponding diffusion.

Now we consider a metric that gives a constant concentration of food:

d(a, b) = inf
γ

∫ 1

0

n

√
m(γ(t)) |γ′(t)|dt. (A.2)

Then, the metric tensor gij , the volume factor, and the inverse metric tensor gij are

gij = m2/nδij ,
√
det(gij) = m, gij = m−2/nδij .

3We could not obtain the chemotactic aggregation phenomenon using the approach of this paper.
It seems that aggregation requires more than a random diffusion.
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In this case the volume factor is m and hence the concentration distribution with
respect to the new metric is constant. Let v(x, t) be the population density, where
the density is in terms of the new metric. Then, v satisfies the linear diffusion equation
and the corresponding Laplace-Beltrami operator is

∆gv =
1√

det(gij)
∂i

(√
det(gij) g

ij∂jv
)
=

1

m
∇ ·

(
m1− 2

n∇v
)
.

This is the relation that corresponds to (2.6) for one space dimension. The density in
the Euclidean distance is simply obtained by multiplying the volume factor,

u(x, t) = m(x) v(x, t).

Then, the random diffusion equation becomes

ut = ∇ ·
(
m1− 2

n∇
( u

m

))
in Rn. (A.3)

Remember that the diffusion equation (A.3) is the one when the metric is given
by (A.2). If the metric is given by (A.1), the Laplace-Beltrami operator does not
correspond to the random diffusion. However, the diffusion equation (2.4) is the one
derived from the random walk model when the walk distance is given by the metric
in (A.1).
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