
EVOLUTION OF DISPERSAL WITH STARVATION MEASURE AND

COEXISTENCE

YONG-JUNG KIM AND OHSANG KWON

Abstract. Many of biological species increase their dispersal rate if starvation starts. To
model such a behavior we need to understand how organisms measure starvation and response
to it. In this paper we compare three different ways of measuring starvation by applying them
to starvation driven diffusion. The evolutional selection and coexistence of such starvation mea-
sures are studied within the context of Lotka-Volterra type competition model of two species.
We will see that, if species have different starvation measures and different motility functions,
both the coexistence and selection are possible.

1. Introduction

Migration is an essential component for the survival of biological organisms and various
dispersal strategies have been developed by different species. The necessity of formulating a more
realistic dispersal theory for biological organisms that takes into account interaction between
individuals and animal response to environment has been emphasized (see Skellam [27, 28] and
Okubo & Levin [24, Chapter 5]). The purpose of this paper is to develop a biodiffusion theory
that takes into account the dispersal increase when food dwindles. Biological organisms mostly
increase the dispersal to find food if starvation started. It is such a dispersal change, but
not simply a dispersal size, that gives a better survival chance to biological species. Recently,
starvation sensing mechanisms and its significance in the growth factor of a species have been
extensively studied (see [10, 13]).

The starvation driven diffusion (SDD for brevity) has been recently introduced by Cho and
Kim [3] to mathematically model dispersal increase in the event of starvation. One of our main
interests is in the correct timing of dispersal increase in the event of starvation. To observe the
effect of dispersal change we take a motility function, or a departing probability, as

(1) γ0(s) =

{

ℓ, 0 ≤ s < s∗,

h, s∗ ≤ s < ∞,

where h and ℓ are positive constants such that ℓ < h. This is an extreme case that all organisms
increase their departing probability (or motility) from ℓ to h if the starvation measure ‘s’
increases to a critical value, s = s∗. This motility function magnifies the effect of dispersal
increase and will provide a clear theory. Due to the singularity of γ0 we also take a regularized
motility, γ = γǫ, as given in (3). It is well known that the corresponding random walk model
with the departing probability γ is given by a Fokker–Planck type diffusion law

(2) ut = ∆(γ(s)u),

where u is the population density (see [24, §5.4]). The effect of such diffusion has been studied
for the single species case in [16] when a logistic population dynamics is added. The evolution
of such dispersals toward fitness has been studied in the context of Lotka-Volterra competition
model recently (see [15]).

In this paper, two species (or phenotypes) competition systems are considered, where u and
v denote their population densities. The main focus of our study is the effect of starvation
measure in the evolutional selection and coexistence. Three phenotypes having three different
ways of measuring starvation are tested. The first phenotype does not sense any change of
environment and hence is assumed to have a constant starvation measure s = s0. The second

Date: December 30, 2015.
1



2 YONG-JUNG KIM AND OHSANG KWON

one takes s = v
m

in the context of competition equations (7)–(8), where v is the population
of its own species and m is the amount of food supply. One can easily see that this measure
increases if the population increases and the resource dwindles, which indicates that the ratio
is an indicator of starvation. The third phenotype takes s = u+v

m
, where u + v is the total

population including the competing species and is a better way to measure starvation. We will
show that the evolutional selection favors the measure s = u

m
over the constant one s = s0 and

s = u+v
m

over s = u
m

if the critical starvation value is s∗ = 1. However, a coexistence can be
obtained if s∗ 6= 1. The results of the competition among these three phenotypes are discussed
in Section 2.

There have been intensive studies on the evolution of dispersal strategies. The size effect
of constant dispersal rates is particularly understood well and comprehensive discussions on
discrete and continuous models can be found from [2, 4, 12, 22, 23, 24]. Numerical simulations
and theoretical analysis show that a smaller dispersal rate is selected if the environment is
spatially heterogeneous (see [5, 6, 11, 12, 14, 21]), and that a larger dispersal rate can be
selected if there is a temporal fluctuation of the environment (see [5, 8, 11, 12, 29]). However,
if an adapting behavior of organisms is included, it is not only the dispersal size that matters.
In the context of Lotka-Volterra competition model with starvation driven diffusion, a dispersal
strategy with better fitness property has been selected (see [15]).

In Section 2, we formulate competition problems between two species and state three main
theorems about evolutional selection and coexistence. These three theorems are proved in
Sections 3–5, respectively. The theorems are numerically tested in Section 6 in a two patch
environment and in one space dimension. In particular, a comprehensive simulation for the
global asymptotic stability is tested using a two patches environment and conjectures related
to the theory are discussed and tested numerically.

2. Main results and discussions

Notice that the motility function γ0 in (1) has a discontinuity and there is a difficulty in
handling such a diffusion directly. For analysis we consider its continuous approximation,

(3) γǫ := γ0 ∗ ηǫ,

where ǫ > 0 is small and the mollifier ηǫ satisfies
∫

ηǫ(x)dx = 1. For a technical simplicity, we
take supp(ηǫ) ⊂ (0, ǫ) and hence

γǫ(s) = ℓ for 0 ≤ s ≤ s∗.

In the rest of this paper we denote the smooth motility function by γ without the superscript
for notational simplicity unless needed. Theorems of this paper are with such a smooth approx-
imation, γ = γǫ, but not γ0.

In this paper we consider evolutional selection of three phenotypes that have different methods
of measuring starvation. The first phenotype does not sense it at all and takes a constant
starvation measure s = s0. Then, the population model for the phenotype with a logistic
reaction term is written as

ut = d∆u+ u(m(x) − u), x ∈ Ω, t > 0,

where u is the population density, Ω is a bounded domain with a smooth boundary, andm(x) > 0
is a nonconstant resource distribution. The constant diffusivity is d = γ(s0) with the constant
starvation measure s0 and ℓ ≤ d ≤ h. If a case with d < ℓ is considered, one is basically taking
a different motility function. It is well-known that there exists a unique steady state of the
equation with constant diffusivity, denoted by θd, and is globally asymptotically stable.

The starvation measure of the second phenotype is given by

(4) s :=
v

m
,

where v is the population density of the second phenotype. Clearly, if the population density
v increases and the resource m decreases, the starvation measure (4) increases. Therefore, the
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ratio in (4) actually measures starvation somewhat. However, the phenotype v does not count
the presence of the other phenotype u and the consequence of this missing part is the main
point to watch in this paper. For the single species case, the population model is written as

(5) vt = ∆(γ(s)v) + v(m(x) − v), x ∈ Ω, t > 0.

There is a unique steady state is denoted by θγ(x) and its global asymptotic stability has been
obtained in [16] under an extra assumption on the motility:

(6) γ(s)− (s− 1)γ′(s) > 0 for s > 1,

where the above motility function γǫ satisfies this relation for small ǫ > 0 and s∗ ∼= 1.

Remark 2.1. In this paper we assume m > 0 and hence the starvation measures such as u
m

and
u+v
m

are well defined. If m 6> 0 is considered, we may consider the reciprocal of the starvation
measure m

u
or m

u+v
, which may called a satisfaction measure. Then, the uniform parabolicity of

the problem gives the positivity to the solution and hence the satisfaction measure is well defined
for all t > 0. If the motility function γ is taken as a decreasing function of the satisfaction
measure, one may obtain the same theory (see [3, 15, 16]).

The first competition model of this paper is

ut = d∆u + u[m(x)− u− v], x ∈ Ω, t > 0,(7)

vt = ∆(γ(s)v) + v[m(x)− u− v], x ∈ Ω, t > 0,(8)

0 = ~n · ∇u = ~n · ∇[γ(s)v], x ∈ ∂Ω, t > 0,(9)

0 ≤ u(x, 0) 6≡ 0, 0 ≤ v(x, 0) 6≡ 0, x ∈ Ω,(10)

which is a Lotka-Volterra type competition model of two species. Here, the zero flux boundary
condition (9) and nontrivial and nonnegative initial value (10) are imposed. The SDD in (8) is
with the starvation measure in (4) and is written as

∆(γ(s)v) = ∇ ·
(

(γ(s) + sγ′(s))∇v − s2γ′(s)∇m
)

,

which contains self-diffusion and advection, but not cross-diffusion. We assume the global
existence and uniqueness of the system (7)–(10). Due to the quasilinear diffusion term and
Neumann boundary condition, a separate discussion for the global well-posedness will be needed.
(For linear diffusion case, see [25] and for a recent result on cross-diffusion, see [20]) Then, this
problem has the monotonicity property and the global asymptotical stability of the system is
given in the first theorem of this paper:

Theorem 2.1. Let the jumping moment of the motility function in (1) be s∗ = 1 and the
resource distribution m(x) > 0 be nonconstant. If d > ℓ, the semi-trivial steady state (u, v) =
(0, θγ) of the system (7)–(10) is globally asymptotically stable. If d < ℓ, the other semi-trivial
steady state (θd, 0) is linearly stable.

Theorem 2.1 indicates that the starvation driven dispersal is selected over the unconditional
random dispersal if d ≥ ℓ. If d = ℓ and minx∈Ωm(x) > 0, there exists a positive steady state of
coexistence. For example, there exists a constant 0 < c0 < 1 such that c0θd(x) ≤ m(x) in Ω and
((1− c)θd, cθd) is a positive steady state of the system (7)–(10) for any 0 < c ≤ c0. However, if
d < ℓ, we have relatively less information. It is unclear if solutions always converge to (θd, 0), or
if a solution may converge to (0, θγ) depending on the initial value, or both species may coexist.
In fact, we may numerically observe many scenarios. For example, if d is smaller than certain
value, say d < d0, the solution always converges to (θd, 0). If d0 < d < ℓ, then the solution may
converge to either of the semi-trivial steady states or to a positive one (see Figure 1). Remember
that, if d < ℓ, the motility function of the two species should be treated as different ones since
the difference in starvation measure is not enough to explain the circumstance.

The starvation measure of the third phenotype is

(11) s̃ :=
u+ v

m
,
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which counts the population of both species. This is the model introduced in [3]. An analysis
for the competition between the first and the third phenotypes is in [15]. Here, we use a different
notation s̃ to distinguish it from the previous measure s in (4). The semi-trivial case is identical
to the second phenotype case (5). Now we consider a competition between the second and the
third phenotypes by replacing (7) with

(7)′ ut = ∆(γ(s̃)u) + u[m(x)− u− v], x ∈ Ω, t > 0.

The situation s̃ = 1 is a border case that the population growth rate m− u− v changes it sign.
If s̃ < 1, then the growth rate becomes positive and the population will grow. If s̃ > 1, then the
resource is not enough to support the population and the population decreases. Usually, the
individuals do not know the size of the population u + v nor the amount of the total resource
m. However, they know if they are getting enough resource or not. Hence s̃ is the quantity that
individuals may sense.

The diffusion of the third phenotype is written as

(12) ∆(γ(s̃)u) = ∇ ·
(

(

γ(s̃) +
u

m
γ′(s̃)

)

∇u+
u

m
γ′(s̃)∇v −

u

m
s̃γ′(s̃)∇m

)

,

which now contains self-diffusion, cross diffusion and advection. The newly added cross-diffusion
term gives the species another advantage. However, we have lost the monotonicity of the
problem and the analysis becomes harder. The second theorem is about the uniqueness of a
stable steady state of the competition system:

Theorem 2.2. Let s∗ = 1 and 0 < m(x) 6= constant. The steady state (θγ , 0) of the system
(7)′,(8)–(10) is linearly stable and the other steady state (0, θγ) is linearly neutrally stable.
Moreover, there is no other steady state.

We call that the steady state (0, θγ) is linearly neutrally stable if the first eigenvalue λ1 of the
corresponding linearized eigenvalue problem of (29) is nonnegative. The uniqueness of a stable
steady state given by the theorem and the numerical simulations given in Figure 3 strongly
indicate that the steady state (θγ , 0) should be globally asymptotically stable and hence the
third phenotype u would be selected eventually. However, a theoretical conclusion of the global
asymptotic stability is not obtained due to the lack of monotonicity of the resulting system.

Biological species may take their own way of sensing environment and may react for their
survival in the event of starvation. These differences may give chances for many species to
coexist by providing rooms of survival. However, it is well known that, if the environment is
time independent and diffusion is with constant diffusivity, only the slowest dispersal is selected
and there is no coexistence driven by diffusion (see [6]). A migration driven coexistence can be
found for the competition-diffusion-advection systems when two different dispersal dynamics are
involved (see [18, 19]). In the last theorem of this paper we will find a possibility of coexistence of
two species in the context of starvation driven diffusion. Remember that Theorem 2.2 indicates
the starvation measure u+v

m
is favored over v

m
and there seems no coexistence at least numerically.

This is due to the special jumping moment s∗ = 1. In the monotone system, it is well known
that, if both semi-trivial steady states are stable (or unstable), there is a coexistence (see [9]).
If s∗ is small or large enough, then the motility of a semi-trivial steady state becomes constant.
This implies that both semi-trivial stead states could lose their stability and so, two species
may coexist. The last theorem of this paper indicates such possibility:

Theorem 2.3. Let 0 < m(x) 6= constant. If s∗ ≥ maxx m(x)
minx m(x) , both semi-trivial steady states,

(θγ , 0) and (0, θγ), of the system (7)′,(8)–(10) are linearly neutrally stable. If s∗ ≤ minx m(x)
maxx m(x) ,

(θγ , 0) is linearly unstable and (0, θγ) linearly neutrally stable.

The ratio maxx m(x)
minx m(x) measures the spatial variation of the resource distribution. The theorem

implies that any of the semi-trivial state of the system (7)′,(8)–(10) is not linearly stable if the
jumping moment s∗ is bigger than resource variation or less than its reciprocal. This indicates
that there may exist a steady state that two species coexist. In fact, numerical simulations
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in Section 6 show various coexistence states (see Figure 4). In the context of Lotka-Volterra
competition model without temporal fluctuation of environment, the timing s∗ = 1 to increase
migration rate is the best one. The coexistence in the model was possible since the jumping
moment is not the ideal one. One may ask further when is the best moment to increase the
dispersal when the environment temporally fluctuate.

The starvation driven diffusion (or SDD) is based on the idea that certain biological organisms
increase their dispersal when food dwindles. This idea let us replace the classical unconditional
dispersal to a non-uniform conditional one and resolve the nonphysical situation that the dis-
persal is degraded by spatial heterogeneity (see [6, 15, 21]). SDD naturally takes into account
animal response to environment mentioned by Skellan and Okubo. Furthermore, in the way
measuring starvation, the interaction between individuals is also included. For example, the
self-diffusion term u

m
γ′(s̃)∇u in (12) reflects the intra-species interaction and the cross-diffusion

term u
m
γ′(s̃)∇v reflects the inter-species interaction. The advection term − u

m
s̃γ′(s̃)∇m is the

animal response to the environment. It is these terms that make SDD a realistic dispersal model
for biological organisms.

3. Starvation driven diffusion versus linear diffusion

In this section we consider the case that the motility of the first phenotype is constant
d = γ(s0) and the motility of the second phenotype is, γ = γ(s) with s = v

m
. Then the system

(7)–(10) is written as

(13)



















ut = d∆u + u[m− u− v],

vt = ∆(γ(s)v) + v[m− u− v],

0 = ~n · ∇u = ~n · ∇[γ(s)v],

0 ≤ u(x, 0) = u0(x), 0 ≤ v(x, 0) = v0(x),

where the first two equations hold for t > 0 and x ∈ Ω, the Neumann boundary conditions in
the third line are for t > 0 and x ∈ ∂Ω, and the initial conditions in the last line are for x ∈ Ω.
The domain of variables are like this throughout the paper and will not be mentioned again.

3.1. A linearization and an eigenvalue analysis. First, introduce the diffusion pressure V
for the second phenotype given by

(14) V := γ(s)v with s :=
v

m
.

Define
F(m, v, V ) := γ(s)v − V,

which is identically zero under the relation (14). This functional gives a relation among un-
knowns. Since the resource distribution is invariant in time, m = m(x), we have

Ft =
∂F

∂v
vt +

∂F

∂V
Vt =

∂F

∂v
vt − Vt = 0.

Furthermore, since

(15)
∂F

∂v
= γ(s) + γ′(s)s > 0,

the unknown function v is decided by m and V , i.e., we may write v = v(m,V ) by the implicit
function theorem. Hence, (13) is written as

(16)



















ut = d∆u+ u[m− u− v],

Vt =
∂F
∂v

{∆V + v[m− u− v]},

0 = ~n · ∇V = ~n · ∇u,

0 ≤ u(x, 0) = u0(x), 0 ≤ V (x, 0) = V0(x),

where

V0 := γ
(v0

m

)

v0.
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Let (ue, ve) be a steady state of (13). The stability of (ue, ve) is identical to that of the steady
state (ue, V e) of (16), where V e := γ(se)ve. Whenever a linearized problem is considered, the
starvation measure is taken as

se =
ve

m
,

where (ue, ve) the steady state related to the linearized problem. Let u = ue+φ and V = V e+Ψ
with |φ| and |Ψ| small. Then,

v = v(m,V e +Ψ) = ve +
∂v

∂V
Ψ+ higher order terms,

where the implicit function theorem gives

∂v

∂V
= −

∂F
∂V
∂F
∂v

=
[

γ(s) + γ′(s)s
]−1

.

A steady state (ue(x), V e(x)) of (16) is called stable if the eigenvalues of the linearized
eigenvalue problem,

(17)











λφ = d∆φ+ (m− 2ue − ve)φ− ue ∂v
∂V

Ψ,

λΨ = ∂F
∂v

{

∆Ψ+ (m− ue − 2ve) ∂v
∂V

Ψ− veφ
}

,

0 = ~n · ∇Ψ = ~n · ∇φ,

are strictly negative. Consider a semi-trivial steady state (θd, 0) of (13). Then, at the steady
state, we have

∂v

∂V
=

1

ℓ
,

∂F

∂v
= ℓ,

and the eigenvalue value problem for (16) around the steady state (θd, 0) is

(18)











λφ = d∆φ+ (m− 2θd)φ− θd
ℓ
Ψ,

λΨ = ℓ∆Ψ+ (m− θd)Ψ,

0 = ~n · ∇Ψ = ~n · ∇φ,

where θd satisfies

(19)

{

0 = d∆θd + θd[m− θd],

0 = ~n · ∇θd.

Similarly, let (0, θγ) be the other semi-trivial steady state and

Vγ := γ(sγ)θγ , sγ =
θγ

m
.

Then, the eigenvalue problem corresponding to the steady state (0, Vγ(x)) is

(20)











λφ = d∆φ+ (m− θγ)φ,

λΨ = (γ(sγ) + γ′(sγ)sγ)
{

∆Ψ+
m−2θγ

γ(sγ)+γ′(sγ)sγ
Ψ− θγφ

}

,

0 = ~n · ∇Ψ = ~n · ∇φ,

where θγ satisfies

(21)

{

0 = ∆(γ(sγ)θγ) + θγ [m− θγ ],

0 = ~n · ∇ (γ(sγ)θγ) .

In the following lemma we derive simpler stability criteria for semi-trivial steady states.

Lemma 3.1. Let θd and θγ be the unique stable steady solution of (19) and (21), respectively.
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(i) Let µ1 be the first eigenvalue of

(22)

{

µΨ = ℓ∆Ψ+ (m− θd)Ψ,

0 = ~n · ∇Ψ.

If µ1 > 0, then a semi-trivial steady state solution (θd, 0) of (13) is linearly unstable. If
µ1 < 0, then it is linearly stable.

(ii) Let ν1 be the first eigenvalue of

(23)

{

νφ = d∆φ+ (m− θγ)φ,

0 = ~n · ∇φ.

If ν1 > 0, then the other semi-trivial steady state solution (0, θγ) is linearly unstable. If
ν1 < 0, it is linearly stable.

Proof. (i)
If µ1 > 0, then, due to (19), it is easy to see that the operator

Lv = d∆+ (m− 2θd)− µ1

is invertible. This yields that µ1 > 0 is an eigenvalue of the linearized problem (18), and that
(θd(x), 0) is linearly unstable.

Next, we consider the case with µ1 < 0 and show (θd, 0) is linearly stable. If not, the linearized
problem (18) has nonnegative eigenvalue λ1 ≥ 0 with the corresponding eigenfunctions (φ1,Ψ1).
If Ψ1 ≡ 0, then a contradiction follows due to (18), (19) and the assumption that λ1 ≥ 0. Hence
Ψ1 6= 0. However, using the Rayleigh quotient, this yields that

µ1 = sup
Ψ∈H1(Ω)\{0}

∫

Ω

[

−ℓ|∇Ψ|2 + (m− θd)Ψ
2
]

dx
∫

Ω Ψ2dx

≥

∫

Ω

[

−ℓ|∇Ψ1|
2 + (m− θd)Ψ

2
1

]

dx
∫

Ω Ψ2
1dx

=

∫

Ω λ1Ψ
2
1dx

∫

ΩΨ2
1dx

≥ 0.

Therefore, (θd(x), 0) is linearly stable.
(ii) The linearized eigenvalue problem of (21) about the steady state Vγ is written as

λΨ =
(

∆+ (m− 2θγ)
∂v

∂V

)

Ψ.

Since θγ(x) is a stable solution of (21), the linear operator ∆ + (m − 2θγ)
∂v
∂V

has nonpositive
eigenvalues. Thus, if ν1 > 0, the operator

L := ∆ + (m− 2θγ)
∂v

∂V
− ν1

(

∂F

∂v

)−1

has strictly negative eigenvalues due to (15) and hence is invertible. Let {ν1, φ1} be an eigen-pair
of (23) and Ψ1 satisfy

LΨ1 = θγφ1.

Then, {ν1, (φ1,Ψ1)} is an eigen-pair of the linearized problem (20) and hence (0, Vγ(x)) is
linearly unstable.

Since an eigenvalue of (20) is also an eigenvalue of (23), eigenvalues of (20) are all strictly
negative if ν1 < 0. Therefore, (0, Vγ(x)) is linearly stable. �

3.2. Proof of Theorem 2.1. It is widely accepted that a slower diffuser is selected over a
faster one in a spatially heterogeneous environment (see Dockery et al. [6]). The conclusion of
Theorem 2.1 partly agrees with this consensus. For example, if d < ℓ, then (θd, 0) is linearly
stable and hence being a slower diffusor is an advantage. However, if d = ℓ and ℓ < h, then the
second phenotype is selected even if it is a faster diffuser in the region of s > 1. In other words,
being a faster diffuser in a region with less food is an advantage. The proof of the theorem is
based on the stability criteria given in Lemma 3.1.
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Proof of Theorem 2.1. Clearly, (θd, 0) is a steady state of (16). The stability of (θd, 0) as a
steady state of (13) is determined by the signs of the first eigenvalue, denoted by µ1, of an
eigenvalue problem

{

µΨ = ℓ∆Ψ+ (m− θd)Ψ,

0 = ~n · ∇Ψ.

Since θd is the unique positive solution of (19), µ1 is positive if d < ℓ, µ1 is negative when d > ℓ,
and µ1 = 0 if d = ℓ.

To show the global asymptotic stability of (0, θγ) we compute the sign of the first eigenvalue
of (23) and show the monotonicity of our system. Since m−θγ is positive in a region, we obtain
for a sufficiently small d that

ν1 = sup
Ψ∈H1(Ω)\{0}

∫

Ω

[

−d|∇Ψ|2 +Ψ2(m− θγ)
]

dx
∫

ΩΨ2dx
> 0.

Moreover, ν1 decreases as d increases. Let d = ℓ and (ν1,Ψ1) be the first eigen-pair of (23).
Then

ν1 = sup
Ψ∈H1(Ω)\{0}

∫

Ω−d|∇Ψ|2 + (m− θγ)Ψ
2dx

∫

ΩΨ2dx

=

∫

Ω−d|∇Ψ1|
2 + (m− θγ)Ψ

2
1dx

∫

ΩΨ2
1dx

=

∫

Ω−ℓ|∇Ψ1|
2 + ℓ

m−θγ
γ(s) Ψ2

1dx
∫

ΩΨ2
1dx

+

∫

Ω(1−
ℓ

γ(s))(m− θγ)Ψ
2
1dx

∫

Ω Ψ2
1dx

.

Since the operator ∆ +
m−θγ
γ(s) has a positive eigenfunction γ(s)θγ with 0-eigenvalue, 0 is the

first eigenvalue of ∆ +
m−θγ
γ(s) . It implies that

∫

Ω
−|∇Ψ1|

2 +
m− θγ

γ(s)
Ψ2

1dx ≤ 0.

Therefore,

ν1 ≤

∫

Ω(1−
ℓ

γ(s))(m− θγ)Ψ
2
1dx

∫

ΩΨ2
1dx

=

(

∫

{m>θγ}
+
∫

{m<θγ}

)

(m− θγ)(1−
ℓ

γ(s))Ψ
2
1dx

∫

ΩΨ2
1dx

.

We get that γ(s) = ℓ when m > θγ and γ(s) > ℓ when m < θγ . Since |{x ∈ Ω | m < θγ}| > 0,
ν1 < 0. According to Lemma 3.1, there exists a positive constant ω1 < ℓ such that (0, θγ) is
linearly unstable if d < ω1 and linearly stable if d > ω1.

Next, we will show that there is no positive steady state of (13) if ℓ < d. Suppose that (u, v)
is a positive steady state. Then,











0 = d∆u+ u[m− u− v],

0 = ∆V + v[m− u− v],

0 = ~n · ∇V = ~n · ∇u,
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where V = γ(s)v and s = v
m
. Then, it follows that,

0 ≥ sup
Ψ∈H1(Ω)\{0}

∫

Ω

[

−|∇Ψ|2 +
1

γ(s)
Ψ2(m− u− v)

]

dx

≥

∫

Ω

[

−|∇u|2 +
1

γ(s)
u2(m− u− v)

]

dx

=

∫

Ω

[

−
1

d
u2(m− u− v) +

1

γ(s)
u2(m− u− v)

]

dx

Multiply 0 = d∆u+ u[m− u− v] by u and integrate, then we get that

d

∫

Ω
|∇u|2 =

∫

Ω
u2(m− u− v) ≥ 0.

Therefore, we get that

0 ≥

∫

Ω

[

−
1

d
u2(m− u− v) +

1

γ(s)
u2(m− u− v)

]

dx

≥

∫

Ω
(

1

γ(s)
−

1

ℓ
)u2(m− u− v)dx

=
(

∫

{s>1}
+

∫

{s≤1}

)

(
1

γ(s)
−

1

ℓ
)u2(m− u− v)dx

=

∫

{s>1}
(

1

γ(s)
−

1

ℓ
)u2(m− u− v)dx.

If s > 1, then m−u− v ≤ m− v < 0 and 1
γ(s) −

1
ℓ
< 0. Consequently, v ≤ m in Ω and γ(s) ≡ ℓ.

Therefore, (u, v) satisfies that










0 = d∆u+ u[m− u− v],

0 = ℓ∆v + v[m− u− v],

0 = ~n · ∇v = ~n · ∇u.

Similarly,

0 ≥ sup
Ψ∈H1(Ω)\{0}

∫

Ω

[

−|∇Ψ|2 +
1

ℓ
Ψ2(m− u− v)

]

dx

≥

∫

Ω

[

−|∇u|2 +
1

ℓ
u2(m− u− v)

]

dx

=

∫

Ω

[

−
1

d
u2(m− u− v) +

1

ℓ
u2(m− u− v)

]

dx

=

∫

Ω
(
1

ℓ
−

1

d
)u2(m− u− v)dx.

This implies that u is a constant and so v either. Since we assume that m is nonconstant this
is a contradiction.

Next we show the monotonicity of the problem. Let (uδ, vδ) be the solution of










(uδ)t = d∆uδ + uδ[m+ δ − uδ − vδ],

(vδ)t = ∆(γ(vδ
m
)vδ) + vδ[m− δ − uδ − vδ],

0 = ~n · ∇uδ = ~n · ∇(γ(vδ
m
)vδ), uδ(x, 0) = uδ,0, vδ(x, 0) = vδ,0,

where δ is a sufficiently small positive constant.
Claim: If u0(x) ≤ uδ,0(x) and v0(x) ≥ vδ,0(x), then u(x, t) < uδ(x, t) and v(x, t) > vδ(x, t),

where (u, v) is the solution of (13).
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We assume that there exist x0 ∈ Ω and t0 > 0 such that v(x0, t0) = vδ(x0, t0) and u(x0, t0) ≤
uδ(x0, t0), where v(x0, t) > vδ(x0, t) for any 0 < t < t0. Then, since γ( v

m
)v is increasing as v is

increasing,

∂v − vδ

∂t

∣

∣

∣

x=x0,t=t0
= [∆(γ(

v

m
)v − γ(

vδ

m
)vδ) + v(δ + uδ − u)]

∣

∣

∣

x=x0,t=t0
> 0.

This is a contradiction. In the same way, we can show that u(x, t) < uδ(x, t) for any x ∈ Ω,
t > 0 and δ > 0.

Therefore, if (ũ, ṽ) is the solution of (13) with the initial value (ũ0, ṽ0) such that u0 ≤ ũ0 and
v0 ≥ ṽ0, then u(x, t) ≤ ũ(x, t) and v(x, t) ≥ ṽ(x, t). Moreover, from the maximum principle, if
u0 6= ũ0, then u(x, t) < ũ(x, t) for any x ∈ Ω and t > 0. Therefore, if there exist x0 ∈ Ω and
t0 > 0 such that v(x0, t0) = ṽ(x0, t0), where v(x0, t) > ṽ(x0, t) for any 0 < t < t0. Then,

∂v − ṽ

∂t

∣

∣

∣

x=x0,t=t0
= [∆(γ(

v

m
)v − γ(

ṽ

m
)ṽ) + v(ũ− u)]

∣

∣

∣

x=x0,t=t0
> 0.

This is a contradiction. This implies that our system is monotone. Then, from the theory
of monotone dynamical systems (See, e.g., Proposition 9.1 and Theorem 9.2 in [7]), (0, θγ) is
globally asymptotically stable when d ≥ ℓ. �

4. Competition between two starvation measures

In this section, we consider the competition model (7)–(10) with non-constant motility func-
tions for both species,

(24)



















ut = ∆(γ(s̃)u) + u[m(x)− u− v],

vt = ∆(γ(s)v) + v[m(x)− u− v],

0 = ~n · ∇[d(s̃)u] = ~n · ∇[γ(s)v],

0 ≤ u(x, 0) = u0(x), 0 ≤ v(x, 0) = v0(x).

4.1. A linearization and an eigenvalue analysis. Introduce biological diffusion pressures

(25) U := γ(s̃)u, V := γ(s)v with s̃ :=
u+ v

m
, s :=

v

m
.

Define

F(x, u, v, U) := γ(s̃)u− U and G(x, v, V ) := γ(s)v − V.

Then, (7)–(10) can be rewritten as

(26)



















Ut =
∂F
∂u

{∆U + u[m(x)− u− v]}+ ∂F
∂v

{∆V + v[m(x)− u− v]},

Vt =
∂G
∂v

{∆V + v[m(x)− u− v]},

0 = ~n · ∇U = ~n · ∇V,

0 ≤ U(x, 0) = U0(x), 0 ≤ V (x, 0) = V0(x),

where

U0 := γ
(u0 + v0

m

)

u0 and V0 := γ
(v0

m

)

v0.

Let (θγ , 0) and (0, θγ) be the two semi-trivial steady states of (7)–(10). The eigenvalue
problem of the linearized problem of (26) about the steady state (θγ(x), 0) is

(27)























λΦ = (γ(sγ) + γ′(sγ)sγ)
{

∆Φ+
(m−2θγ)
γ+γ′sγ

Φ+ 1
ℓ
[
γ′sγ(m−2θγ )

γ+γ′sγ
− θγ ]Ψ

}

+γ′(sγ)sγ

{

∆Ψ+
m−θγ

ℓ
Ψ
}

,

λΨ = ℓ∆Ψ+ (m− θγ)Ψ,

0 = ~n · ∇Φ = ~n · ∇Ψ,
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where sγ =
θγ
m

and θγ(x) satisfies

(28)

{

0 = ∆(γ(sγ)θγ) + θγ [m− θγ ],

0 = ~n · ∇(γ(sγ)θγ).

Similarly, we may compute that the corresponding eigenvalue problem of (26) at (0, θγ(x)) is

(29)















λΦ = γ(sγ)
{

∆Φ+
m−θγ
γ(sγ)

Φ
}

,

λΨ = (γ(sγ) + γ′(sγ)sγ)
{

∆Ψ+
(m−2θγ )

γ(sγ)+γ′(sγ)sγ
Ψ− θγ

γ(sγ)
Φ
}

,

0 = ~n · ∇Φ = ~n · ∇Ψ.

We now show the simplified stability criteria for the semi-trivial steady states of (7)–(10)
which corresponds to Lemma 3.1 in the previous section.

Lemma 4.1. Let θγ(x) be the unique globally asymptotically stable steady state solution of (28),
respectively.

(i) Let µ1 denote the first eigenvalue of

(30)

{

µΨ = ℓ∆Ψ+ (m− θγ)Ψ,

0 = ~n · ∇Ψ.

The semi-trivial steady state (θγ(x), 0) is linearly unstable if µ1 > 0 and linearly stable
if µ1 < 0.

(ii) Let ν1 denote the first eigenvalue of

(31)

{

νΦ = ∆Φ+
m−θγ
γ(sγ)

Φ,

0 = ~n · ∇Φ.

The semi-trivial steady state (0, θγ(x)) is linearly unstable if ν1 > 0 and linearly stable
if ν1 < 0.

Proof. The proof is similar to the one for Lemma 3.1 and is omitted. �

4.2. Proof of Theorem 2.2. Now we show the second theorem.

Proof of Theorem 2.2. From Lemma 4.1 and Lemma 2 in [15], the stability of (θγ(x), 0) is
determined by the sign of the first eigenvalue of the following eigenvalue problem

{

µΨ = ℓ∆Ψ+ (m− θγ)Ψ,

0 = ~n · ∇Ψ.

Similarly, the stability of (0, θγ(x)) is determined by the sign of the first eigenvalue of the
following eigenvalue problem

(32)

{

νΦ = ∆Φ+
m−θγ
γ(sγ)

Φ,

0 = ~n · ∇Φ.

Then, from the proof of Theorem 2.1, (θγ(x), 0) is linearly stable. Furthermore, since θγ(x) is
the positive eigenfunction of (32) with 0-eigenvalue, there exists an eigenpair {0, (Φ1, θγ)} of
(27). By Lemma 4.1, (0, θγ(x)) is linearly neutrally stable.

Finally, we show that there is no steady state of coexistence. Suppose (ũ, ṽ) is a steady state
such that ũ 6≡ 0 6≡ ṽ. Then, we have

{

0 = ∆Ũ + ũ[m(x)− ũ− ṽ],

0 = ∆Ṽ + ṽ[m(x)− ũ− ṽ],
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where Ũ = γ( ũ+ṽ
m

)ũ and Ṽ = γ( ṽ
m
)ṽ. Since 0 = ∆Ũ + m(x)−ũ−ṽ

γ(s̃) Ũ , it follows that

0 = sup
Φ∈H1(Ω)\{0}

∫

Ω

[

−|∇Φ|2 +
m− ũ− ṽ

γ(s̃)
Φ2

]

dx

≥

∫

Ω

[

−|∇Ṽ |2 +
m− ũ− ṽ

γ(s̃)
Ṽ 2

]

dx

=
(

∫

{m>ũ+ṽ}
+

∫

{m<ũ+ṽ}

)( 1

γ(s̃)
−

1

γ(s)

)

(m− ũ− ṽ)Ṽ 2dx.

If m > ũ + ṽ, then 1 > ũ+ṽ
m

≥ ṽ
m
. It follows that γ(s̃) = γ(s) = ℓ. If m < ũ + ṽ, then

m − ũ − ṽ < 0. Since γ is increasing and s̃ ≥ s, 1
γ(s̃) ≤ 1

γ(s) . Therefore, if {x ∈ Ω | m <

ũ+ ṽ} ∩ {x ∈ Ω | m > ṽ} 6= ∅, then
∫

{m<ũ+ṽ}

( 1

γ(s̃)
−

1

γ(s)

)

(m− ũ− ṽ)Ṽ 2dx > 0.

This is a contradiction. This implies that {x ∈ Ω | m ≥ ũ + ṽ} = Ω or {x ∈ Ω | m < ṽ} = Ω.
We assume that {x ∈ Ω | m ≥ ũ + ṽ} = Ω and {x ∈ Ω | m > ũ + ṽ} 6= ∅. Divide 0 =

∆Ũ + ũ[m(x)− ũ− ṽ] by Ũ and integrate, then we get that

−

∫

Ω

|∇Ũ |2

Ũ2
dx =

∫

Ω

m− ũ− ṽ

γ(s̃)
dx > 0.

This is a contradiction. Therefore, if {x ∈ Ω | m ≥ ũ+ ṽ} = Ω, then {x ∈ Ω | m = ũ+ ṽ} = Ω.
This implies that γ(s̃) ≡ γ(s) ≡ ℓ and m− ũ − ṽ ≡ 0. It follows that ∆u ≡ ∆v ≡ 0 and so, ũ
and ṽ are constants. Since we assume that m is nonconstant, this is a contradiction. Therefore,
{x ∈ Ω | m < ṽ} = Ω, and m− ũ− ṽ < 0, consequently. Multiply 0 = ∆Ṽ + ṽ[m(x)− ũ− ṽ] by

Ṽ and integrate, then we get that
∫

Ω
|∇Ṽ |2dx =

∫

Ω
Ṽ ṽ(m− ũ− ṽ)dx < 0.

This is a contradiction.
Therefore, there is no coexisting steady state. �

5. Possibility for coexistence of two competing species

The coexistence of competing species is not obtained when the population dynamics of the
species are identical and the dispersal strategies are given by a linear diffusion with different
diffusivity coefficients. However, Theorem 2.3 gives two situations that any of the semi-trivial
steady states is not stable and hence indicates coexistence of two competing species.

Proof of Theorem 2.3. By Lemma 1 in [16], we know that

min
x

m(x) ≤ θγ(x) ≤ max
x

m(x).

Let s∗ ≤ minx m(x)
maxx m(x) . Then, γ(

θγ
m
) ≡ h in Ω. Therefore, h∆θγ +θγ(m−θγ) = 0 in Ω. This implies

that the first eigenvalue µ1 of (30) is positive. Moreover, due to invertibility of ∆+
m−2θγ

h
, there

exists an eigenpair {0, (θγ ,Ψ1)} of (29). Therefore, by Lemma 4.1, (θγ , 0) is linearly unstable
and (0, θγ) is linearly neutrally stable.

Similarly, if s∗ ≥ maxx m(x)
minx m(x) . Then, γ(

θγ
m
) ≡ ℓ in Ω. Therefore, ℓ∆θγ + θγ(m − θγ) = 0 in Ω.

Since θγ is the first eigenfunction of (31) with 0-eigenvalue, there exist eigenpairs {0, (Φ1, θγ)} of
(27) and {0, (θγ ,Ψ1)} of (29). By Lemma 4.1, (θγ , 0) and (0, θγ) are linearly neutrally stable. �

In the context of the Lotka-Volterra type competition model in this paper the best moment
to increase the dispersal rate is s∗ = 1 (see [15, Theorem 3]) for two reasons. Firstly, since the
growth rate of the population becomes negative if s > 1 and, secondly, since the environment
or the carrying capacity is constant, there is no advantage in waiting for a better environment
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if s > 1. Therefore, the best strategy is to increase the dispersal rate immediately after s > 1.
However, if a species increases the motility at some value s∗ 6= 1, the best way of measuring the
starvation is not necessarily selected. In fact, an overestimated or underestimated one can be
selected, or both species may coexist. Theorem 2.3 shows two of such cases that the moment
s∗ is sufficiently away from s∗ = 1 in compare with the environment variations. Then, it may
happen γ(u+v

m
) ≡ γ( v

m
) and hence the ratio of population remains constant (see Figure 4(a) ).

Notice that the analysis of the theorem is for the two extreme cases of s∗ <
minx m(x)
maxx m(x) and

s∗ >
maxx m(x)
minx m(x) . The other case of minx m(x)

maxx m(x) < s∗ <
maxx m(x)
minx m(x) has been tested numerically in

Figure 4. One can find coexistence in Figure 4(b), selection of the second phenotype in Figures
4(c), and the selection of the other phenotype in 4(d). It seems that there exist a range of steady
states of coexistence depending on the choice of s∗ and that the transition from a selection of one
phenotype to the other is of order ǫ used to obtain regularized motility function γǫ. However,
these observations are only from numerical simulations and the analysis for this intermediate
case is not done.

6. Numerical Simulations

In this section we present numerical simulations and compare them to the theories of this
paper. Some of them are to confirm the theoretical conclusions numerically. The others are to
numerically test conjectures which are not proved in the paper. In Section 6.1 we introduce
two patch problem which has a low computation cost in compare with PDE models. It is this
simplicity that all numerical tests including its global asymptotic behavior are possible which
is given in Section 6.2. PDE model simulations are given in Section 6.3 for one dimension.

6.1. Two patch model. For computational simplicity, a two-patch model is numerically com-
puted to test the theories in the earlier sections. The tested two patch model is similar to the
PDE model when the resource distribution m is given by a step function. We may observe from
the simulations that the theories of this paper is valid not only for the PDE model, but also for
the patch model we tested.

General patch models are quite different from PDE models. However, if the connection among
patches are given in a way similar to the geometry of a PDE model, the patch model is simply
a discretization of a PDE model. A general patch model is written as

(33)
d

dt
wk
i = riw

k
i (m

k − T k)−
∑

l 6=k

γkli wk
i +

∑

l 6=k

γlki wl
i,

where the superscript k denotes the patch number and the subscript i the species. For example,
mk and T k :=

∑

iw
k
i are the carrying capacity and the total population in the k-th patch,

respectively, and wk
i is the population of the i-th species in the k-th patch. The coefficient ri is

the growth rate of the i-th species and γkli is the probability for the i-th species to depart the
k-th patch and arrive at the l-th patch in a unit time. If γkli = γlki , then the dispersal strategy
of the i-th species is called symmetric.

We take 2 species and 2 patches. Then, in the context of SDD, the patch model in (33) is
written as

d

dt
wk
i = riw

k
i (m

k − wk
1 − wk

2)− γi(s
k
i )w

k
i + γi(s

l
i)w

l
i,

where k, l = 1, 2 and k 6= l. Here, γi is the motility function of the i-th species and ski is the
starvation measure of the i-th species in the k-th patch. Since s1i 6= s2i in general, the dispersal
of this model is not symmetric. In previous sections we have denoted the population by u and v,
i.e., u corresponds to w1 and v to w2. The growth rates are set to be identical, i.e., r1 = r2 = r.
In the simulation we fix the parameters as

(34) m1 = 2, m2 = 1, h = 0.2, ℓ = 0.11, r = 1 and ǫ = 0.1.
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Several values of the diffusivity coefficient d are tested of the first phenotype. Remind that the
parameter ǫ is used in regularising the motility function, i.e., γ := γǫ.

Steady states for the patch problems with SDD can be found in [26]. The steady state for a
single species case with a constant diffusivity d is denoted by θd := (θ1d, θ

2
d) which satisfies

0 = rθkd(m
k − θkd)− dθkd + dθld, k 6= l.

If m2 < m1, the steady state satisfies

m2 < θ2d < θ1d < m1.

For the single species case, the starvation measures s in (4) and s̃ in (11) are identical and the
corresponding steady state θγ := (θ1γ , θ

2
γ) satisfies

0 = rθkγ(m
k − θkγ)− γ(sk)θkγ + γ(sl)θlγ , k 6= l.

Then, similarly, the steady state satisfies

m2 < θ2γ < θ1γ < m1,

and, furthermore, if ℓ ≤ d ≤ h, they satisfy a relation

m2 < θ2γ < θ2d < θ1d < θ1γ < m1.

For the competition system between the first and the second phenotypes, the semi-trivial steady
states are denoted by (u, v) = (θd, 0) or (0, θγ). If the first phenotype is replaced by the third
one, then the corresponding semi-trivial steady states are (u, v) = (θγ , 0) and (0, θγ).

6.2. Numerical simulations. In this section we test the evolution of competition models
numerically. Remember that the parameters are fixed as in (36). The other parameter d will
take a few different values.

Numerical simulations in Figure 1 are to test the theories related to Theorem 2.1. The global
asymptotic stability of the steady state (u, v) = (0, θγ) with ℓ ≤ d is numerically observed in
Figure 1(a). In this simulation the initial value was taken from a small neighborhood of the other
semi-trivial steady state (θd, 0). One may observe that the solution converges to (0, θγ). The
local stability of the the steady state (θd, 0) for a case with d < ℓ can be observed numerically
in Figure 1(b) with d = 0.1. In this case the initial value has taken from a small neighborhood
of (θd, 0) and the solution converges to this semi-trivial steady state as t → ∞.

Notice that Theorem 2.1 gives relatively less information when d < ℓ. One might ask if (θd, 0)
is globally asymptotically stable for all d < ℓ. The numerical simulation in Figure 1(c) shows it
is not true. In the simulation, an initial value is taken from a small neighborhood of (0, θγ) and
the solution converges to (0, θγ) as t → ∞. This indicates that, if d is relatively close to ℓ and
d < ℓ, the asymptotic stability of (θd, 0) is only local and, furthermore, the other semi-trivial
steady state (0, θγ) is also stable. One might also ask if there exists d0 < ℓ such that (θd, 0) is
globally asymptotically stable for all d < d0. The numerical simulation in Figure 1(d) indicates
that it might be the case. In the simulation an initial value has taken from a small neighborhood
of (0, θγ) and the solution converges to (θd, 0) as t → ∞ with d = 0.01. However, the global
asymptotic stability of (θd, 0) for small d is not proved.

Solution trajectories of the system (7)–(10) are given in Figure 2. The diffusivity constant
is taken as d = 0.15, which is the case of Figure 1(a). Therefore, (u, v) = (0, θγ) is globally
asymptotically stable and hence all trajectories are supposed to converge toward (0, θγ). The
phase plane for the first patch with carrying capacity m1 = 2 is given in the figure. In the
first stage all the solution trajectories are moving toward a diagonal line that connects the two
semi-trivial steady states (u, v) = (θ1d, 0) and (0, θ1γ). This is a fast process. After the first stage,
solution trajectories move along the diagonal heading to the globally asymptotically stable
steady state (u, v) = (0, θ1γ) slowly. Such a two step process is sometimes called metastability
(see [17, 1]). In particular, Figure 2 can be compared to the illustration in Beck and Wayne
[1, Figure 3], where one may call the diagonal part a metastable region. Two regions along the
diagonal are magnified to show the behavior of solution trajectories near the metastable region.
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(a) Global asymptotic
stability test for (0, θγ)
with an initial value close
to (θd, 0). Here, d = 0.15.
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(b) Local asymptotic
stability test for (θd, 0)
with an initial value close
to (θd, 0). Here, d = 0.1.
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(c) Local asymptotic
stability test for (0, θγ)
with an initial value close
to (0, θγ). Here, d = 0.1.

0 500 1000 1500 2000
0

0.5

1

1.5

2

 

 

type 1
type 2

0 500 1000 1500 2000
0

0.5

1

 

 

type 1
type 2

(d) Global asymptotic
stability test for (θd, 0)
with an initial value close
to (0, θγ). Here, d = 0.01.
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Figure 1. Numerical simulations related to Theorem 2.1. Here, h = 0.2 and ℓ = 0.11.
The first column is the population dynamics in patch with a carrying capacity m1 = 2
and the second one is with m2 = 1.
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Figure 2. Trajectories in the phase plane. The horizontal axis is for the first phe-
notype u with a linear dispersal and the vertical one is for the other phenotype v with
starvation driven one. Here, d = 0.15, ℓ = 0.11 and h = 0.2 and (u, v) = (0, θγ) is
globally asymptotically stable and hence all trajectories converges to (0, θγ). Two side
figures are magnified trajectories near the diagonal region.
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In the two side figures one may observe that the trajectories are curved toward the globally
asymptotically stable state.

It is proved in Theorem 2.2 that the semi-trivial steady state (u, v) = (θγ , 0) is the only
linearly stable steady state if u is the third phenotype that is modeled by the equation (7)′.
Therefore, we may conjecture that the steady state is globally asymptotically stable. In Figure
3 an example of the population evolution is given, where the third phenotype u is eventually
selected. In this simulation the initial value was taken from a small neighborhood of the other
steady state (0, θγ) and the solution converges to (θγ , 0) as t → ∞.

0 500 1000 1500 2000
0

0.5

1

1.5

2

 

 
type 3
type 2

0 500 1000 1500 2000
0

0.5

1

 

 
type 3
type 2

Figure 3. Numerical simulations related to Theorem 2.2. Here, h = 0.2 and ℓ = 0.11
and the first column is the population dynamics in patch with a carrying capacitym1 = 2
and the second one is with m2 = 1. One may observe the global asymptotic stability of
(u, v) = (θγ , 0).

Simulations given in Figure 4 are related to Theorem 2.3. In the context of Lotka-Volterra
competition model the environment is fixed in time and the best moment to increase the motility
is when s = 1. However, if s∗ 6= 1, even the best way of measuring the starvation may not
selected and the species’ extinction or coexistence with other species may happen. The carrying
capacities of our simulation are m1 = 2 and m2 = 1 and the ratio of resource variation is
maxx m(x)
minx m(x) = 2. Four cases are tested in Figure 4. Let wk

i be the population of the i-th phenotype

in the k-th patch in a steady state. Suppose that the dispersal size is not large in compare with
the growth rate and we have

(35) w1
2 + w1

3 . m1 and w2
2 + w2

3 & m2.

If s∗ ≪ 1 and the initial values of the two species are not so small that both u+v
m

and v
m

are

bigger than s∗+ǫ. Then, γ(u+v
m

) ≡ γ( v
m
) all the time and the two phenotypes behave identically

for all t > 0. Therefore, the initial population ratio of the two phenotypes is changed. Figure
4(a) is the case with s∗ < 1

2 which is one of the two cases in Theorem 2.3. The ratio of initial
values remains constant. One may obtain a similar result for the other case with s∗ > 2.

The other three cases in Figure 4 are for the regime with minx m(x)
maxx m(x) < s∗ <

maxx m(x)
minx m(x) which

was not considered in the theorem. In Figures 4(b) such a case is given with s∗ = 0.75. We may
observe that the second phenotype becomes more advantageous as s∗ increases and, eventually,
the third phenotype get extinct and the second one is selected when s∗ = 0.9 as given in Figure
4(c). Another interesting phenomenon appears when we increase s∗ a little bit more. Then, the
third phenotype becomes alive and eventually selected when s∗ = 1.05 as in Figure 4(d), which
is in the regime s > 1. The transition interval from the selection of the second phenotype to
the selection of the third one is related to the size of the regularization parameter ǫ. We may
observe that this interval goes to zero as ǫ → 0. If the jumping moment s∗ is increased more,
one may observe symmetric phenomena which was obtained from the regime s∗ < 1.

6.3. PDE model. In this section, we compute the PDE system (7)′,(8)–(10) numerically in
one space dimension and compare them to the theory. This system models the competition
between the second phenotype v and third one u. For the simulation we set the domain and
parameters as

(36) h = 0.05, ℓ = 0.01, ǫ = 0.01 and m(x) = 3 sinx+ 1, 0 < x < π.
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(a) Coexistence test with an
initial value closed to (θγ , 0)
when s∗ ≤ minm

maxm
. Here,

s∗ = 0.3.

patch #1 (m1 = 2)

0 5 10
0

0.5

1

1.5

2
type3
type2

in patch #2 (m2 = 1)
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(b) Coexistence test with an
initial value close to (0, θγ).
Here, s∗ = 0.75.
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(c) Global asymptotic
stability test for (0, θγ) with
an initial value close to
(θγ , 0). Here, s∗ = 0.95.
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(d) Global asymptotic
stability test for (θγ , 0) with
an initial value close to
(0, θγ). Here, s∗ = 1.05.
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Figure 4. Numerical simulations related to Theorem 2.3. Here, h = 0.2 and ℓ = 0.11.

First we test the global asymptotic stability of a semi-trivial steady state (u, v) = (θγ , 0)
proved in Theorem 2.2 when s∗ = 1. For this test we take an initial value from a small neigh-
borhood of the other semi-trivial steady state (0, θγ). The time evolution of total population is
given in the first picture of Figure 5. Observe that the total population of the second phenotype
v vanishes as t → ∞. This implies that the solution with the initial value around (0, θγ) con-
verges to (θγ , 0) as t → ∞, which confirms the global asymptotic stability. The second picture
of Figure 5 shows the evolution of the spatial profile of the third phenotype u. with time which
converges to θγ .

Next we test a property related to Theorem 2.3. It is shown in the theorem that, if s∗ <
minm
maxm , both semi-trivial steady states are not linearly stable. Considering the fact that the
existence of two unstable steady states implies the existence of another stable steady state in
the monotone system, one may expect a steady of coexistence. We may observe such a steady
state of coexistence numerically. In Figure 6, profiles of the two phenotypes u and v are given
when the solution arrived in a steady state. The initial values are taken as u0(x) =

1
4m(x) and

v0(x) =
3
4m(x) and the computed for t > 0 large enough. The simulation result shows that two

species coexist and the ratio of population remains constant, i.e.,
∫

v(x, t)dx = 3
∫

u(x, t)dx.
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(a) total population asymptotics
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(b) convergence of u(·, t) to θγ(·).

Figure 5. Numerical simulations of PDE model related to Theorem 2.2. Parameters
in (36) are used with s∗ = 1. (a) shows global asymptotic stability of (θγ , 0) and (b)
show the evolution of profiles of u(·, t) to θγ(·) as t → ∞.
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Figure 6. Numerical simulations related to Theorem 2.3. Parameters in (36) are used
with s∗ = 0.2. We may observe a steady state of coexistence.
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