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Abstract. We show that three sets of internal current densities are the right amount
of data that give the existence and the uniqueness at the same time in reconstructing an
anisotropic conductivity in two space dimensions. The curl free equation of Faraday’s
law is taken instead of the usual divergence free equation of the electrical impedance to-
mography. Boundary conditions related to given current densities are introduced which
complete a well determined problem for conductivity reconstruction together with Fara-
day’s law.
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1. Introduction

Suppose that Ω ⊂ R
2 is a bounded simply connected domain of an electrical conductivity

body with a smooth boundary and Fk =
(

f1k f2k
)

: Ω → R
2, k = 1, 2, 3, are three given

row1 vector fields in the domain Ω. The purpose of this paper is to show the existence
and the uniqueness of the anisotropic resistivity distribution,

(1.1) r :=

(

r11 r12

r21 r22

)

, r12 = r21, x := (x, y) ∈ Ω ⊂ R
2,

that satisfies curl free equations

(1.2) ∇× (Fkr) = 0 in Ω, k = 1, 2, 3,

and boundary conditions

(1.3)
〈N2,N2r〉 =

∑n
i,j=1 r

ijN i
2N

j
2 = b1 on Γ−

1 ⊂ ∂Ω, i, j = 1, 2,

〈N1,N1r〉 =
∑n

i,j=1 r
ijN i

1N
j
1 = b2 on Γ−

2 ⊂ ∂Ω, i, j = 1, 2,

Date: March 18, 2015.
1Distinguishing row and column vectors helps notational clearness.
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where the given boundary value b1 and b2 are positive and bounded away from zero. The
vector fields, N1 and N2, and the boundaries, Γ−

1 and Γ−

2 , are decided by the three vector
fields F1,F2 and F3. The main part of this paper is in constructing them appropriately.
The given boundary values b1 and b2 are the diagonal elements of the resistivity tensor r
when it is written with respect to basis vector fields N1 and N2. The curl free equation
is the third Maxwell’s equation, or Faraday’s law, for the static electromagnetism. The
electrical current density is denoted with the letter J by many authors and we will save it
for the case without noise. Instead, we use the letter F for a noised current density.

The existence of a resistivity tensor r that satisfies the curl free equation is obvious
if Fk’s are the current densities produced by an existing anisotropic conductivity body.
However, the existence of such a resistivity is not guaranteed if noise is included and
the existence part should be considered as the main concern. In particular, the stability
analysis of such a reconstruction process assumes perturbed data and hence the existence
part should be considered first. Therefore, the first step should be classifying the given
vector fields Fk’s if they allow the existence of such a resistivity tensor r.

The uniqueness of anisotropic conductivity distribution has been obtained in many
cases, [5, 6, 7, 19, 20, 21]. Most of such uniqueness results are based on overdetermined
problems and hence the existence part is not expected. In particular, Monard and Ball [19]
showed the uniqueness of anisotropic conductivity that satisfies 4 sets of internal power
densities and, however, they also mentioned that they were able to compute anisotropic
conductivity numerically only with three sets of data. This observation is related to the
fact that there are three unknowns r11, r12 and r22 to be recovered in the two dimensional
case. The goal of this paper is in obtaining the existence and the uniqueness together.
An overdetermined problem may give the uniqueness and an underdetermined one the
existence. However, one should compose a correctly determined problem to obtain the
both at the same time. The key is to impose the right number of equations and the right
amount of boundary conditions.

This paper is composed as follows. An anisotropic resistivity reconstruction algorithm
is given in Section 2. One may use this algorithm for numerical reconstruction. We use
it as an outline of the following theoretical sections. Theories are developed in Section
3. It is clear that the existence and the uniqueness of the anisotropic resistivity are not
obtained from arbitrary current density fields Fk’s. In Definition 3.1, the admissibility
criteria for current density fields are given. The theory ends in vain if there is no such
an admissible set of density fields or constructing such a one is technically impossible.
In Section 3.2 we show that there is a relatively simple way to produce such admissible
electrical density fields. Remember that anisotropic conductivity body can be viewed as
an orthotropic body locally. If we may view the anisotropic conductivity body as an
orthotropic one globally, we may apply the technique for the orthotropic case. In Section
3.3 we develop a new coordinate system based on characteristic vector fields which allows
this to be possible. Finally, the existence and the uniqueness are obtained in Theorem 3.11.
The proof is based on Picard type iteration method that gives the anisotropic resistivity
as a fixed point. Hence the uniqueness and the existence are obtained simultaneously.
Conclusions and discussions on related works are given in Section 4 with a conjecture on
three dimensional anisotropic resistivity reconstruction.

2. Reconstruction algorithm

In this section we develop an algorithm to reconstruct an anisotropic resistivity distri-
bution from three sets of internal current density fields Fk, k = 1, 2, 3. The governing
equation is Faraday’s law (1.2). We are looking for an anisotropic resistivity tensor r that
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satisfies Faraday’s law. If then, there exist two potential functions u1 and u2 that satisfy

Fkr =
(

f1k f2k
)

r = −∇uk, (x, y) ∈ Ω, k = 1, 2.

We may write these two relations together as
(

f11 f21
f12 f22

)

r = −
(

∂xu1 ∂yu1
∂xu2 ∂yu2

)

,

where ∂x and ∂y denote partial derivatives with respect to x and y variables, respectively.
(In this paper there are two main sources of indices. The first one is the number of current
density fields, which will be denoted using a subscript for k = 1, 2, 3 as in Fk. The second
one is the space dimension, which will be denoted using a superscript as in rij or f ik for
i, j = 1, 2.) The assumption on the current density fields is that the first two vector fields
(or any two of them) are never parallel to each other, i.e., F1 × F2 6= 0 on Ω. Then,

the matrix

(

f11 f21
f12 f22

)

is invertible and the resistivity tensor r is obtained by applying its

inverse matrix, i.e.,

(2.1) r = −
(

f11 f21
f12 f22

)−1(
∂xu1 ∂yu1
∂xu2 ∂yu2

)

.

Therefore, as soon as we obtain the two unknown potential functions u1 and u2, we may
reconstruct the anisotropic tensor r. The first equation is from the symmetry of the
anisotropic resistivity tensor r, i.e., from the relation r12 = r21, which gives a first order
linear equation,

(2.2) f22∂yu1 − f21∂yu2 + f12∂xu1 − f11∂xu2 = 0, (x, y) ∈ Ω.

The second equation is from Faraday’s law applied to the third current density field, i.e.,
∇× (F3r) = 0, or

(2.3) ∇×
(

(

f13 f23
)

(

f11 f21
f12 f22

)−1(
∂xu1 ∂yu1
∂xu2 ∂yu2

)

)

= 0, (x, y) ∈ Ω.

Hence we may close the system of two equations for the two unknowns, u1 and u2. Let

(

α β
)

:=
(

f13 f23
)

(

f11 f21
f12 f22

)−1

.

Then, (2.3) is written as

(2.4)
∂x(α∂yu1 + β∂yu2)− ∂y(α∂xu1 + β∂xu2)
= ∂xα∂yu1 + ∂xβ∂yu2 − ∂yα∂xu1 − ∂yβ∂xu2 = 0, (x, y) ∈ Ω,

where second order terms are canceled out. Finally we have obtained a system of two first
order linear equations, (2.2) and (2.4), which are written together as

(2.5)
f12∂xu1 + f22∂yu1 − f11∂xu2 − f21∂yu2 = 0,

∂yα∂xu1 − ∂xα∂yu1 + ∂yβ∂xu2 − ∂xβ∂yu2 = 0.

Providing the correct amount of boundary condition is the other key ingredient. We
take

(2.6)

〈

N2,−N2

(

f11 f21
f12 f22

)−1(
∂xu1 ∂yu1
∂xu2 ∂yu2

)

〉

= b1, on Γ−

1 ⊂ ∂Ω,

〈

N1,−N1

(

f11 f21
f12 f22

)−1(
∂xu1 ∂yu1
∂xu2 ∂yu2

)

〉

= b2, on Γ−

2 ⊂ ∂Ω.
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It is needed to decided the boundaries Γ−

1 ,Γ
−

2 and the vector fields N1,N2 to complete
the boundary condition, which will be done in the following sections. These boundary
conditions are for the voltage functions u1 and u2. However, using the identity (2.1) for
the resistivity r, these boundary values can be rewritten in terms of the resistivity tensor
r as in (1.3). Notice that these boundary conditions are identical to the ones for the
orthotropic conductivity case [16] if the vector fields N1 and N2 are replaced with the
cartesian unit vectors. In fact, the existence of such vector fields N1 and N2 allows us to
handle an anisotropic conductivity in the way we did for an orthotropic one.

3. Existence and uniqueness

The purpose of this section is to show the existence and uniqueness of anisotropic
resistivity distribution r that satisfies (1.2)–(1.3).

3.1. Admissibility of current density vector fields. The existence and the uniqueness
of the resistivity tensor r that satisfies (1.2)–(1.3) are not expected for arbitrarily given
current densities Fk, k = 1, 2, 3. For example, if noise is added to the current density
field, the existence part is not guaranteed. Hence the first step is to classify admissible
vector fields which can be used in a conductivity reconstruction process. It is also needed
to show that one may construct such admissible current density fields.

Definition 3.1 (Admissibility). A set of three smooth vector fields Fk, k = 1, 2, 3, are
called admissible if

(1) ∇ · Fk = 0 for k = 1, 2, 3. (Therefore, there exist stream functions ψk and Fk =
(∂yψk,−∂xψk).)

(2) The map Ψ(x, y) =
(

ξ(x, y), η(x, y)
)

:=
(

− ψ2(x, y), ψ1(x, y)
)

is a diffeomorphism

between Ω and its image.
(3) The scalar curvature of the stream function ψ3 with respect to the new (ξ, η) coor-

dinate system is strictly negative, i.e., for all (ξ, η) ∈ Ψ(Ω),

(3.1) detD2
(ξ,η)ψ3 = ∂2ξψ3∂

2
ηψ3 − (∂ξ∂ηψ3)

2 < 0.

(4) Let T (x) be a smooth unit tangent vector field on the boundary ∂Ω. The inner
product

〈

T (x)D2ψ3(x), T (x)
〉

has 4 simple zeroes on ∂Ω.

If ∇ ·Fk 6= 0, we may take the divergence free part after the Helmholtz decomposition.
Hence the first condition is not a restriction. The second one is related to the assumption
F1 × F2 6= 0 in Ω, which is the Jacobian of the diffeomorphism Ψ(x, y). We are taking
a slightly stronger assumption than the simple invertibility of the mapping Ψ(x, y). The
third condition is related to Lemma 3.3 from which a non-strict inequality comes as a
natural consistency condition on data. Hence, our assumption is that this inequality is
strict.

If F1 ×F2 6= 0 on Ω, the two stream functions ψ1 and ψ2 define a coordinate system at
least locally. Then, (2.5) can be simplified using a coordinate system, (ξ, η) = (−ψ2, ψ1)
(see (A.9) and (A.10)). Since

(

∂ηψ1 −∂ξψ1

)

=
(

∂ηη −∂ξη
)

=
(

1 0
)

,
(

∂ηψ2 −∂ξψ2

)

=
(

−∂ηξ ∂ξξ
)

=
(

0 1
)

,

the relation (A.10) is written as

r̃ =

(

1 0
0 1

)

r̃ = −
(

∂ξu1 ∂ηu1
∂ξu2 ∂ηu2

)

,
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where r̃ is defined by (A.9). Finally, the symmetry of the tensor r̃ gives ∂ηu1 = ∂ξu2 and
hence there exists a scalar function φ such that u1 = ∂ξφ and u2 = ∂ηφ. Therefore, the
resistivity tensor r is the Hessian of φ with respect to the ξ, η variables, i.e.,

r̃ = −D2
ξ,ηφ.

Ohm’s law for the third current density F3 is written as

−
(

∂ηψ3 −∂ξψ3

)

(

∂ξu1 ∂ηu1
∂ξu2 ∂ηu2

)

= −
(

∂ξu3 ∂ηu3
)

.

The application of the curl operator ∇(ξ,η)× to both sides gives

∂2ηψ3∂ξu1 − ∂η∂ξψ3(∂ηu1 + ∂ξu2) + ∂2ξψ3∂ηu2 = 0.

Substitute φ in the equation and obtain,

(3.2) ∂2ηψ3∂
2
ξφ− 2∂η∂ξψ3∂η∂ξφ+ ∂2ξψ3∂

2
ηφ = 0.

Note that derivatives of ψ3 are coefficients given by the current density F3 and φ is
the unknown function in this second order linear differential equation. The type of the
equation is decided by the sign of (∂η∂ξψ3)

2−∂2ξψ3∂
2
ηψ3, which is the curvature of ψ3 with

respect to ξ, η variables. We will show in Lemma 3.3 that

∂2ξψ3∂
2
ηψ3 − (∂η∂ξψ3)

2 ≤ 0.

Thus the type of the equation (3.2) is hyperbolic with a possible degeneracy. In Theorem
3.5, we show that there are suitable boundary conditions that give three sets of current
density Fk’s which satisfy the inequality strictly in the whole domain. The strict inequal-
ity in Definition 3.1(3) implies that one of the two eigenvalues of the Hessian D2

ξ,ηψ3 is

positive and the other is negative. Hence there is no degenerate point and (3.2) is strictly
hyperbolic. For a general hyperbolic linear first order system, one may integrate it locally.
The condition in Definition 3.1(4) will help us to integrate the hyperbolic system globally.

Remark 3.2. Eq. (3.2) is the curl free equation (A.4) with r̃ = −D2φ. We may rewrite
it as a divergence free equation. Then, the tensor corresponding to the S in (A.5) is

S̃ :=

(

0 −1
1 0

)

r̃

(

0 1
−1 0

)

= −
(

0 −1
1 0

)

D2φ

(

0 1
−1 0

)

.

Notice that the possible lower order terms of (A.5) are cancelled out and do not appear in
(3.2) since r̃ is given as a Hessian matrix of a scalar function φ.

Lemma 3.3 (Gilbarg and Trudinger [10, p. 256]). Let

(

a b
b c

)

be uniformly positive on

Ω and ψ satisfies

a∂2xψ + 2b∂x∂yψ + c∂2yψ = 0.

Then, ∂2xψ∂
2
yψ − (∂x∂yψ)

2 ≤ 0 and the equality holds only when ∂2xψ = ∂2yψ = ∂x∂yψ = 0.

Proof. The uniform ellipticity gives a constant µ0 > 0 that satisfies

µ0((∂
2
xψ)

2 + (∂x∂yψ)
2) ≤ a(∂2xψ)

2 + 2b∂2xψ∂x∂yψ + c(∂x∂yψ)
2

= (−2b∂x∂yψ − c∂2yψ)∂
2
xψ + 2b∂2xψ∂x∂yψ + c(∂x∂yψ)

2

= −c(∂2xψ∂2yψ − (∂x∂yψ)
2).

Similarly, we obtain

µ0((∂
2
yψ)

2 + (∂x∂yψ)
2) ≤ −a(∂2xψ∂2yψ − (∂x∂yψ)

2).
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Therefore, since the trace of the matrix is a+ b > 0, we have

∂2xψ∂
2
yψ − (∂x∂yψ)

2 ≤ − µ0
a+ c

((∂2xψ)
2 + 2(∂x∂yψ)

2 + (∂2yψ)
2) ≤ 0.

�

3.2. Construction of admissible vector fields. If there is no admissible current den-
sities, the theory of this paper ends in vain. In the proof of the following theorem we
introduce appropriate boundary conditions that produce admissible set of current densi-
ties that satisfy the assumptions (1), (2) and (3) in Definition 3.1. The divergence free
equation has been studied intensively for a long time and there are rich theories about it.
We first invoke a lemma for the proof of the theorem.

Lemma 3.4 (Meisters and Olech, 1963 [18]). Let y : Ω 7→ R
n be differentiable and

one-to-one on ∂Ω. If detDy 6= 0 in Ω, y is one-to-one on Ω.

Theorem 3.5. Suppose that Ω ⊂ R
2 is a bounded simply connected domain and σ =

(σij) is a positive conductivity tensor on it. There exist boundary values gk : ∂Ω 7→ R,
k = 1, 2, 3, such that the current density fields Fk = −(∇uk)σ satisfy (1),(2) and (3) of
Definition 3.1, where uk satisfy

(3.3)
∇ · ( (∇uk)σ) = 0, in Ω,
−n · (∇uk)σ = gk, on ∂Ω.

Proof. For our convenience, we will construct three corresponding Dirichlet boundary
condition Gk’s satisfied by stream functions ψk. (See Appendix (A.1)–(A.8).) Let γ :
[0, L] 7→ ∂Ω be an embedding curve on ∂Ω. For a notational convenience, we assume
L = 2π and let G1(γ(t)) = sin t and G2(γ(t)) = − cos t. Both G1 and G2 have a single
local maximum along the boundary. Let r = σ

−1 be the corresponding resistivity tensor
and S be given by the relation in (A.7). Consider ψk, k = 1, 2, which are the solutions of

(3.4)
∇ · ( (∇ψk)S) = 0, in Ω,

ψk = Gk, on ∂Ω.

Then, ψk is a stream function of the current density field Fk = −(∇uk)σ with the
corresponding Neumann boundary value gk. Let Ψ(x, y) =

(

ξ(x, y), η(x, y)
)

:=
(

−
ψ2(x, y), ψ1(x, y)

)

.
Since the boundary value is continuous on the smooth boundary ∂Ω, the solution is

continuous on Ω. Since ψk|∂Ω has one local maximum on the boundary, by Lemma A.2,
ψ1 and ψ2 have no critical point in Ω. By the Hopf lemma, ∇ψk 6= 0 along the boundary,
neither. Suppose that there is a point x0 ∈ Ω such that ∇ψ1(x0) × ∇ψ2(x0) = 0. Then,

∇ψ1(x0) = c∇ψ2(x0) for a constant c 6= 0. Then, ψ̃ = ψ1 − cψ2 is also a solution with a

boundary condition ψ̃
(

γ(t)
)

= sin t+ c cos t =
√
1 + c2 sin(t+ t∗) for some t∗, and x0 is an

interior critical point of ψ̃. However, this boundary condition also has one local maximum
point on the boundary and hence ψ̃ does not have an interior critical point, which is a
contradiction. Therefore ∇ψ1 × ∇ψ2 has no interior zero point, i.e., detDΨ 6= 0 in Ω.
Furthermore, since (−G2(γ(t)), G1(γ(t))) = (cos t, sin t), the mapping (−ψ2, ψ1)|∂Ω is one-
to-one from ∂Ω to the unit circle. Therefore, by Lemma 3.4, the mapping Ψ := (−ψ2, ψ1)
is bijective in Ω. The differentiability of the mapping and its inverse one comes from the
inverse function theorem. Therefore, we conclude that F1 and F2 satisfy the first two
admissibility conditions.

Next, we prove the third admissibility condition. The diffeomorphism Ψ gives a new
coordinate system (ξ, η) := (−ψ2, ψ1) where the domain Ω is transformed to the unit disk.
The third stream function ψ3 is taken as the solution of the uniformly elliptic equation in
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(3.2) with a boundary condition ψ3(γ(t)) = cos 2t. If we show the Hessian D2ψ3(ξ, η) 6= 0
for all (ξ, η) in the unit disk, the strict inequality in (3.1) holds by Lemma 3.3.

Suppose that D2ψ3(ξ0, η0) = 0 at a point (ξ0, η0) and let ∇ψ3(ξ0, η0) = (c1, c2). Then,

the Hessian of ψ̃ := ψ3 − c1ξ − c2η is still zero at (ξ0, η0) and it has a critical point

at (ξ0, η0) with multiplicity 2. By the linearity of the problem, ψ̃ is a solution with a

boundary condition ψ̃(γ(t)) = cos 2t − c1 cos t − c2 sin t. In order to investigate the local

maxima along the boundary, differentiate ψ̃(γ(t)) with respect to t and obtain

d

dt
ψ̃(γ(t)) = −2 sin 2t+ c1 sin t− c2 cos t = −4 cos t sin t+ c1 sin t− c2 cos t.

One may easily see that this derivative has four zero points. For example, if c1 = c2 = 0,
it has zeros at t = 0, π/2, π and 3π/2. If not, let α(ξ, η) := −4ξη + c1η − c2ξ which is

identical to d
dt
ψ̃(γ(t)) in ξ, η variables on the boundary. The zeros of α are hyperbolas

and hence there are 4 critical points on the unit circle. In other words, there are at most
two local maxima of ψ̃ on the boundary. This contradict Lemma A.2 in Appendix since
ψ̃ has an interior critical point of multiplicity 2. Therefore, there is no such interior point
(ξ0, η0) that makes the Hessian of ψ3 be zero matrix, and the strict inequality in (3.1) is
obtained by Lemma 3.3. �

3.3. Characteristic vector fields and boundary conditions. In this section we build
up a curvilinear coordinate system whose coordinate lines are everywhere characteristic in
the whole domain Ω. This system allows us to integrate the equation (3.2) on the whole
domain Ω. We may impose consistent boundary conditions using this coordinate system.
First, we introduce a geometrical property of a Lorentzian manifold (see [8, Proposition
3.37]).

Lemma 3.6. Let (M,g) be a simply connected Lorentzian manifold of dimension two.
Then, there exist two linearly independent smooth null vector fields N1 and N2 defined on
M .

Let U = Ψ(Ω) and consider the symmetric matrix D2ψ3 on it. We equip Ū with the
metric g := D2ψ3. The third condition in Definition 3.1 implies that one of the two
eigenvalues is positive and the other is negative. Therefore, the manifold is a simply
connected Lorentzian and we have two linearly independent smooth null vector fields
denoted by N1 and N2. The two null vectors are the ones between the two eigenvectors
and the distance along the integral curve is zero with respect to the metric g, i.e. the two
null vectors will be given by the formula,

(3.5)
〈

Nk,D
2ψ3Nk

〉

= 0. k = 1, 2.

Therefore, the next Proposition immediately follows the lemma.

Proposition 3.7. Let Ω ⊂ R
2 be a simply connected bounded open set with a smooth

boundary, and Fk, k = 1, 2, 3, be admissible vector fields. Then, there exist two smooth
linearly independent vector fields N1 and N2 on Ω which are characteristic everywhere for
the equation (3.2).

The two vector fields Nk, k = 1, 2, are called null vector fields from the view point of
Lorentzian metric D2ψ3. From the hyperbolic wave equation view point of (3.2), they
are called characteristic vector fields. The fourth condition in Definition 3.1 plays its
role in the next proposition in restricting the behavior of two characteristic fields on the
boundary.
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Γ−

1

Γ−

2

Γ−

1 ∩ Γ−

2

Figure 1. Domain Ω and its boundary. The boundary ∂Ω is divided into
four parts Γ±

1 and Γ±

2 in Proposition 3.9. The transformed domain by the
diffeomorphism Φ is in Figure 2.

Proposition 3.8. Let Ω ⊂ R
2 be a simply connected bounded open set with smooth

boundary. Let Fk, k = 1, 2, 3, be admissible vector fields and N1 and N2 be the two
characteristic ones in Proposition 3.7. For k = 1, 2, define

Γ+
k := {x ∈ ∂Ω |Nk · n(x) > 0},

Γ−

k := {x ∈ ∂Ω |Nk · n(x) < 0},(3.6)

Γ0
k := {x ∈ ∂Ω |Nk · n(x) = 0}.

Then, Γ+
k and Γ−

k are connected and Γ0
k consist of two points that connects Γ+

k and Γ−

k for
each k. The four points are the zeroes in Definition 3.1 (4). (see Figure 1).

Proof. Since N1 and N2 do not vanish in Ω, their winding numbers along the boundary
∂Ω should be zero. Therefore, the argument Arg (Nk) is a periodic function within a
single branch of Arg function. On the other hand, Arg (T ) of a tangent vector along
the boundary takes all angles in a one branch. Thus, there exists at least one boundary
point, x1 ∈ ∂Ω, such that Arg (N1(x1)) = Arg (T (x1)) from the smoothness in the vector
fields and in the boundary. Similarly, there exists x2 ∈ ∂Ω such that Arg (N1(x2)) =
Arg (−T (x2)). Since Arg (N1) 6= Arg (−N1), these two points are different to each other.
We may apply the same argument to N2 and obtain two more points x3 and x4. Since
N1 ×N2 6= 0 one Ω, these four points are all distinct. The fourth admissibility condition
in Definition 3.1 implies that there are only four such boundary points at which tangent
vectors and null vectors are parallel to each other respectively. Therefore, Γ0

1 = {x1, x2}
and Γ0

2 = {x3, x4}, and Γ±

k are connected subsets of the boundary ∂Ω bounded by Γ0
k’s. �

The boundary Γ−

k and the vector fields Nk in the boundary condition (1.3) are now de-
fined. Next, we further define the coordinate system whose coordinate lines are everywhere
parallel to characteristic vector fields in Ω by constructing two real-valued functions ν1
and ν2. In this way the two characteristic vector fields of our anisotropic problem become
two coordinate basis vector fields with respect to the new coordinate system, which was
exactly the same situation we had in the orthotropic case [16]. Therefore, we may apply
the technique developed previously for the orthotropic conductivity to the anisotropic one.

Proposition 3.9. Let Ω ⊂ R
2 be a simply connected bounded domain with a smooth

boundary, Fk, k = 1, 2, 3, be admissible vector fields, and N1 and N2 be the two char-
acteristic vector fields. Then, there exist C1 functions νk : Ω → R, k = 1, 2, such that
∇νk 6= 0, ∇νk ‖ N⊥

k , and Φ = (ν1, ν2) is one-to-one from Ω to its image.
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Proof. We construct νk, k = 1, 2, as the potential function of an isotropic problem when
the given vector field isN⊥

k , respectively. Observe thatN⊥
1 and Γ−

1 satisfy the admissibility
condition for an isotropic conductivity case [13, Definition 2.1]. Therefore, the existence
theorem, [13, Theorem 1], shows that there exists an isotropic conductivity ρ such that

∇× (ρN⊥

1 ) = 0 in Ω, ρ = ρ0 on ∂Ω,

where ρ0 is a smooth positive boundary value we may give. Then, we may take ν1 as the
corresponding potential, i.e., −ρN⊥

1 = ∇ν1. Then ∇ν1 does not vanish and is parallel to
N⊥

1 , i.e. the level curves of ν1 are parallel to N1. Similarly, we may define ν2 using N⊥
2

and Γ−

2 .
The Jacobian of the mapping Φ = (ν1, ν2) does not vanish sinceN1×N2 6= 0. Therefore,

by Lemma 3.4, it is enough to show that the map ν is an injection on the boundary.
Since the resistivity ρ is positive, ν1 is strictly monotone when the point moves along
the boundaries Γ±

1 and changes its direction at the points in Γ0
1. Similarly, ν2 is strictly

monotone on Γ±

2 and changes its direction at the points in Γ0
2. is strictly monotone. In

other words, the boundary ∂Ω is divided into four part on which the monotonicity of
(ν1, ν2) are all different. Therefore ν is one-to-one on ∂Ω. �

We can now express the characteristic vector fields in terms of the potential functions,
i..e,

(3.7) N1 :=
(

∂yν1,−∂xν1
)

, N2 :=
(

∂yν2,−∂xν2
)

.

Using the relation r̃ = −D2
ξ,ηφ in Remark 3.2, we may write down the boundary conditions

in (1.3) in terms of derivatives of φ with respect to ν1 and ν2:

〈N1,−N1r〉 = −
(

∂yν1,−∂xν1
)

r

(

∂yν1
−∂xν1

)

= −
(

∂ην1,−∂ξν2
)

(

ηy −ηx
−ξy ξx

)

r

(

ηy −ξy
−ηx ξx

)(

∂ην1
−∂ξν1

)

=
(

∂ην1,−∂ξν1
)

(

∂2ξφ ∂ξ∂ηφ

∂η∂ξφ ∂2ηφ

)(

∂ην1
−∂ξν1

)

d1

=
(

∂ν2ξ, ∂ν2η
)

(

∂2ξφ ∂ξ∂ηφ

∂η∂ξφ ∂2ηφ

)(

∂ν2ξ
∂ν2η

)

d1d2

=
(

∂2ν2φ− ∂ξφ∂
2
ν2
ξ − ∂ηφ∂

2
ν2
η
)

d1d2

=:
(

∂2ν2φ− b21∂ν1φ− b22∂ν2φ
)

d1d2,

where d1 = F1 × F2, and d2 = (∂ξν1∂ην2 − ∂ην1∂ξν2), and

b21 =
(

∂2ν2ξ
)(

∂ξν1
)

+
(

∂2ν2η
)(

∂ην1
)

,

b22 =
(

∂2ν2ξ
)(

∂ξν2
)

+
(

∂2ν2η
)(

∂ην2
)

.

In the third equality, we used r̃ = −D2
ξ,ηφ, and in the fourth equality, we used the inverse

function theorem,
(

∂ν1ξ ∂ν2ξ
∂ν1η ∂ν2η

)

=

(

∂ξν1 ∂ην1
∂ξν2 ∂ην2

)−1

.

Similarly,

〈N2,−N2r〉 =
(

∂ν1ν1φ− b11∂ν1φ− b12∂ν2φ
)

d1d2,



10 MIN-GI LEE AND YONG-JUNG KIM

b11 =
(

∂2ν1ξ
)(

∂ξν1
)

+
(

∂2ν1η
)(

∂ην1
)

,

b12 =
(

∂2ν1ξ
)(

∂ξν2
)

+
(

∂2ν1η
)(

∂ην2
)

.

Let f1 :=
b1

d1d2
, f2 :=

b2
d1d2

, v1 := ∂ν1φ, and v2 := ∂ν2φ. Then,

(3.8)
∂ν1v1 − b11v1 − b12v2 = f1 on Γ−

1 .
∂ν2v2 − b21v1 − b22v2 = f2 on Γ−

2 ,

Remark 3.10. bij are functions of Fk, ∇Fk.

3.4. Main theorem. Finally, we are going to prove the existence and the uniqueness of
an anisotropic conductivity that satisfies (1.2)–(1.3) in the next theorem. The basic idea
is to apply the technique used for the orthotropic conductivity case. The new coordinate
system based on the characteristic lines allows us to do that. Notice that a fixed point
type argument gives the uniqueness and the existence together.

Theorem 3.11 (Existence and Uniqueness). Let Ω ⊂ R
2 be a simply connected bounded

domain with a smooth boundary, Fk, k = 1, 2, 3, be admissible vector fields, N1 and N2

be the two characteristic vector fields given in Proposition 3.7, and Γ−

1 and Γ−

2 be the

boundaries given (3.6). Then, there exists a unique anisotropic conductivity r ∈ C(Ω)
that satisfies (1.2)–(1.3).

Proof. Let Φ = (ν1, ν2) be the C1 diffeomorphism and W := Φ(Ω). Eq. (3.2) is rewritten
after changing variables as

(3.9) φν1ν2 − cφν1 − dφν2 = 0,

where the second order terms φν1ν1 and φν2ν2 are cancelled out since the level curves of
ν1 and ν2 are characteristic lines. The coefficients c and d depend on derivatives of the
stream function ψ3 of the given current density F3. Let v1 = ∂ν1φ and v2 = ∂ν2φ. Then,

(3.10) ∂ν2v1 = ∂ν1v2 = cv1 + dv2.

The boundary conditions for the system are (3.8).
The global integrability of the equations is obtained Picard type iteration. Let γ(t) :

[−L,L] 7→ ∂Ω be a parametrization of the boundary such that Γ−

2 = {γ(t) | A ≤ t ≤ C}
and Γ−

1 = {γ(t) | B ≤ t ≤ D} with A = −L (see Figure 2). For a given (ν1, ν2) ∈W , there
exist boundary points

(

ν1, ν
b
2

)

∈ Γ−

1 and
(

νb1, ν2
)

∈ Γ−

2 . Proposition 3.8 and the relation

(3.7) give the uniqueness of such points and we set
(

ν1, ν
b
2

)

= γ(t1) and
(

νb1, ν2
)

= γ(t2).
(Here, we are abusing notation by using γ as a parametrization of the boundaries ∂Ω and
∂W at the same time, which is possible since Φ is one-to-one.)

Let B < t0 < C so that γ(t0) ∈ Γ−

1 ∩ Γ−

2 . Then, v1 and v2 satisfy following integral
equations,

v1(ν1, ν2) = v1
(

γ(t0)
)

+

∫ t1

t0

γ′(t) ·
(

f1 + b11v1 + b12v1, cv1 + dv2
)

|(γ(t)) dt(3.11)

+

∫ ν2

νb
2

(

cv1 + dv2
)

|(ν1, τ) dτ,

v2(ν1, ν2) = v2
(

γ(t0)
)

−
∫ t0

t2

γ′(t) ·
(

cv1 + dv2, f
2 + b21v1 + b22v1

)

|(γ(t)) dt(3.12)

+

∫ ν1

νb
1

(

cv1 + dv2
)

|(τ, ν2) dτ.
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(ν1, ν2)

ν1

ν2

γ(t0)

γ(t2) = (νb1, ν2)

γ(t1) = (ν1, ν
b
2)

γ(B)

γ(C)

γ(D)

γ(A)

Figure 2. Transformed domain W = Φ(Ω). There are unique points
γ(t1) ∈ Γ−

1 and γ(t2) ∈ Γ−

2 for each (ν1, ν2) ∈ Φ(Ω) which share the same
first or second coordinate, respectively. Four tangential boundary points
∂W to horizontal and vertical lines of the domain are Γ0

1 = {γ(B), γ(D)}
and Γ0

2 = {γ(A), γ(C)}, respectively.

The right hand sides of the above equations define an integral operator K on (v1, v2) and
its fixed point is a solution. Since c, d and bij are uniformly bounded and |γ′| = 1, this
integral operator becomes a contraction in a small region nearby the boundary point γ(t0).
For example, if it is satisfied that

max
(

|t1 − t0|, |t2 − t0|, |ν1 − νb1|, |ν2 − νb2|
)

max
i,j=1,2

(

|c|, |d|, |bij |, |f i|
)

<
1

7
,

then it is a contraction in the region. Now let W0 ⊂ W be the maximal domain that the
operator K has a fixed point (v1, v2). If W0 6= W , then one may easily derive a contra-
diction by finding a larger domain with a fixed point since the coefficients are uniformly
bounded (see the proof of [16, Theorem 2.5]).

Differentiating ∂ν2v1 in (3.10) with respect to ν1 gives

∂ν2
(

∂ν1v1
)

= c
(

∂ν1v1
)

+ d
(

∂ν1v2
)

+
(

∂ν1c
)

v1 +
(

∂ν1d
)

v2

= c
(

∂ν1v1
)

+ d
(

cv1 + dv2) +
(

∂ν1c
)

v1 +
(

∂ν1d
)

v2

= c
(

∂ν1v1
)

+ k1,

where k1 := d
(

cv1 + dv2) +
(

∂ν1c
)

v1 +
(

∂ν1d
)

v2 is continuous. Similarly, differentiating
∂ν1v2 in (3.10) with respect to ν2 gives

∂ν1
(

∂ν2v2
)

= c
(

∂ν2v1
)

+ d
(

∂ν2v2
)

+
(

∂ν2c
)

v1 +
(

∂ν2d
)

v2

= c
(

cv1 + dv2) + d
(

∂ν2v2
)

+
(

∂ν2c
)

v1 +
(

∂ν2d
)

v2

= d
(

∂ν2v2
)

+ k2,

where k2 := c
(

cv1 + dv2) +
(

∂ν2c
)

v1 +
(

∂ν2d
)

v2 is continuous. Therefore v1 and v2 are

C1(W̄ ). Remember that u1 = ∂ξφ and u2 = ∂ηφ, and Φ and Ψ were diffeomorphisms.

Hence, v1 and v2 are C1(Ω) and so are u1 and u2. From the formula (2.1), there exists a
unique symmetric matrix field r ∈ C(Ω). �

Remark 3.12. For r ∈ C(Ω), it is necessary that Fk ∈ C2(Ω) for k = 1, 2, 3.
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Remark 3.13. For smooth data, one can repeatedly differentiate the equation (3.10) to
obtain, v1, v2, and r are all C∞.

4. Conclusions

The human body is composed with muscle fibers and anisotropic conductivity model is
required when conductivity distribution is studied as a part of medical imaging technology.
This note is the last one in a series of papers on two dimensional anisotropic conductivity
reconstruction. In this section we compare the method suggested in the series papers to
other methods. Conjectures for three dimensional anisotropic conductivity reconstruction
are given.

The electrical impedance tomography (EIT for brevity) is one of the most actively
studied inverse problems (see [3, 4, 29]). The conductivity σ = r

−1 is the inverse tensor
of the resistivity one and the electrical potential u satisfies

(4.1)
∇ · (σ∇u) = 0 in Ω,
−σ∇u · n = g on ∂Ω,

where n is the outward unit normal vector to the boundary ∂Ω and the normal component
g of the boundary current density satisfies

∫

∂Ω gds = 0. It is well known that the mapping
that connects the Neumann boundary value g to the Dirichlet boundary potential u|∂Ω
decides the isotropic conductivity uniquely (see [24, 28]). However, the uniqueness holds
only in equivalence classes by diffeomorphisms if anisotropic conductivity is allowed (see
[9]). This observation shows the limitation of boundary measurement methods in the
construction of anisotropic conductivity distribution.

It is clear that using internal data is unavoidable to obtain anisotropic conductivity
tensor and such a method is actually considered on isotropic cases first (see [1, 25, 26]).
More recently, MRI technology enabled us to find the current density inside the body
by measuring internal magnetic field and several reconstruction algorithms using internal
current density have been developed to obtain isotropic conductivity. The uniqueness
of the reconstructed isotropic conductivity has been shown in various cases (see [11, 12,
14, 22, 23, 27]). The study of anisotropic conductivity has been recently started and, in
particular, Bal and his collaborators showed uniqueness of their anisotropic conductivities
reconstruction method [5, 6, 7, 19, 20, 21]. Basically, they constructed an overdetermined
system which allows the uniqueness, but not the existence. Most of the conductivity
reconstruction algorithms that use the internal current density still based on the zero
divergence equation (4.1). However, the data is the current density F and hence the given
data is connected to the system by Ohm’s law

(4.2) F = −σ∇u.
Many of the conductivity reconstruction methods using internal current density are de-
veloped based on (4.1) with (4.2).

The biggest difference of the method we developed is that our method is based on
Faraday’s law

(4.3) ∇× (rF) = 0,

which gives a direct connection between the resistivity r and the current density F. One
may consider this choice of the equation as a simplification process of the system (4.1)–
(4.2) that cancels out the unknown variable u. It is this simplification that allows us to
construct a correctly determined system and obtain the existence, the uniqueness and the
stability together.
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The curl free equation also allows us to construct numerical algorithms based on loop
integrals. In fact, we have developed a numerical scheme using such loop integrals in
a mimetic way which turns out virtual resistive network (VRN for brevity) method for
resistivity reconstruction. There are many ways to construct numerical schemes using
VRN (see [15, 16, 17]). In particular, a few explicit methods with local computations
are developed in this series of papers. However, these inexpensive local computation
methods work only for isotropic and orthotropic cases and a different approach is needed
for anisotropic case.

This series of papers on Faraday’s law based two dimensional conductivity reconstruc-
tion consists of three parts. First, the isotropic conductivity reconstruction has been
studied theoretically in [13] and numerically in [15]. The uniqueness, existence and sta-
bility were obtained using single set of internal current density and a part of boundary
resistivity. The resistivity reconstruction for orthotropic conductivity has been studied
theoretically and numerically in [16]. The well-posedness of the problem has been ob-
tained using two sets of internal current densities. Finally, the anisotropic conductivity
has been reconstructed in this paper employing the technique used for the orthotropic
case. The newly added part is a construction of new coordinate system that makes the
anisotropic structure into an orthotropic one in terms of the new coordinate system. To
do that three sets of internal current densities are used. However, the numerical algo-
rithm based on local computations does not work for the anisotropic case and a different
approach seems to be needed.

Extending the two dimensional theories to three dimensions is a big challenge. The
main reason is that the elliptic theories we have taken hold for two space dimensions.
Numerical computation in three dimensions is also a challenge. However, we have a few
conjectures on three dimensional theories. One might already observe that the number of
unknown components of the resistivity tensor and the number of current densities needed
are same in two space dimensions. However, we guess that three sets of internal current
densities will give the existence and the uniqueness of an anisotropic resistivity tensor
which has six components to be decided in three dimension. Similarly, single and two sets
of internal current densities will respectively give the uniqueness and the existence for the
isotropic and orthotropic resistivity tensor. It could be so even for higher dimensions.

Appendix A. Relations in static electromagnetism

We first review basic relations related to static electromagnetism in R
2. Let Ω ⊂ R

2 be
a bounded domain with a smooth boundary and F be a smooth electrical current density
field given in Ω. If ∇ · F = 0 throughout the domain, we may find a stream function ψ
such that

F = ∇⊥ψ :=
(

∂yψ , −∂xψ
)

.

This stream function is unique up to a constant addition. Correspondingly, let E be a
smooth electric field in Ω. If Faraday’s law, ∇ × E = 0, is satisfied in Ω, there exists a
potential function u such that

E = −∇u.
Ohm’s law gives a relation between these two vector fields by

(A.1) F = Eσ or Fr = E,

where the conductivity tensor σ and the resistivity tensor r satisfy rσ = I, the identity
matrix.
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The divergence free equation ∇ · F = gives an elliptic equation for the potential,

∇ · ( (∇u)σ) = 0, in Ω,(A.2)

−n · (∇u)σ = g, on ∂Ω,(A.3)

where the above Nuemann boundary condition satisfies
∫

∂Ω gdx = 0. Notice that this
second order elliptic equation for the potential function exploits both ∇ · F = 0 and
∇×E = 0, which are connected by Ohm’s law.

One may obtain a similar equation for the stream function ψ using the dual structure,
which is written as

(A.4) ∇×
(

(∇⊥ψ)r
)

= 0.

One may rewrite this dual equation in a divergence free equation using a similarity trans-
formation, which is

∇ · ( (∇ψ)S) = 0, in Ω,(A.5)

ψ = G, on ∂Ω,(A.6)

where, for a counter-clock wise smooth curve γ : [0, L] 7→ ∂Ω with unit speed,

(A.7) G(γ(t)) :=

∫ t

0
g
(

γ(τ)
)

dτ and S :=

(

0 −1
1 0

)

r

(

0 1
−1 0

)

.

Remark A.1 (Derivation of the dual equation). Ohm’s law is written as

(A.8) −
(

∂xu ∂yu
)

=
(

∂yψ −∂xψ
)

r =
(

∂xψ ∂yψ
)

(

0 −1
1 0

)

r.

Multiply

(

0 1
−1 0

)

to both sides from the right and obtain

(

∂yu −∂xu
)

=
(

∂xψ ∂yψ
)

(

0 −1
1 0

)

r

(

0 1
−1 0

)

= (∇ψ)S.

By taking divergence on both sides, we obtain (A.5). The Nuemann boundary condition
(A.3) becomes

g = −n · (∇u)σ = (n1, n2) · (∂yψ,−∂xψ) = (−n2, n1) · (∂xψ, ∂yψ) = T · ∇ψ,
where T := (−n2, n1) is the unit tangent vector along the boundary ∂Ω in the counter-
clockwise direction. Let γ : [0, L] → ∂Ω be a curve rotating the boundary counter-clockwise
with unit speed. Then, d

dτ
ψ(γ(τ)) = T · ∇ψ and the Dirichlet boundary condition (A.6)

comes from a simple computation of

ψ(γ(t)) =

∫ t

0

d

dτ
ψ(γ(τ))dτ =

∫ t

0
g
(

γ(τ)
)

dτ =: G(γ(t)).

One of the main technique in this paper is the use of stream functions as independent
variables. We next discuss identities related to this new coordinate system. Let ξ, η be a
new variables. Then, the two sides of (A.8) are written as

−
(

∂xu ∂yu
)

= −
(

∂ξu ∂ηu
)

(

∂xξ ∂yξ
∂xη ∂yη

)

,

(

∂xψ ∂yψ
)

(

0 −1
1 0

)

r =
(

∂ξψ ∂ηψ
)

(

∂xξ ∂yξ
∂xη ∂yη

)(

0 −1
1 0

)

r.
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Therefore, Ohm’s law (A.8) is written as

−
(

∂ξu ∂ηu
)

=
(

∂ξψ ∂ηψ
)

(

∂xξ ∂yξ
∂xη ∂yη

)(

0 −1
1 0

)

r

(

∂xξ ∂yξ
∂xη ∂yη

)−1

.

Let

(A.9) r̃ :=

(

0 1
−1 0

)(

∂xξ ∂yξ
∂xη ∂yη

)(

0 −1
1 0

)

r

(

∂xξ ∂yξ
∂xη ∂yη

)−1

.

Then r̃ is also a symmetric positive definite matrix and

(A.10)
(

∂ηψ −∂ξψ
)

r̃ = −
(

∂ξu ∂ηu
)

.

(Note that any one of σ, r, S, r̃, and S̃ decides all the others.)

Lemma A.2 (Alessandrini [2]). Let Ω ⊂ R
2 be a bounded simply connected domain

with a smooth boundary, g ∈ C(∂Ω), aij ∈ C1(Ω), and ai ∈ C(Ω) for i, j = 1, 2. Let

u ∈W 2
loc(Ω) ∩ C(Ω) satisfy

2
∑

i,j=1

aij∂xi
∂xj

u+

2
∑

i=1

ai∂xi
u = 0, in Ω,

u = g, on ∂Ω.

If g|∂Ω has N maxima (and hence it has N minima), then the interior critical points of u
are of a finite number and

K
∑

i=1

mi ≤ N − 1,

where m1, · · · ,mK are the multiplicities of the corresponding maxima.

Remark A.3. We will use this lemma to claim that there is no interior critical point if
the boundary value g has only one local maximum point on the boundary.
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