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Abstract. The solution of the Riemann problem was a building block for general Cauchy
problems in conservation laws. A Cauchy problem is approximated by a series of Riemann problems
in many numerical schemes. But, since the structure of the Riemann solution holds locally in time
only, and, furthermore, a Riemann solution is not piecewise constant in general, there are several
fundamental issues in this approach such as the stability and the complexity of computation.

In this article we introduce a new approach which is based on piecewise self-similar solutions.
The scheme proposed in this article solves the problem without the time marching process. The
approximation error enters in the step for the initial discretization only, which is given as a similarity
summation of base functions. The complexity of the scheme is linear. Convergence to the entropy
solution and the error estimate are shown. The mechanism of the scheme is introduced in detail
together with several interesting properties of the scheme.
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1. Introduction. Self-similarity of the Cauchy problem for one-dimensional
conservation laws,

vt + f(v)x = 0,
v(x, 0) = v0(x),

x, v ∈ R, t > 0,(1.1)

with Riemann initial data

v(x, 0) =

{
v−, x ≤ 0,
v+, x > 0,

(1.2)

has been the basis of various schemes devised for general initial value problems; see
Glimm [10] and Godunov [11], for example. The self-similarity of the Riemann prob-
lem is the property that the solution is a function of the self-similarity variable ξ = x/t.
In other words, the solution is constant along the self-similarity lines

x

t
= constant.(1.3)

The basic idea of the Godunov scheme for a general initial value problem is to approxi-
mate the initial data by a piecewise constant function and then apply the self-similarity
structure to the series of Riemann problems.

There are two basic issues we have to consider immediately in this approach.
First, since the self-similarity for a piecewise constant solution holds locally in time
only, the structure of the Riemann solution can be applied for a small time period.
In other words, the scheme is not free from the CFL condition (see [4], [5]), and,
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hence, the scheme can march just a little amount of time every time step and it costs
computation time. Furthermore, since rarefaction waves appear immediately, the
solution is not piecewise constant anymore. So a numerical scheme contains a process
which rearranges the rarefaction wave into a piecewise constant function every time
step. The numerical viscosity enters in this process, and tracking down the behavior
of the scheme becomes extremely hard.

LeVeque [20] considers a large time step technique based on the Godunov method
for the genuinely nonlinear problem. In the scheme the CFL number may go beyond 1,
and it is even possible to solve the propagation of a simple wave in a single step, i.e.,
∆t = T for the given final time T > 0. However, the scheme handles interactions
between waves incorrectly if the CFL number is so large.

One way to avoid the rearranging process is to consider a modified equation,

ut + h(u)x = 0,
u(x, 0) = u0(x),

x, u ∈ R, t > 0,(1.4)

where h and u0 approximate f and v0, respectively. Dafermos [7] considers a polygonal
approximation h ∼ f , i.e., h is continuous and piecewise linear. In this case the exact
solution of (1.4) is piecewise constant. So the method does not require a rearranging
process, and, therefore, the numerical viscosity is not introduced and the error is
controlled by refining the polygonal approximation h. In this approach, the exact
behavior of the numerical solution can be monitored more closely and we may get a
more detailed understanding of the scheme. This idea has been developed in Holden
and Holden [12], and it has been extended to multidimensional problems in Holden
and Risebro [14] and to systems of conservation laws in Holden, Lie, and Risebro [13].
In particular, we refer to Bressan [2], [3] for systems. This front tracking method has
been developed as a computational tool (e.g., [21], [22]).

Lucier [24] approximates the actual flux f by a piecewise parabolic function h
and achieves a second order scheme. In this case, the initial data v0(x) are approx-
imated by a piecewise linear function u0 and the solution remains piecewise linear.
The difference between the solutions of the original problem (1.1) and the modified
problem (1.4) is estimated by

||v(·, t)− u(·, t)||1 ≤ ||v0 − u0||1 + t||f ′ − h′||∞||v0||BV .(1.5)

Since the linear approximation is of second order, he achieves a second order scheme
for a fixed time t > 0.

If we want to design a numerical scheme which represents the exact solution,
we have to find a way to choose grid points correctly. If they are simply fixed, it
is clear that the scheme cannot represent the exact solution and, hence, we need to
rearrange the solution to fit the solution to the fixed grid points. So it is natural to
consider the moving mesh method; see Miller [25]. In Lucier [24] the moving mesh
method is used to find the exact solution of (1.4), where mesh points move along
characteristics. Another option is not to use any grid point. In numerical schemes
based on the front tracking method mentioned earlier, grid points are used just for
the initial discretization. The scheme we develop in this article does not use any grid
point either.

This article has two goals. The first one is to introduce the mathematical idea
which is behind the piecewise self-similar solutions. The second one is to demonstrate
how to implement the idea into a numerical scheme and show properties of the scheme.
From the study of the Burgers equation (see [17] or Whitham [26]), it is well known
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that the primary structure which dominates the evolution is a saw-tooth profile. In
fact, this profile is a series of N-waves and eventually the solution evolves to a single
N-wave; see Liu and Pierre [23]. The starting point of our scheme is to use this
structure as the unit of the scheme.

If a solution u(x, t) is a function of the self-similarity variable ξ = x/t, then we
can easily derive from (1.1) that

f ′(u(x, t)) = x/t.

Roughly speaking, a piecewise self-similarity (initial) profile has the structure of

f ′(u(x, 0)) =
x− ck
tk

, x ∈ (ak, bk), ck, tk ∈ R.(1.6)

Note that the time index tk can be a negative number. In this article, we observe that
the solution of (1.1) with piecewise self-similarity initial profile has such a structure
for all t > 0, i.e.,

f ′(u(x, t)) =
x− ck
t+ tk

, x ∈ (ak(t), bk(t)), ck, tk ∈ R, t ∈ R+,(1.7)

and we give the explicit formula for this kind of solution in several situations. First
we consider a convex flux with positive wave speed,

(H) f ′′(u) ≥ 0, f ′(u) ≥ 0,

where f is locally Lipschitz continuous. The convexity of the flux f ′′(u) ≥ 0 is used
to get the explicit formula g(x) of the self-similarity profile such that f ′(g(x)) = x,
and the self-similarity profile (1.7) can be written as

u(x, t) = g
(x− ck
t+ tk

)
, x ∈ (ak(t), bk(t)), ck, tk ∈ R, t ∈ R+.(1.8)

Note that the equality is included for the second derivative of the flux in (H), and,
hence, the monotonicity of f ′ is not strict and g(x) is not exactly the inverse function
of f ′, and g(f ′(u)) �= u in general. In this approach, we may include a piecewise linear
flux of the front tracking method; see Remark 6.4.

Our approach is as follows. We start our discussion reviewing the self-similarity
property in conservation laws in section 2. This discussion leads us to the study
of piecewise self-similar solutions, which is the case when the self-similarity lines and
characteristics are compatible. In section 3 we consider a piecewise self-similar solution
which can be written as a self-similarity summation (or simply S-summation),

n⊙
k=1

Bmk,tk,ck(x), cn < · · · < c2 < c1,(1.9)

of a finite number of base functions. We give definitions for the S-summation and base
functions in the section and show that u(x, t) =

⊙n
k=1Bmk,t+tk,ck(x) is the solution

of (1.1) with initial data u0(x) =
⊙n

k=1Bmk,tk,ck(x); see Theorem 3.6. We consider
u as an approximation of the solution v with the original initial data v0. Then the
L1 contraction theory of conservation laws (see Hörmander [15], Kruzhkov [18], [19])
implies

||v(·, t)− u(·, t)||1 ≤ ||v0 − u0||1.(1.10)
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It is the estimate corresponding to the error estimate (1.5), which does not have the
time dependent term anymore. It is natural to expect that the error increases in
time if the flux is changed. In our approach, we use the original flux and the error
decreases in time. In fact, the left-hand side of (1.10) is of order O(t−1); see [16].
The convergence of the scheme is now clear (see Theorem 3.6, Corollary 3.7). Note
that the S-summation (1.9) represents only a special kind of piecewise self-similar
profile in (1.6), which has positive indexes tk > 0 and is ordered appropriately, i.e.,
cn < · · · < c2 < c1 if an ≤ bn ≤ · · · ≤ a2 ≤ b2 ≤ · · · ≤ a1 ≤ b1.

The S-summation is successfully coded for a numerical scheme in section 4. This
scheme has several unique properties. First, it does not require a time marching
procedure. So the complexity of the scheme is of order O(N), not O(N2). CPU
times for several cases are compared in section 4.3. Second, it captures the shock
location very well even if a small number of base functions (or mesh points) are used;
see Figure 4.5. In the figure it is clearly observed that the solution with finer mesh
always passes through bigger artificial shocks. Since it does not introduce numerical
viscosity at all, we obtain a very good resolution for an inviscid problem. This scheme
also distinguishes physical shocks and artificial ones clearly. Table 4.4 shows the time
when the physical shock appears.

In section 5 we generalize the method. For a general convex flux, i.e.,

(H1) f ′′(u) ≥ 0,

the method is applied through the transformations (5.1) and (5.3). If the flux has
inflection points, then the scheme becomes considerably complicated and it is beyond
the purpose of this article. But, if the flux has only one inflection point, for example,

(H2) f ′′(u) ≤ 0 for u ≤ A, f ′′(u) ≥ 0 for u ≥ A,

then we can easily apply the scheme through a similar transformation (5.4). Dafer-
mos [8] considers a flux with a single inflection point through generalized characteris-
tics. The Buckley–Leverett equation satisfies this condition. The flux f(u) = u2−u3,
which appears in thin film flows (see Bertozzi, Münch, and Shearer [1]), also belongs to
this category. Figure 5.2 shows the strength of our scheme over the Godunov scheme
in this case.

The scheme is not good enough for a short time behavior t 	 1 since the ini-
tial error ||v0 − u0||1 is not controlled efficiently. To resolve this issue we add an
extra structure to base functions in section 6. Using these base functions, we can
approximate the initial data with second order accuracy and solve the solution for the
modified initial datum. Furthermore, a general piecewise self-similarity profile (1.6)
can be written in terms of S-summation of these modified base functions.

2. Self-similarity in conservation laws. Consider one-dimensional scalar con-
servation laws,

ut + f(u)x = 0,
u(x, 0) = u0(x),

x, u ∈ R, t > 0,(2.1)

where the flux f is locally Lipschitz continuous. For a nonlinear flux f(u) the solution
may have a singularity, and hence the solution is considered in the weak sense with
the entropy admissibility condition:

f(ũ)− f(u−)
ũ− u−

≥ f(u+)− f(u−)
u+ − u−

,(2.2)
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for any number ũ lying between u+ = u(x+, t) and u− = u(x−, t). It is well known
that the self-similarity of a conservation law is inherited from the fact that a rescaled
function,

w(x, t) = u(ax, at), a > 0,(2.3)

is also the solution of (2.1) if and only if the initial profile u0(x) satisfies

u0(x) = u0(ax), a > 0.(2.4)

It is clear that, if the Riemann initial value,

u(x, 0) =

{
u−, x < 0,
u+, x > 0,

(2.5)

is given, (2.4) is satisfied and, hence, u(x, t) = u(ax, at) for all a > 0. Therefore,
u(x, t) is a function of the self-similarity variable,

u(x, t) = u(ξ), ξ = x/t.(2.6)

The structure of a Riemann solution is given in Figure 2.1 together with charac-
teristic lines. Note that, even though a self-similarity line x/t = ξ, ξ ∈ R, is not a
characteristic line, the solution is constant along it. This is a special property of the
Riemann problem, and it is not expected in a general Cauchy problem.

x

t

u = u+u = u
�

6

-

x = st

x

t

u = u+u = u
�

6

-

�

(a) Characteristic lines (b) Self-similarity lines

Fig. 2.1. Let f ′(u+) = 0 and f ′(u−) = 1. Then self-similarity lines are different from charac-
teristic lines. However, the solution is constant along self-similarity lines.

If the total mass of the initial data u0(x) is finite, i.e.,∫
|u0(x)|dx < ∞,(2.7)

then the relation (2.4) cannot be satisfied since the transformation u0(x) → u0(ax)
does not preserve the total mass. So the solution cannot be a function of self-similarity
variable ξ = x/t. In the following, we consider techniques to achieve the Riemann
solution like self-similarity for general Cauchy problems.

Suppose that characteristic lines of the solution u(x, t) pass through the origin.
Then the relation between the wave speed and characteristics gives

f ′(u) =
x

t
.(2.8)
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Since the right-hand side diverges as t → 0, we consider the initial datum as the
profile at a given time t0 > 0. The simplest case of L

1 initial datum of the kind is

f ′(u(x, 0)) =
x

t0
if 0 < x < s0, u(x, 0) = 0 otherwise.(2.9)

Characteristic lines of this initial profile are given in Figure 2.2. Nonvertical charac-
teristics pass through the point (0,−t0), and there is a region in which characteristic
lines overlap with each other. The solution is given by finding the shock characteristic
x = s(t) correctly. In this case, the shock characteristic x = s(t) is not a straight line
and the solution is not a function of x/(t+ t0). However, the solution is a function of
x/(t+ t0) in the region 0 < x < s(t), i.e.,

f ′(u(x, t)) =
x

t+ t0
if 0 < x < s(t), u(x, t) = 0 otherwise.(2.10)

t x = s(t)

x

Fig. 2.2. Characteristic lines of a self-similarity solution are similar to self-similarity lines.
The main difference is that the shock characteristic is not a straight line anymore.

Since the shock speed s′(t) satisfies the Rankine–Hugoniot jump condition, the
shock location s(t) can be found by its integral form. On the other hand, if the
convexity of the flux f is assumed, i.e.,

f ′′(u) ≥ 0,

we may consider the self-similarity profile g(x) such that f ′(g(x)) = x. In this case
we obtain

u(x, t) = g
(
x/(t+ t0)

)
, 0 < x < s(t),(2.11)

and we can easily find the shock location s(t) using the equal area rule,

∫ s(t)

0

g(x/(t+ t0))dx =

∫ s0

0

g(x/t0)dx, t > 0.(2.12)

Since the conservation law (2.1) does not explicitly depend on the x variable, we
may translate the initial data (2.9) in the x-direction. We can also consider initial
data which consist of a finite number of structures in (2.9). A simple example is

u0(x) =

N∑
k=1

g
(x− ck

tk

)
χ(ck,sk),(2.13)
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where centers ck and shock locations sk satisfy

−∞ < cN < sN < · · · < c1 < s1 < ∞.(2.14)

The time indexes tk > 0 in (2.13) decide the slope of the initial profile, and
they do not need to be identical. Condition (2.14) implies that all the profiles in
(2.13) are separated. If not, the simple summation in (2.13) breaks down the self-
similarity structure we want to keep. In section 3 we consider an S-summation which
preserves this structure. Figure 2.3 shows characteristic lines for initial data (2.13)
with N = 4. In this case, tracking down a shock is more complicated and (2.12) is
not valid anymore. The following section is devoted to handling the general case.

t

x

Fig. 2.3. Shock characteristics (dots) are merged together after contacts among them, and a
bigger shock appears which is a physical one.

3. Piecewise self-similar solutions. In this section we define the S-summation
and show that, if the initial value u0(x) is given as an S-summation, then so is the
solution u(x, t) of (2.1) at any given time t > 0. We consider the flux under the
hypothesis,

(H) f ′′(u) ≥ 0, f ′(u) ≥ 0,

and the self-similarity profile g(x) satisfies f ′(g(x)) = x. We may assume f ′(0) = 0
without the loss of generality, and it implies that the solution is actually assumed to
be positive under (H). The results in this section are generalized in section 5.

3.1. Base functions. As was mentioned earlier, the self-similarity profile

u(x, t) = g(x/t), t > 0,(3.1)

represents the asymptotic behavior of the conservation law (1.1). A triple index
function Bt,c,s(x), defined by

Bt,c,s(x) =

{
g
(
(x− c)/t

)
, c < x < s,

0, otherwise,
(3.2)

serves as a base function in this article. A base function has the self-similarity profile
over the interval between the center c and the shock location s. The area (or mass)
m enclosed by the x-axis and the base function is given by

m =

∫ s

c

Bt,s,c(x)dx =

∫ s−c

0

g(x/t)dx =: m(t, c, s).(3.3)
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It is convenient to consider the mass m as the fourth index of the base function, say,
Bm,t,c,s(x), or any three of them as an index set. In any case we always assume that
indexes m, t, c, s satisfy the relation (3.3), i.e., if any three of them are given, the
fourth one is decided by the relation.

Consider a Cauchy problem,

ut + f(u)x = 0,
u(x, 0) = Bm0,t0,c0,s0(x).

(3.4)

It is already observed in (2.10) that the solution u(·, t) has the self-similarity profile
with time index t + t0 between the original center c0 and a new shock location s(t).
Since the initial total mass m0 should be preserved, the solution of (3.4) is

u(x, t) = Bm0,t+t0,c0(x),(3.5)

where the shock location x = s(t) is decided by the relation (3.3).
Remark 3.1. If we take a δ-function as the initial datum, for example, u0(x) =

m0δ(x − c0), then the solution is u(x, t) = Bm0,t,c0(x). So the slope of the base
function represents the time of the evolution starting from the δ-function-like initial
data, and that is why we take index t for the base function.

Remark 3.2. For the Burgers case, f(u) = u2/2, the self-similarity profile is the
identity function, g(x) = x. In this case, (3.3) gives explicit relations,

m = (s− c)2/(2t), t = (s− c)2/2m, s = c+
√
2mt, c = s−

√
2mt .(3.6)

Remark 3.3. The rescaling (2.3) does not preserve the total mass. So it can
not measure the invariance property for L1 solutions of conservation laws. For the
Burgers case, f(u) = u2/2, we may consider

v(x, t) = au(ax, a2t), a > 0,(3.7)

where the rescaling preserves the total mass. We can easily check that variables

w =
√
t+ t0 u, ζ = (x− c0)/

√
t+ t0, τ = ln(t+ t0),(3.8)

are invariant under the rescaling after the translation x− c0 → x, t+ t0 → t. These
variables are called self-similarity variables for L1 Cauchy problems, and the Cauchy
problem (3.4) is transformed to

wτ +
1
2 (w

2 − ζw)ζ = 0,
w(ζ, ln(t0) ) = Bm0,t0=1,c0=0(ζ).

(3.9)

We can easily check that Bm0,t0=1,c0=0(ζ) is an admissible steady state of the equation,
and hence w(ζ, τ) = Bm0,t0=1,c0=0(ζ) is the solution of (3.9). If we transform the
variables back to u, t, x, then we get u(x, t) = Bm0,t+t0,c0=0(x). This is another way
to show (3.5). In this example we can see that the approach with piecewise self-similar
solutions captures the self-similarity of the general Cauchy problems exactly. For a
detailed study of the transformed problem (3.9), we refer to [17].

3.2. S-summation. Since the solution of (3.4) is given by (3.5), we can easily
guess that

u(x, t) =
n∑

k=1

Bmk,tk+t,ck(x)(3.10)
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is the solution of the conservation law with initial data

u0(x) =

n∑
k=1

Bmk,tk,ck(x), cn < · · · < c2 < c1,(3.11)

if all the supports of the base functions in (3.10) are disjoint. But it is not usually
the case since the support of a base function expands in time. The S-summation,

Bn(x) =

n⊙
k=1

Bmk,tk,ck(x), cn < · · · < c2 < c1,(3.12)

is to handle the case that supports of base functions overlap with each other. The
definition is given inductively in the following.

Let B1(x) = Bm1,t1,c1(x). Suppose that Bj−1(x) =
⊙j−1

k=1Bmk,tk,ck(x), j ≤
n, is well defined, supp(Bj−1) ⊂ [cj−1,∞), and that

∫∞
cj−1

Bj−1(x)dx =
∑j−1

k=1mk.

Consider a point ξj ∈ R such that cj < ξj ,

g
(
(x− cj)/tj

)
> Bj−1(x), cj < x < ξj ,(3.13)

∫ ξj

cj

g
(
(x− cj)/tj

)
dx+

∫ ∞

ξj

Bj−1(x)dx =

j∑
k=1

mk.(3.14)

Under assumption (3.13), the left-hand side of (3.14) is monotone in ξj and, hence,
such a point is unique. If there exists such a point ξj > cj , we define

Bj(x) =

j⊙
k=1

Bmk,tk,ck(x) =

{
g
(
(x− cj)/tj

)
, cj < x < ξj ,

Bj−1(x), otherwise.
(3.15)

Clearly, supp(Bj) ⊂ [cj ,∞) and
∫∞
cj

Bj(x)dx =
∑j

k=1mk, and we may continue the

inductive argument. If not, the S-summation (3.12) is not defined.
Base functions are ordered by centers ck, and then the S-summation is given from

the right-hand side. It is because of the positiveness assumption for the wave speed,
f ′(u) ≥ 0, in (H). If the order of the summation is changed, the result is different. So
the S-summation is not associative.

Remark 3.4. If the time indexes are identical, tk = t0, for all k, then we can show
the S-summation (3.12) is well defined. Then, since the self-similarity profile g(x) is
an increasing function, we have g

(
(x − cj)/t0

)
> g

(
(x − ck)/t0

)
for all k < j. Since

Bj−1(x) has values of g
(
(x−ck)/t0

)
, k < j, piecewise, the inequality (3.13) is satisfied

for all ξj > cj . Furthermore the left-hand side of (3.14) has value
∑j−1

k=1mk for ξj = cj
and diverges to ∞ as ξj → ∞. So there exists a point ξj satisfying (3.14), and the
S-summation is well defined.

Remark 3.5. We may consider ξj as the location of the jth (artificial) shock
generated by the base function Bmj ,tj ,cj . Suppose that ξj−1 < ξj , i.e., the jth shock
caught up the (j − 1)st shock. The definition (3.15) implies that the self-similarity
profile g

(
(x− cj−1)/tj−1

)
disappears. We can easily check that we will get the same

S-summation (3.15) if we remove the (j − 1)st base function and increase mj by
adding mj−1. This property represents the irreversibility of conservation laws and
plays the key role in the numerical scheme (see section 4.2, Step 2).
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Theorem 3.6. Suppose that f ′′(u) ≥ 0 and f ′(u) ≥ 0. If the S-summation
u0(x) ≡

⊙n
k=1Bmk,tk,ck(x) is well defined, then u(x, t) ≡ ⊙n

k=1Bmk,tk+t,ck(x) is also
well defined for all t > 0 and it solves (1.1) with its initial value u0(x). If v(x, t) is
the entropy solution of (1.1) with its initial value v0 ∈ L1, then

||v(·, t)− u(·, t)||1 ≤ ||v0 − u0||1.(3.16)

Proof. We may assume f ′(0) = 0 without the loss of generality. The proof is
completed through inductive arguments. In section 2, we have shown the theorem for
n = 1. Now we show the theorem for n = j > 1 assuming that it holds for n = j − 1.
Note that, from the definition, the S-summation

⊙i
k=1Bmk,tk,ck(x) is well defined for

any i ≤ n.
Let uj−1(x, t) be the solution of (1.1) with its initial value

⊙j−1
k=1Bmk,tk,ck(x).

From the assumption, uj−1(x, t) =
⊙j−1

k=1Bmk,tk+t,ck(x). Let uj(x, t) be the solution

with uj(x, 0) =
⊙j

k=1Bmk,tk,ck(x) and x = ξj(t) be the shock characteristic given by
the jth base function, i.e., ξj(0) is the same as the ξj in (3.13)–(3.14). Consider a
backward characteristic, associated with uj(x, t), that emanates from a point (x, t),
x > ξj(t). From the admissibility of the shock, it does not interact with x = ξj(τ),
τ < t, and, hence, it is actually the one associated with uj−1(x, t). So we have
uj(x, t) = uj−1(x, t).

For x < cj , uj(x, t) = 0 since the (vertical) forward characteristic that emanates
from a point (x, 0), x < cj , does not intersect with shock characteristics which move
to the right-hand side under the assumption f ′(u) ≥ 0. The backward characteristic
that emanates from a point (x, t), cj < x < ξj(t), is a straight line connecting (cj ,−tj)
since the initial profile over the interval (cj , ξj(0)) is self-similar. Hence, uj(x, t) =
g
(
(x− cj)/(t+ tj)

)
for cj < x < ξj(t), and the shock location x = ξj(t) should satisfy

∫ ξj(t)

cj

g
(
(x− cj)/(t+ tj)

)
dx+

∫ ∞

ξj(t)

uj−1(x, t)dx =

j∑
k=1

mk

since the total mass is preserved. So uj(x, t) =
⊙j

k=1Bmk,tk+t,ck(x) from the defi-
nition of the S-summation, and the first part of the proof is complete. The second
part (3.16) is simply the L1 contraction theory for conservation laws.

In the proof we employ the theory of characteristics (see [9, Chap. 11]). The error
estimate (3.16) implies that the initial error decreases in time. In fact, the error is of
order O(t−1) as t → ∞ (see [16] for detail). The scheme has ideal properties for the
study of asymptotic behavior.

Now we consider u0(x) =
⊙n

k=1Bmk,tk,ck(x) as an approximation of L
1 initial

value v0. Let a partition C = {cn < · · · < c1} be the set of centers. Its norm is defined
by ||C|| = max |ck − ck−1|. There can be many ways to discretize the initial value. To
guarantee the convergence of the scheme, we need the existence of δ, L > 0 such that

||v0(x)− u0(x)||1 ≤ ε if ||C|| ≤ δ and cn < −L,L < c1,(3.17)

where a constant ε > 0 is given. An example of such a discretization is given in
section 4.2. The convergence of the scheme satisfying (3.17) is clear from (3.16).

Corollary 3.7 (convergence). The scheme of the S-summation u(x, t) =⊙n
k=1Bmk,t+tk,ck(x) with initial discretization u0(x) =

⊙n
k=1Bmk,tk,ck(x) satisfy-

ing (3.17) converges to the entropy solution v(x, t) with initial data v0 ∈ L1(R) as
δ → 0, L → ∞.



PIECEWISE SELF-SIMILAR SOLUTIONS 2115

Remark 3.8. Now we consider the S-summation between two base functions,⊙2
k=1Bmk,tk,ck(x), c2 ≤ c1 (see Figure 3.1). It gives a good example for figuring

out the meaning of the S-summation. Furthermore, in the numerical computation,
we can possibly compare only two base functions each time and, hence, it is worth
considering it in detail. If these two base functions are separated, i.e., s2 < c1, then
the shock place ξ of the definition (3.15) is simply ξ = s2. If c1 < s2, then ξ satisfies

∫ ξ

c2

g
(x− c2

t2

)
dx+

∫ max(ξ,s1)

ξ

g
(x− c1

t1

)
dx = m1 +m2.(3.18)

If ξ > s1, (3.15) implies that two base functions are merged, i.e.,

2⊙
k=1

Bmk,tk,ck(x) = Bm1+m2,t2,c2(x) if s1 < ξ.(3.19)

For the Burgers case, f(u) = u2/2, (3.18) implies that the trapezoid BCs2ξ in Fig-
ure 3.1 has the same area as the triangle Ac1ξ.

A

B

C

c2 c1 s2 � s1

�

^

Fig. 3.1. The equal area rule gives the shock location when two base functions interact together.

4. S-summation as a numerical scheme. In this section we show how the
S-summation can be implemented into a numerical scheme. We assume that the flux
is convex f ′′(u) ≥ 0 and the solution is positive and compactly supported. More
general cases are considered in the following sections. To see what is really happening
in each step, we consider a Cauchy problem for the Burgers equation,

vt + vvx = 0,
v(x, 0) = v0(x),

v0(x) =

{
sin(πx)/π, 0 < x < 1,

0, otherwise.
(4.1)

This simple example helps us to visualize the mechanism of the scheme. In section 4.3
we consider more complicated examples and compare CPU times of each computation
to check the complexity of the method which is of order O(N). Several properties of
this scheme are compared with those of the Godunov method.
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4.1. Preliminaries. First, we consider basic properties of the self-similarity pro-
file g(x), x > 0. If the flux is strictly convex, f ′′(u) > 0, then f ′(u) is invertible and
the self-similarity profile is simply the inverse function of f ′(u). For example, if the
flux is given by a power law

f(u) =
1

γ
uγ , u ≥ 0, γ > 1,(4.2)

then the self-similarity profile g(x) is simply

g(x) = γ−1
√
x, x > 0.(4.3)

This is a case that the self-similarity profile is given explicitly. In general, the value
of the self-similarity profile ū = g(x̄) at a given point x̄ ≥ 0 is obtained from the basic
relation f ′(g(x̄)) = x̄, i.e., we need to solve

f ′(ū)− x̄ = 0, ū ≥ 0.(4.4)

The relation between the self-similarity profile and the wave speed, f ′(g(x)) = x,
also makes it easy to handle the integrals of a base function. Let ū = g(x̄/t). Using
the change of variables u = g(x/t), we obtain

∫ ū

0

tf ′(u)du =
∫ x̄

0

x

t
g′
(x
t

)
dx = x̄g

( x̄
t

)
−
∫ x̄

0

g
(x
t

)
dx.

So the integral of the self-similarity profile is written as a function of ū or x̄ only, i.e.,

∫ x̄

0

g
(x
t

)
dx = x̄g

( x̄
t

)
− tf

(
g
( x̄
t

))
= tūf ′(ū)− tf(ū).(4.5)

Now we consider a simple lemma which is used in deciding the initial time index
t0 > 0. This lemma implies that the graph y = g((x − c)/t0), x > c, crosses over
y = v0(x) just once.

Lemma 4.1. Suppose that the (smooth and bounded) initial value v0(x) satisfies

v′0(x) <
1

t0f ′′(v0(x))
.(4.6)

Then the point x̄ ≥ c satisfying g((x̄− c)/t0) = v0(x̄) is unique.
Proof. Differentiating both sides of f ′(g(x)) = x, we obtain

g′(x) =
1

f ′′(g(x))
=

1

f ′′(v)
,(4.7)

where v = g(x). Let g((x1 − c)/t0) = v0(x1) for a point x1 ≥ c. Since

v′0(x1) <
1

t0f ′′(v0(x1))
=
1

t0
g′
(x1 − c

t0

)
= ∂xg

(x1 − c

t0

)
,(4.8)

we may choose δ > 0 such that g((x − c)/t0) > v0(x) for x ∈ (x1, x1 + δ). Now we
show that g((x − c)/t0) > v0(x) for all x > x1, which completes the proof. Suppose
that g((x2 − c)/t0) = v0(x2) for x2 > x1. We may take x2 as the smallest one.
Then g((x − c)/t0) > v0(x) on (x1, x2) and it implies v

′
0(x2) ≥ ∂xg((x2 − c)/t0). It

contradicts the fact that (4.8) holds for x = x2.
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4.2. Implementation. Here we introduce a gridless scheme based on the S-
summation.

Step 1 (initial discretization). The first step is to design a method to approximate
the initial value v0(x) by an S-summation u0(x) which satisfies (3.17). Consider
n base functions B[k], k = 1, 2, . . . , n. Each element B[k] consists of two members
B[k].m,B[k].c, which represent the mass (or area) and the center of the base function.
We use the identical time index tk = t0 for all k, and, hence, we do not need an extra
member for the time index. The first thing to do is to choose the time index t0 > 0
satisfying (4.6). If (4.6) does not hold for any t0 > 0, we need to use a different
discretization (see section 6).

Next we decide the two members of the kth base function, B[k].c and B[k].m.
Let [L1, L2] be the support of the initial value v0(x) and L1 = xn < · · · < x1 <
x0 = L2 be mesh points. Consider the self-similarity profiles that emanate from
points (xk, v0(xk)). Then the center ck satisfies g((xk − ck)/t0) = v0(xk). Taking the
wave speed f ′ to both sides we get ck = xk − t0f

′(v0(xk)). We assign this center
to B[k].c, i.e.,

B[k].c = xk − t0f
′(v0(xk)).(4.9)

Since g((x̄ − c1)/t0) = g((x̄ − c2)/t0) at any point x̄ > c1, c2 implies c1 = c2, we can
easily see that two self-similarity profiles with the same time index never cross over
to each other. So Lemma 4.1 implies that those centers are ordered by L1 = B[n].c <
· · · < B[2].c < B[1].c. Note that there is no self-similarity profile that emanates from
the point (x0, v0(x0)).

The value of the second member B[k].m is given as the area enclosed by four (or
three) curves, y = v0(x), y = 0, y = g((x− ck)/t0), and y = g((x− ck−1)/t0), i.e.,

B[k].m =

∫ xk−1

xk

v0(x)dx+

∫ xk

ck

g
(x− ck

t0

)
dx−

∫ xk−1

ck−1

g
(x− ck−1

t0

)
dx,

where c0 = L2. Using relation (4.5), this is written in terms of the initial value and
the flux:

B[k].m =

∫ xk−1

xk

v0(x)dx+ t0v0(xk)f
′(v0(xk))− t0f(v0(xk))

− t0v0(xk−1)f
′(v0(xk−1)) + t0f(v0(xk−1)).

(4.10)

Consider the Cauchy problem (4.1) as an example. Since f ′′(v) = 1 and vx(x, 0) ≤
1, we may take any t0 < 1. In the following examples we use t0 = 0.5. In Figure 4.1(a),
10 self-similarity profiles are shown which emanate from 10 points (j/10, v0(j/10)),
j = 0, 1, . . . , 9. The centers are their x-intercepts.

In Figure 4.1(b), 10 base functions are displayed with initial value v0(x). Supports
of these base functions are overlapped with each other. Their S-summation u0(x) =⊙n

k=1B[k] is considered as the initial discretization, which is the saw-tooth profile
(solid lines) in Figure 4.1(a). Let uε0 be such an approximation with a uniform mesh
size xk−1 −xk = ε. Then the sizes of the triangle-like areas in Figure 4.1(a), added to
and subtracted from the area enclosed by y = v0(x) and the x-axis, are proportional
to ε2, and the total number of them has order O(1/ε). So we have ||v0 −uε0||1 = O(ε)
as ε → 0, where uε0(x) =

⊙n
k=1B[k] with tk = t0 for all k. (Step 1 is complete.)

Theorem 3.6 implies that u(x, t) =
⊙n

k=1B[k] with tk = t0 + t is the solution
with the modified initial data u0. So the rest of the scheme is focused on how to
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(a) The equal area rule (b) Base functions with overlaps

Fig. 4.1. The initial value is approximated by a piecewise self-similar function, which is a
saw-tooth profile in (a). It turns out to be an S-summation of base functions in (b).

display the given solution. Even if it is possible to follow the inductive arguments of
the definition, we will get serious complexity in the coding if behind shocks capture
the front ones, ξj−1 < ξj , where ξj is the shock location generated by the jth base
function (see the definition (3.13)–(3.15)). Since the S-summation is not changed even
if these two base functions are merged before the summation (see Remark 3.5), we
consider the merging process first.

Suppose that
⊙j−1

k=1B[k] is achieved and ξj−1 < ξj−2 < · · · < ξ1. To obtain⊙j
k=1B[k] we need to check if ξj < ξj−1. Since ξj−1 �= sj−1 in general, an equation

corresponding to (3.18) does not provide the information we need. In the following
we define an operator using a modified version of (3.18).

Definition 4.2. We define a binary operator “ ∗” between two base functions
Bmk,tk,ck,sk , k = 1, 2, satisfying c2 < c1. First, if s2 ≤ c1, we define Bm2,t2,c2 ∗
Bm1,t1,c1 ≡ s2. If c1 < s2, Bm2,t2,c2 ∗Bm1,t1,c1 (≡ ξ) is defined as the solution of

F (ξ) ≡
∫ ξ

c2

g
(x− c2

t2

)
dx−

∫ ξ

c1

g
(x− c1

t1

)
dx−m2 = 0.(4.11)

Let ξ = B[j] ∗B[j − 1]. From (3.14) we can clearly see that ξ = ξj if and only if
ξ ≤ ξj−1. If ξj−1 < ξ, we also have ξj−1 < ξj and we may merge two base functions,
B[j] and B[j−1], before the S-summation. On the other hand, since we have assumed
ξj−1 < ξj−2 < · · · < ξ1, we have ξj−1 = B[j − 1] ∗B[j − 2]. So we may conclude that

ξj > ξj−1 if and only if B[j] ∗B[j − 1] > B[j − 1] ∗B[j − 2].(4.12)

So this operator gives the criterion for deciding if two base functions should be merged
together or not. Furthermore, after the merging process, it gives the correct (artificial)
shock locations ξj(t) for the S-summation.

Step 2 (merging). In this step base functions are re-indexed for k = 1, 2, . . . , n′

whenever two base functions are merged together and the total number of base func-
tions is decreased. Suppose that this merging procedure has been completed for
all k < j and ξj−1 < · · · < ξ2 < ξ1 = s1 holds. Then ξk = B[k] ∗ B[k − 1] for
k = 2, . . . , j − 1. Now we check the next base function B[j].

If B[j] ∗B[j − 1] < B[j − 1] ∗B[j − 2], then ξj = B[j] ∗B[j − 1] and this step is
completed for k ≤ j. Suppose that B[j] ∗B[j − 1] > B[j − 1] ∗B[j − 2]. Then (4.12)
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implies that ξj > ξj−1, and we may merge B[j] and B[j − 1] (see Remark 3.5). Put
B[j].m = B[j].m+B[j − 1].m,(4.13)

remove B[j−1], and then rearrange the array B[·] from k = 1 to k = n′−1, where n′ is
the total number of base functions left after the previous step. Since the combined
base function may take over another one again, we continue this process until we get
ξj < ξj−1 or j = 1, decreasing the index j by 1. We continue this procedure from
j = 2 to j = n′. Note that there is no base function B[0] and we use a convention
B[1] ∗B[0] := B[1].s in (4.12) for j = 2, where B[1].s is the shock location of the base
function given by the relation (3.3).

In Figure 4.2(a), 40 base functions Bmk,ck,t+t0 , k = 1, . . . , 40, are given at t = 1.5
together with the exact solution we want to find. During the merging step, Step 2,
16 of them are merged together and a big base function emerges. The location and
the size of the discontinuity of the newborn base function are almost identical to those
of the physical shock. This big base function can be considered as an accumulation
of small artificial shocks, and it represents the physical shock. (Step 2 is complete.)
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(a) 40 base functions before merging (b) 25 base functions left after merging

Fig. 4.2. 40 base functions have the slope 1/(t0 + t) at time t > 0, which is 0.5 in (a). After
the merging process, Step 2, 16 of them are merged together and a big base function emerges in (b).
The outside wave is the exact solution we want to approximate.

Remark 4.3. In the previous algorithm, we solve (4.11) instead of doing the time
marching. This relation gives the correct location of artificial shocks if the merging
step is completed. Using the relation (4.5), the function F (ξ) in (4.11) is written as

F (ξ) ≡ (ξ−c2)g
(ξ − c2

t2

)
−t2f

(
g
(ξ − c2

t2

))
−(ξ−c1)g

(ξ − c1
t1

)
+t1f

(
g
(ξ − c1

t1

))
−m2.

(4.14)

So we can simplify the integral equation (4.11). To find the zero of F (ξ) we may
use the bisection method. If B[j] ∗ B[j − 1] > B[1].s, clearly we need to merge B[j]
and B[j − 1]. So we may use (B[j − 1].c, B[1].s) as the initial interval.

If we use Newton’s method, we need to study the structure of the self-similarity
profile first. Let t1 = t2 (≡ t). The first two derivatives of F (ξ) are

F ′(ξ) = g
(ξ − c2

t

)
− g

(ξ − c1
t

)
, F ′′(ξ) =

1

t

(
g′
(ξ − c2

t

)
− g′

(ξ − c1
t

))
.

Since the self-similarity profile g(x) is an increasing function, we have F ′(ξ) > 0
and (4.11) has a unique solution. On the other hand, since there is no monotonicity
on g′(x) in general, we need to consider the structure g(x) for the initial guess.
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Remark 4.4. With the power law f(u) = uγ/γ, u > 0, and the identical time
index t1 = t2 ≡ t, (4.11) is written as

F (ξ) = (ξ − c2)
γ

γ−1 − (ξ − c1)
γ

γ−1 − γ

γ − 1m2t
1

γ−1 = 0.

For the Burgers case, γ = 2, the operator is explicitly given by

Bm2,t,c2 ∗Bm1,t,c1 =
2m2t+ c21 − c22
2(c1 − c2)

.(4.15)

Remark 4.5. If there is no base function merged, there will be n− 1 comparisons
of (4.12). If m base functions are merged, then n−m base functions are left and the
maximum number of comparisons (4.12) is n+m− 1 < 2n, which is of order O(N).

Step 3 (displaying). Now we are ready to display the solution. Suppose that base
functions B[j], j = 1, . . . , n′, are left after the merging step. Let ξj = B[j] ∗B[j − 1].
Then the right- and the left-hand side limits are

u(ξj+, T ) = g
(
(ξj −B[j − 1].c)/(t+ t0)

)
,

u(ξj−, T ) = g
(
(ξj −B[j].c)/(t+ t0)

)
.

(4.16)

So to display the solution it is enough to plot the points (ξj , u(ξj+, T )), (ξj , u(ξj−, T ))
for j = 1, . . . , n′. Between these points the solution has the self-similarity profile. So
if we connect these points with the self-similarity profile with time index t + t0 and
center B[j].c, we get the solution.

In Figure 4.3(b), the S-summation of the 25 base functions at time t = 1.5 (see Fig-
ure 4.2(b)) has been displayed. We may observe that the exact solution passes through
the artificial discontinuities of the approximation. Furthermore, we can clearly see
that the initial error ||v0(x)− u0(x)||1 has been decreased a lot. (Step 3 is complete.)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1 1.2

(a) Initial discretizations (b) Solutions at t = 1.5

Fig. 4.3. The initial value of the problem (4.1) has been discretized using 40 base functions
in (a). 25 base functions are left after the merging step with t = 1.5, Figure 4.2(b), and the
S-summation gives the final approximation for the solution. We may observe that the exact solution,
which has obtained using finer mesh points, passes through each of the artificial shocks.

Remark 4.6. One of the main features of the scheme introduced is that it has
a complexity of order O(N). Even though we have introduced extra complexities for
solving (4.4) and (4.11), this does not increase the order of the complexity. On the
other hand, for the convenience of the explanation, we have rearranged the whole array
of base functions whenever one of them is merged to another. Since this rearranging
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Table 4.1
CPU time comparison: Computations for (4.17) with t0 = π/2, t = 4.0. The number of base

functions used initially is N, and L of them are left after the merging step. CPU times for each step
of the scheme are compared.

N L Discretization Merging Displaying Total Order α
10 8 0 0 1 1
100 64 0 5 4 9 0.954
1000 628 0 57 34 91 1.005
10000 6272 2 617 357 976 1.030
100000 62707 22 7763 3956 11741 1.080

process will increase the order of the complexity, we need to use a different strategy in
the actual computation. We may link the base functions pointing the adjacent ones
so that one of them can be easily removed. These kinds of techniques are classical
and we omit the details.

4.3. CPU time comparison. In this section we consider several numerical
examples and show the CPU time for each case. In fact, the Burgers equation is
the case that the self-similarity profile g(x) and the binary operator “∗” between
base functions are given explicitly, (4.3) and (4.15). So that case does not show the
complexity of the scheme well. In the examples in this section, we numerically solve
(4.4) and (4.11) using Newton’s method.

First, consider a Cauchy problem with the cubic law, f(v) = v3/3,

vt + v2vx = 0,
v(x, 0) = v0(x),

v0(x) =

{
sin(πx)/π, 0 < x < 1,

0, otherwise.
(4.17)

In this case the self-similarity profile g(x) is concave. Since v′0(x) = cos(πx) and
f ′′(v) = 2v, the condition (4.6) is written as

cos(πx) <
π

2t0 sin(πx)
, 0 < x < 1.

We can easily check that it is satisfied for t0 = π/2. In Table 4.1 we have compared
the CPU time of the computations as we increase the number of base functions (or
mesh points). The solution is computed for time t = 4.

Suppose that the CPU time T (N) for the computation with N mesh points is
T (N) = cNα for some constants c, α > 0. Then we can easily check that

α =
ln(T (N1)/T (N2))

ln(N1/N2)
.(4.18)

This number represents the complexity order of the scheme, and it is computed and
shown in Table 4.1. We may observe that the order is about α = 1.08. These
computational results confirm that the complexity of the scheme is almost linear.
The extra growth in the CPU time is caused by Newton’s method. If we use finer
base functions, we need to use smaller tolerances in finding the shock location.

Next we consider a problem with the flux f(u) = 2
3u

3/2, where the self-similarity
profile g(x) is convex. In this case we cannot find the time index t0 > 0 that satis-
fies (4.6) for the initial value given in the previous example. So we consider

vt +
√
v vx = 0,

v(x, 0) = v0(x),
v0(x) =

{
5x2(x− 1)2, 0 < x < 1,

0, otherwise.
(4.19)
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Table 4.2
CPU time comparison: Computations for (4.19) with t0 = 0.1, t = 1.0. The number of base

functions used initially is N, and L of them are left after the merging step. CPU times for each step
of the scheme are compared.

N L Discretization Merging Displaying Total Order α
10 7 0 1 1 2
100 62 0 13 7 20 1.000
1000 610 0 209 92 301 1.178
10000 6092 1 2785 1113 3899 1.112
100000 60914 12 34068 13105 47185 1.083

Table 4.3
CPU time comparison: Computations for (4.20) with t0 = 0.1, t = 0.5. The number of base

functions used initially is N, and L of them are left after the merging step. CPU times for each step
of the scheme are compared.

N L Discretization Merging Displaying Total Order α
10 7 0 1 0 1
100 60 0 7 5 12 1.079
1000 589 1 113 53 167 1.144
10000 5878 1 1635 633 2269 1.133
100000 58767 13 19965 7114 27092 1.077

Since v′0(x) = 10x(x− 1)(2x− 1) and f ′′(v) = 1/2
√
v in this case, the condition (4.6)

is written as

−10(2x− 1) < 2/t0, 0 < x < 1.

It is satisfied for t0 < 0.2, and we choose t0 = 0.1. The solution has been computed
at time t = 1, and their CPU times and the complexity of the scheme have been
compared in Table 4.2. We observe a similar complexity order, α = 1.083, as we do
in the previous example.

As the last example, we consider a combination of three power laws,

vt + (
√
v + v + v2) vx = 0,

v(x, 0) = v0(x),
v0(x) =

{
5x2(x− 1)2, 0 < x < 1.

0, otherwise.
(4.20)

The solution has been computed at time t = 0.5 using an initial time index t0 = 0.1.
Their CPU times and the complexity of the scheme have been compared in Table 4.3.
We observe a complexity order α = 1.077 which is similar to the previous examples.

4.4. Comparison with Godunov. A typical way to discretize the initial data
is to take the cell average (see Figure 4.4(a)). The Godunov scheme solves a series
of Riemann problems between each cell for a short amount of time ∆t and then
repeats the process until it reaches a given time t > 0. In Figure 4.4(b) we can see
that the numerical solution converges to the same limit as the S-summation shown in
Figure 4.3(b), as ∆x → 0.

Remark 4.7 (computation time). Let N be the number of mesh points. Then the
number of operations for the S-summation is of order O(N) since the time marching
process is not required, Theorem 3.6. The number of operations is almost independent
from the final time t > 0. On the other hand, the Godunov scheme has operations of
order O(N2) and the situation becomes worse if the final time t is increased.

Remark 4.8 (error estimate). We can clearly observe that the exact solution v
of (4.1) (or ||C|| → 0 limit of the S-summation) passes through artificial shocks of
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Fig. 4.4. Three approximations by Godunov using ∆x = 1/10, 1/40, 1/160. The scheme is
convergent to the same limit of the S-summation. We can observe that numerical solutions are
separated near the shock, and it is hard to guess where the limit is from a single computation.
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Fig. 4.5. A magnification of Figure 4.3(b) near the physical shock shows that an S-summation
with a finer mesh passes through the middle of the artificial shocks. 10, 40, and 160 base functions
are used.

self-similarity solutions (see Figure 4.3(b)). In Figure 4.5 a part of Figure 4.3(b) near
the physical shock is magnified together with other similarity summations consisting
of 10 and 160 base functions. In this figure we can also observe that S-summations
are attached to each other in the middle of self-similar profiles. Noting that the sizes
of artificial shocks decrease in time with order of O(1/(t + t0)), these observations
show the possibility for a good error estimate.

Remark 4.9 (shock appearance time). In a numerical scheme the solution is
approximated by piecewise continuous functions, and it is hard to see if a discontinuity
represents the physical shock or not. In our scheme, as we can see from Figure 4.2, the
accumulation of base functions represents the physical shock. So, if a base function
is merged to its behind one in the sense of (4.12), we may conclude that a physical
shock has appeared. The physical shock appears at time t = 1 in the example (4.1)
since min(∂xv0(x)) = −1. We can easily check whether (4.12) happens around that
time. Table 4.4 shows the time when the number of initial base functions decreases
by one.
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Table 4.4
Shock appearance time. The exact solution with initial data (4.1) blows up at t = 1. The time

of shock appearance can be measured by counting the base functions after the merging step.

Initial number of base functions The time when the number is decreased by 1
25 T = 1.02
50 T = 1.005
100 T = 1.0015
200 T = 1.0008
400 T = 1.0002
800 T = 1.00005

5. General cases. The S-summation has been considered under hypothesis (H).
In this section we generalize it under hypotheses (H1) and (H2).

5.1. General convex flux. We consider L1 initial function u0 which is uni-
formly bounded, say, −A ≤ u0(x) ≤ B. Then the solution of (2.1) is bounded above
and below:

−A ≤ u(x, t) ≤ B, A,B ∈ R+.

Consider a general convex flux, i.e.,

(H1) f ′′(u) ≥ 0.

If the flux satisfies f ′′(u) ≤ 0, we may change the variable y = −x and get an
equation ut + f̄(u)y = 0 with f̄(u) = −f(u), where f̄ satisfies (H1). Note that we
include the equality in (H1) and a piecewise linear flux can be considered.

We can easily check that a new flux,

h(w) = f(w −A)− f ′(−A)w − f(−A),(5.1)

satisfies the hypothesis (H) and h′(0) = 0. Let w(x, t) be the solution of

wt + h(w)x = 0, w(x, 0) = u0(x) +A.(5.2)

We can easily check that

u(x, t) = w(x− f ′(−A)t, t)−A(5.3)

is the solution with the original flux f and initial data u0. Since u ≥ −A, the
solution w(x, t) is positive. Now we are in the exact same situation as in the pre-
vious sections, except with respect to the structure of the initial data. The initial
data w(·, 0) is not L1 anymore. To handle the situation, we consider two special base
functions with infinite mass,

Bt,c=−∞,s(x) =

{
A, x < s+ t h(A)/A,
0, x > s+ t h(A)/A,

Bt,c,s=∞(x) =
{
max

(
g(x−c

t ), A
)
, x > c,

0, x < c,

where h′(g(x)) = x, i.e., g(x) is the similarity profile under the flux h(w), not f(u).
These base functions handle the transformation u0(x) → u0(x) + A. Note that the
speed of the shock connecting the state w = A and w = 0 is h(A)/A in our case. The
S-summation including these two base functions can be defined in a similar way. We
omit the details. Figure 5.1 shows how the self-similar solution evolves for the Burgers
case. In the figure even the solution with very rough initial discretization with only
16 base functions represents the asymptotic behavior very correctly.
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(a) Data discretization (b) Solutions at t = 30

Fig. 5.1. Three S-summations are displayed using 16, 64, and 256 base functions. It handles
sign changing solutions correctly. This figure shows the time convergence to an inviscid N-wave.

5.2. Flux without convexity. Consider a flux with a single inflection point:

(H2) f ′′(u) ≤ 0 for u ≤ A, f ′′(u) ≥ 0 for u ≥ A.

Then, under the change of variables,

h(w) = f(w +A)− f ′(A)w − f(A), u(x, t) = w(x− f ′(A)t, t) +A,(5.4)

the problem (2.1) is transformed to

wt + h(w)x = 0, w(x, 0) = u0(x)−A.

Then the new flux h satisfies

h′′(w) ≤ 0 for w ≤ 0, h′′(w) ≥ 0 for w ≥ 0, h′(w) ≥ 0 for all w,(5.5)

and h(0) = h′(0) = h′′(0) = 0. Since A is not the lower bound of the solution u(x, t)
in general, we cannot expect w ≥ 0. So in this case we have to consider the posi-
tive part and the negative part together. It is possible since h′(w) is monotone on
(−∞, 0) and (0,∞), respectively. All we have to do is to consider negative base
functions together with positive ones. Since the wave speed h′(w) is positive, the
S-summation is defined from the right-hand side as in the previous cases.

Example 5.1. Consider an inviscid thin film flow in [1],

ut + (u
2 − u3)x = 0,

u(x, 0) = u0(x),
(5.6)

where the initial datum is compactly supported supp(u0) ⊂ [L1, L2]. The flux f(u) =
u2 − u3 has a single inflection point A = 1/3 and, under the transformation (5.4), we
get the flux h(w) = −w3. It satisfies

h′′(w) ≥ 0 for w ≤ 0, h′′(w) ≤ 0 for w ≥ 0, h′(w) ≤ 0 for all w,

which is not exactly the same as (5.5) but has the opposite direction in the inequalities.
We may do the S-summation from the left-hand side instead of changing the space
variable using y = −x. Now the original problem (5.6) is transformed to

wt − (w3)x = 0,
w(x, 0) = w0(x) := u0(x)−A.

(5.7)
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In this case the self-similarity profile (2.8) is given by

g±(x) = ±
√

−x/3 , x < 0,(5.8)

and the corresponding base functions are

B±
t,s,c(x) =

{
g±((x− c)/t), s < x < c,

0, otherwise.
(5.9)

The initial data v0(x) converges to −A as x → ±∞, and we need to consider two base
functions with infinite mass that are

Bt,s=L2,c=∞(x) =
{ −A, x > L2 + t h(−A)/(−A),

0, x < L2 + t h(−A)/(−A),

Bt,s=−∞,c=L1
(x) =

{
max

(
g−((x− L1)/t),−A

)
, x < L1,

0, x > L1.

Note again that in our example (5.6) the infinite state is −A = −1/3 and the shock
speed is h(−A)/(−A) = −1/9.

Numerical solutions of (5.6) with initial data,

u0(x) =

{
2
3 |sin(2πx)|, 0 < x < 2,

0, otherwise,
(5.10)

are shown in Figure 5.2. The first picture shows the initial data and the S-summation
of 200 base functions at time t = 6. A part of the summation has been magnified
with numerical approximations of the Godunov scheme in the second picture. We can
clearly see that the solution of the Godunov scheme converges to the S-summation.
This example shows that the S-summation gives a very accurate resolution using a
small number of mesh points.
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(a) Initial data and S-summation at t = 6 (b) Comparison with Godunov

Fig. 5.2. Flux is f(u) = u2 − u3. (a) shows the initial data and the S-summation at t = 6.
(b) shows that the Godunov scheme converges to the S-summation. 200 base functions are used in
the S-summation and 800 and 4,000 meshes are used in the Godunov scheme.
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5.3. Space dependent flux in multidimensional space. The self-similarity
of the problem (2.1) relies on the fact that the flux depends only on the solution, i.e.,
f = f(u). We have no clue how to generalize our scheme to a problem with a general
space dependent flux, f = f(u, x). However, if the space dependence is given by

ut + a(x)f ′(u)ux = 0,(5.11)

the equation is transformed into

ut + f(u)y = 0(5.12)

under the change of variable y(x) =
∫ x

0
1/a(s)ds, and our scheme can be applied.

Since the self-similarity of hyperbolic conservation laws is the one-dimensional
property, it should be possible to expand the scheme to multidimensional problems.
Consider a two-dimensional problem,

ut + f ′(u)(a(x1, x2)ux1
+ b(x1, x2)ux2) = 0,(5.13)

with a velocity vector field satisfying

∂x1
a(x1, x2) + ∂x2

b(x1, x2) = 0.(5.14)

Cvetkovic and Dagans [6] suggest space variables y1, y2 satisfying

dy1

dx1
=

1

a(x1, η)
, y2 = x2 − η,

dη

dx1
=

b(x1, η)

a(x1, η)
,(5.15)

which transform (5.14) into

ut + f(u)y1 = 0, u = u(y1, y2, t).(5.16)

Problem (5.16) can be considered as a set of one-dimensional problems, and, hence,
the complexity of the scheme for it is of order O(N2). Since the transformation (5.15)
also has the complexity of O(N2), we eventually get a scheme of O(N2) for a two-
dimensional problem. In this approach, each channel of the velocity vector field is
considered separately and, hence, it seems useful to channel problems.

6. Second order approximation. The scheme introduced in the previous sec-
tions exactly solves the problem with modified initial data, and the size of the initial
error decreases in time. However, the scheme is not good enough for the short time
behavior since the error generated by the initial discretization can be huge. Here we
add an extra structure to base functions and make the initial data discretization to
be of second order. In this way we can handle general piecewise self-similar solutions
in (1.7).

6.1. Modified base functions. The base function considered in the previous
sections has three indexes, say, m, t, c. In this section we introduce two extra indexes,
h and t̄. Note that there are two time indexes t and t̄ which play different roles. We
assume 0 ≤ t < ∞ and −∞ < t̄ ≤ ∞. For simplicity we assume (H). It can be easily
generalized, as it was in section 5.

To figure out the structure of the new base function Bh,t̄
m,t,c(x), we introduce

x∗ = c+ tf ′(h), 0 ≤ t < ∞,(6.1)
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and

c̄ = x∗ − t̄f ′(h), −∞ < t̄ < ∞,(6.2)

(see Figures 6.1 and 6.2). Let g(x) be the self-similarity profile. As an intermediate

step we define Bh,t̄
t,c (x) first. For 0 < t̄ < ∞ it is defined by

Bh,t̄
t,c (x) =




g
(
(x− c)/t

)
, c < x < x∗,

g
(
(x− c̄)/ t̄

)
, x∗ < x,

0, otherwise,
(6.3)

and, for −∞ < t̄ ≤ 0, it is defined by

Bh,t̄
t,c (x) =




g
(
(x− c)/t

)
, c < x < x∗,

g
(
(x− c̄)/ t̄

)
, x∗ < x < c̄,

0, otherwise.
(6.4)

The constant c̄ is the center of the top self-similarity profile with time index t̄,
and the constant x∗ is the x-coordinate of the intersection point between two self-
similarity profiles with indexes t and t̄ (see Figures 6.1 and 6.2). We can easily see

from (6.2) that c̄ < x∗ for t̄ > 0 and c̄ > x∗ for t̄ < 0. The function Bh,t̄
t,c (x) is well

defined for t = 0, t̄ = 0 since the corresponding domain is empty. For t̄ = ∞, we
consider

Bh,∞
t,c (x) =




g
(
(x− c)/t

)
, c < x < x∗,

h, x∗ < x,
0, otherwise.

(6.5)

Now we introduce the indexm > 0, which decides the support of the base function.
Let ξ > c be the solution of

∫ ξ

c

Bh,t̄
t,c (x)dx = m.(6.6)

For t̄ > 0 it always has a solution. For t̄ ≤ 0 it has a solution only ifm <
∫ c̄

c
Bh,t̄

t,c (x)dx.
The base function is now defined by

Bh,t̄
m,t,c(x) =

{
Bh,t̄

t,c (x), c < x < ξ,
0, otherwise.

(6.7)

Let u(x, t) be the solution of the conservation law ut + f(u)x = 0 with its ini-

tial value u(x, 0) = Bh,t̄
m,0,c(x). Then, from the well-known technique of equal area

construction, we may easily see that the solution is simply u(x, t) = Bh,t̄+t
m,t,c (x) (see

Figures 6.1 and 6.2). For this solution u(x, t), the point x∗ = x∗(t) in (6.1) satisfies

x∗(t) = c+ tf ′(h) = c+ tf ′(u(x∗(t), t)), x∗(t) < ξ(t),

where ξ = ξ(t) is the solution of (6.6). So x = x∗(t) is a characteristic line for
x∗(t) < ξ(t). On the other hand, c̄ is a constant with respect to t > 0:

c̄ = x∗(t)− (t+ t̄)f ′(h) = c− t̄f ′(h).
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Fig. 6.1. If the flux is f(v) = v3/3, the self-similarity profile is g(x) =
√
x. Base func-

tion Bh,t̄
m,0,c(x) with c = 1, t̄ = 0.5, h =

√
2, m =

∫ 2

1
g(x/0.5)dx is given in (a) (solid lines).

We can easily check that c̄ = 0. If u(x, 0) = Bh,t̄
m,0,c(x), the solution of the conservation law is

u(x, t) = Bh,t+t̄
m,t,c (x) and it is given in (b) (solid lines) with t = 0.2.
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Fig. 6.2. If the flux is f(v) = v3/3, the self-similarity profile is g(x) =
√
x. Base func-

tion Bh,t̄
m,0,c(x) with c = 0, t̄ = −0.7, h =

√
2/0.7, m =

∫ 1

0
g(2 − x/0.7)dx is given in (a) (solid

lines). We can easily check that c̄ = 2. If u(x, 0) = Bh,t̄
m,0,c(x), the solution of the conservation law

is u(x, t) = Bh,t+t̄
m,t,c (x) and it is given in (b) (solid lines) with t = 0.4.

In Figures 6.1 and 6.2 base functions are displayed for positive and negative t̄ together
with self-similarity profiles. In these figures we can clearly observe the different roles
of two self-similarity profiles generated by two index sets {c, t} and {c̄, t̄ }.

The S-summation among these base functions can be similarly defined using the
profile g

(
(x− c)/t

)
in the domain c < x < x∗ and the profile g

(
(x− c̄)/ t̄

)
for x∗ < x.

We omit the details. We may consider the base function (3.2) as a special case of (6.7)
with t̄ = 0.

6.2. Initial discretization and the approximation. Suppose the initial func-
tion v0 ∈ L1 has a compact support supp(v0) ⊂ [L1, L2]. Let C = {cn = L1 < · · · <
c1 < c0 = L2} be a partition of the interval [L1, L2]. We can approximate v0 with
self-similarity profiles over interval (ck, ck−1) with time index t̄k ∈ R, which is sec-
ond order. For the Burgers case it is simply a piecewise linear approximation. The
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approximation u0 can be written as

u0(x) =

n⊙
k=1

Bhk,t̄k
mk,0,ck

(x) =

n∑
k=1

Bhk,t̄k
mk,0,ck

(x),(6.8)

where mk =
∫ ck−1

ck
u0(x)dx and hk = u0(ck). Initially, the supports of base functions

are disjoint, and, hence, the self-similarity summation is the usual summation. The
exact solution v(x, t) of the conservation law (1.1) is approximated by

u(x, t) =

n⊙
k=1

Bhk,t+t̄k
mk,t,ck

(x),(6.9)

and we expect an error estimate similar to (3.16), i.e.,

||v(x, t)− u(x, t)||1 ≤ ||v0(x)− u0(x)||1 = O(||C||2) as ||C|| → 0.(6.10)

Remark 6.1. The initial discretization (6.8) is trivial in comparison with Step 1 in
section 4.2. It is an additional advantage we obtain when the modified base function
is used in a numerical scheme. However, this additional structure may cause extra
complexity when it is used as an analytical tool.

Remark 6.2 (piecewise constant data). In many cases initial data are given as
piecewise constant functions from the beginning. In this case the initial data can be
considered as a summation of base functions with t̄ = ∞; see (6.5). In Figure 6.3
we consider the Burgers case (4.1) using base functions Bh,∞

m,t,c(x). We can clearly see
that these approximations represent the shock location very well. Unlike the previous
case, the solution with finer mesh always passes though the constant parts of coarse
ones.
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(a) Data discretization (b) Solutions at t = 1.2

Fig. 6.3. The S-summation for the modified base functions (6.7) with t̄ = ∞ gives a piecewise
constant, piecewise self-similar solution. In the figure, 3 summations are displayed together using
10, 20, 40 base functions. We observe that the finer one always passes the constant parts.

Remark 6.3 (singular initial data). If singular initial data are given, then extra
mesh points are usually introduced to capture the effect of the singularity of the data.
But since our method handles initial data individually, extra mesh points are not
needed. In Figure 6.4(a) the Burgers equation is solved with singular initial data. We
use 6 modified base functions with t̄ =∞.

Remark 6.4 (front tracking). It is possible to consider the front tracking method
in terms of the S-summation. Consider an L1 solution of the Burgers equation
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Fig. 6.4. The scheme does not require extra meshes to handle singular initial data (a). In the
S-summation every datum is handled exactly by a base function. Only 6 base functions solve this
example.

bounded by 0 ≤ u(x, t) ≤ 1. Let h(u) be the polygonal approximation of the flux
f(u) = u2/2 with the partition {0, 1/n, . . . , n/n = 1}. Then h′(u) is a step function,

h′(u) = (2k − 1)/2n, (k − 1)/n < u < k/n, k = 1, . . . , n,(6.11)

and the self-similarity profile g(x) is given by

g(x) = (k − 1)/n, (2k − 1)/2n < x < (2k + 1)/2n, k = 1, . . . , n.(6.12)

So the values of g(x) are the breaking points of the flux h(u). We can approximate
the given initial data v0 by taking a cell average, not just breaking points. Then the
initial discretization u0 can be written in the form of (6.8) with t̄k = ∞. This is a
simplified version of the front tracking method under (H).
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