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CNRS and Laboratoire de Mathématiques, Univ. Paris-Sud, University Paris-Saclay,

F-91405 Orsay Cedex, France

Yong-Jung Kim

Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Daejeon 305-701, Korea,
and National Institute for Mathematical Sciences, 70 Yuseong-daero, Daejeon 305-811,

Korea

Abstract

In this paper we present an intuitive explanation for the non-uniqueness of the
traveling wave speed in the Fisher equation, showing a similar non-uniqueness
property in the case of inviscid traveling waves. More precisely, we prove that
traveling waves of the Fisher equation with wave speed c > 0 converges to the
inviscid traveling wave with speed c > 0 as the diffusion vanishes. A complete
diagram that shows the relation between the diffusive and inviscid traveling
waves is given in this paper.
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1. Introduction

It is believed that traveling wave phenomena in a reaction diffusion equation,

ut = duxx + ψ(u), u ≥ 0, x ∈ R,

are obtained by an interplay between the diffusion and the reaction. For ex-
ample, there exists a unique traveling wave solution for a bistable nonlinearity
case, say ψ(u) = u(1 − u)(u − a), 0 < a < 1, that connects the two stable
steady states, u = 0 and 1. However, such a traveling wave solution does not
exist if d = 0 or ψ = 0. In other words, the unique traveling wave solution has
been produced by an interplay between the two different mechanisms. However,
such a belief fails when the traveling wave connects a stable steady state to
an unstable one. First of all, there exist inviscid (d = 0) traveling waves for
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any wave speed which stand without any help of diffusion. On the other hand,
diffusive (or viscous) traveling waves exist only when the wave speed is greater
than or equal to a minimum speed. In other words, the diffusion does not pro-
duce traveling waves, but a gap in wave speeds. The purpose of this note is to
clarify the role of each component involved in the traveling wave phenomenon
that connects a stable steady state to an unstable one.

To be more specific we consider the Fisher equation case in this note, i.e.,
ψ(u) = u(1 − u), where the stable steady state is u = 1 and the unstable one
is u = 0. This Fisher equation provides the phenomenon in a simplest form. If
d = 0, there is a traveling wave for any given wave speed c > 0 (see Section 2).
We denote it by vc and call it an inviscid traveling wave. However, if d 6= 0, there
exists a traveling wave of a speed c > 0 if and only if c ≥ c∗ := 2

√
d. We denote

it by uc,d and call it a diffusive traveling wave. The theory of this paper is for the
relation between the inviscid and diffusive traveling waves. First we show that
uc,d → vc uniformly as d→ 0 in Theorem 1. This convergence gives an insight
for the existence of a continuum of traveling wave speeds in the Fisher equation,
where each fixed speed corresponds to an inviscid traveling wave as d→ 0. The
convergence uc,d → uc∗,d as c → c∗ with a fixed d is given in Theorem 2 and
the convergence of uc∗(d),d to a step function as d → 0 is given in Theorem 3.
The convergence of vc to the same step function as c → 0 directly comes from
the explicit formula of vc in (2.5). Finally, these relations of convergence among
the step function, diffusive and inviscid traveling waves complete a diagram of
convergence given in Figure 1, which is discussed in Section 4.

Studies of the vanishing viscosity limit are classical in hyperbolic problems
of conservation laws. Such studies include the Fisher equation as a zero con-
vection case if a monostable reaction term is added (see [9, 10, 13, 14, 18]). In
particular, it was shown in [3, 4, 8] that the vanishing viscosity limit of min-
imum wave speeds is the minimum wave speed of the inviscid traveling wave,
which is a related result to Theorem 3. The convergence relations given in this
paper, Figure 1, provide a succinct insight for the full dynamics in a simplest
form without convection and suggest related conjectures under the presence of
nonlinear convection.

Studies of the traveling wave phenomenon of reaction diffusion equations
have a long history. The Fisher equation has been introduced by Fisher [7] and
by Kolmogorov, Petrovsky and Piskunov [12]. The purpose of Fisher was to
perform modelling in population genetics, where the travelling wave solutions
represented the spread of the advantageous gene through space. Later on, the
Fisher-KPP equation was also used in ecology to model waves of an invading
population (cf. Holmes et al [11]) and in wound healing, where the solutions
represent healing waves of cells in the skin (cf. Sherratt and Murray [16]).

2. Inviscid Traveling Waves

Consider the Fisher equation,

ut = duxx + u(1− u), u(x, 0) = u0(x), t > 0, x ∈ R,
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where u(x, t) is a population density and d > 0 is a constant diffusivity. Let
z = x − ct be the variable for the traveling wave solution with a speed c > 0.
Due to the symmetric structure of the equation we may consider positive wave
speed c > 0 and the negative one can be treated symmetrically. It is well known
that, for any c ≥ c∗, there exists a traveling wave solution of wave speed c, where
the minimum wave speed is c∗ = 2

√
d (see [6, 15]). Let u be the travelling wave

solution for a wave speed c ≥ c∗, i.e., u(x, t) = u(x−ct) = u(z). Since ut = −cu′

and ∂2

∂x2u = u′′, the traveling wave solution satisfies

du′′ + cu′ + u(1− u) = 0, z ∈ R. (2.1)

We are looking for a monotone traveling wave that connects the stable steady
state u = 1 and the unstable one u = 0:

lim
z→−∞

u (z) = 1, u(0) = 0.5, and lim
z→∞

u (z) = 0. (2.2)

The conditions at infinity allow positive wave speeds only. Remember that the
traveling wave phenomenon of the Fisher equation has translation invariance
and the condition u(0) = 0.5 picks the symmetric one with respect to x = 0 and
u = 0.5. The traveling wave solution switches from the unstable steady state
u = 0 to the stable one u = 1 as the wave front passes by. There is no such a
monotone traveling wave solution with a speed slower than c∗.

Remark 1. We are using the notational convention that functions are distin-
guished by variables and contexts such as u(x, t) or u(z). However, we denote
the traveling waves as u = uc,d or v = vc to explicitly denote the dependency of
parameters if needed.

Next, we recall a standard result from literature (see [1, 2, 17]).

Proposition 1. Let c ≥ c∗ := 2
√
d. There exists a unique solution uc,d ∈

C2(R) of the problem (2.1)-(2.2). It satisfies that

1. 0 < uc,d < 1 and u′c,d < 0;

2. There exist positive constants, C, p > 0, such that

0 < 1− uc,d(z) < Ce−p|z|, for z ≤ 0,

|uc,d(z)| ≤ Ce−p|z|, for z ≤ 0,

|u′c,d(z)|+ |u′′c,d(z)| ≤ Ce−p|z|, for z ∈ R.

Next, we introduce inviscid traveling waves. Consider the Fisher equation
with d = 0 and an initial value v0,

vt = v(1− v), v(x, 0) = v0(x), t > 0, x ∈ R.

Notice that, even if v = v(x, t) is a function of two variables, this equation is
simply a collection ordinary differential equations for each x ∈ R, which evolve
independently. It is the initial distribution v0(x) that connects them and gives
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the correct timing of the wave propagation. Using the traveling wave variable
z = x − ct we assume that v(x, t) = v(z). Then, since vt = −cv′, the traveling
wave v satisfies

cv′ + v(1− v) = 0, z ∈ R. (2.3)

We are looking for a front type traveling wave that connects the stable steady
state v = 1 and the unstable one v = 0, i.e.,

lim
z→−∞

v (z) = 1, v(0) = 0.5, and lim
z→∞

v (z) = 0. (2.4)

The traveling wave solution is unique only up to translation and we are choosing
one by fixing v(0) = 0.5. Equation (2.3) is the logistic equation with a growth
rate − 1

c . Hence, the traveling wave solution of speed c > 0 is the logistic
function,

vc(z) =
(
1 + exp

(
z/c
))−1

, (2.5)

which satisfies the conditions in (2.4). In other words, for any speed c > 0, there
exists a corresponding traveling wave solution driven only by the reaction term.
In terms of the variables x and t, the traveling wave is written as

vc(x, t) =
(
1 + exp

(
x/c− t

))−1
.

Remark 2. Similar phenomena appear when a bistable nonlinearity, ψ(u) =
u(1 − u)(u − a), 0 < a < 1, is considered. In this case, inviscid traveling wave
solutions that connect u = 0 and u = a, or u = a and u = 1 can be similarly
constructed. However, there is no inviscid traveling wave solution that connects
two stable steady states, u = 0 and u = 1.

3. Convergence Theorems

The diffusive traveling wave solution uc,d of the Fisher equation is defined
for all c ≥ c∗ and the inviscid one vc is for all c > 0. The minimum wave speed
c∗ = 2

√
d converges to zero as d → 0. Therefore, for any given c > 0 we may

compare vc and uc,d if d is small enough. In this section we study their relations
by taking the limit d→ 0, c→ c∗, or c→ 0. Finally, we complete the diagram
of limits of traveling waves.

3.1. convergence to inviscid traveling waves

We denote by uc,d the unique solution of Problem (2.1)-(2.2). First, we recall
that, for a positive traveling wave speed c > 0,

0 < uc,d(z) < 1, and u′c,d(z) < 0, z ∈ R. (3.1)

In particular,∫
|u′c,d(z)|dz = −

∫
u′c,d(z)dz = uc,d(∞)− uc,d(−∞) = 1
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so that u′c,d is uniformly bounded in L1(R). Next, we multiply the ODE in (2.1)
by u′c,d to deduce that

du′′c,du
′
c,d + c(u′c,d)

2 + uc,d(1− uc,d)u′c,d = 0.

Integrating it on R gives that

d
[ (u′c,d)

2

2

]+∞
−∞

+ c

∫
(u′c,d(z))

2dz +
[ (uc,d)

2

2
− (uc,d)

3

3

]+∞
−∞

= 0.

Therefore, since limz→±∞ u′c,d(z) = 0 by Proposition 1, we have∫
(u′c,d(z))

2dz = 1/6c, or ‖u′c,d‖L2(R) = 1/
√

6c. (3.2)

Theorem 1. Let c > 0 be fixed and uc,d and vc be the solutions of (2.1)-(2.2)
and (2.3)-(2.4), respectively. Then, uc,d → vc uniformly in R as d→ 0.

Proof. To begin with, we recall the embedding H1(−R,R) ⊂ C1/2([−R,R]).
Let α ∈ (0, 1/2) be arbitrary. By a standard diagonal procedure, there exists a
function uc ∈ Cαloc(R) and a subsequence uc,dn such that

uc,dn → uc in Cαloc(R)

as dn → 0. We remark that 0 ≤ uc ≤ 1 and uc is a decreasing function.
Next we show that uc coincides with vc. To do that we multiply the ODE

in (2.1) by an arbitrary test function ϕ ∈ C∞0 (R). This yields

dn

∫
u′′c,dnϕdz + c

∫
u′c,dnϕdz +

∫
uc,dn(1− uc,dn)ϕdz = 0,

that is, after integration by parts,

dn

∫
uc,dnϕ

′′dz − c
∫
uc,dnϕ

′dz +

∫
uc,dn(1− uc,dn)ϕdz = 0. (3.3)

Since |uc,dn | ≤ 1, we deduce that

dn

∣∣∣ ∫ uc,dnϕ
′′
∣∣∣dz ≤ dn ∫ |ϕ′′|dz → 0 as dn → 0.

Letting dn → 0 in (3.3), we deduce that∫
{−cucϕ′ + uc(1− uc)ϕ}dz = 0

for all ϕ ∈ C∞0 (R). This implies that uc is a weak solution of

cu′c + uc(1− uc) = 0. (3.4)

We remark that the fact that uc,d(0) = 0.5 implies that uc(0) = 0.5. Therefore,
uc 6≡ 1 and uc 6≡ 0. These and the uniqueness of the solution of an initial value
problem for an ordinary differential equation imply that 0 < uc < 1, which in
view of (3.4) implies that u′c < 0. It follows that uc(−∞) = 1 and uc(+∞) = 0
so that uc coincides with the unique solution vc of Problem (2.3)-(2.4). The
uniform convergence on R follows from Diekmann [5, Lemma 2.4, p.463].
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3.2. convergence to the minimum speed (c→ c∗)

Next we prove the following result.

Theorem 2. Let c > c∗ and uc,d be the solution of (2.1)-(2.2). Then,

uc,d → uc∗,d uniformly in R as c→ c∗.

Proof. It follows from (3.1) and (3.2) that there exists a function uc∗ and a
subsequence ucn,d such that

ucn,d → uc∗ uniformly in compact sets of R as c→ c∗.

Next we show that uc∗ coincides with the unique solution uc∗,d of Problem
(2.1)-(2.2), which also implies that the whole sequence uc,d converges as c→ c∗.
First, we multiply (2.1) by an arbitrary test function ϕ ∈ C∞0 (R). This yields

d

∫
u′′cn,dϕdz + cn

∫
u′cn,dϕdz +

∫
ucn,d(1− ucn,d)ϕdz = 0

that is, after integration by parts,

d

∫
ucn,dϕ

′′dz − cn
∫
ucn,dϕ

′dz +

∫
ucn,d(1− ucn,d)ϕdz = 0. (3.5)

Letting cn → c∗ in (3.5), we deduce that

d

∫
uc∗ϕ

′′dz − c∗
∫
uc∗ϕ

′dz +

∫
uc∗(1− uc∗,d)ϕdz = 0

for all ϕ ∈ C∞0 (R). This implies that uc∗ is a smooth function which satisfies
pointwise the equation

du′′c∗ + c∗u′c∗ + uc∗(1− uc∗) = 0 on R. (3.6)

Moreover uc∗ is a nonincreasing function such that

0 ≤ uc∗ ≤ 1, uc∗(0) = 0.5, and ‖u′c∗‖L2(R) ≤ 1/
√

6c∗.

Next we show that uc∗(z)→ 0 as z →∞. Integrating the equation (3.6) between
0 and R yields

du′c∗(R) + c∗uc∗(R)− du′c∗(0)− c∗

2
+

∫ R

0

uc∗(1− uc∗)dz = 0,

which in turn implies that uc∗(z) → 0 as z → ∞. Indeed, since u′c∗ ∈ L2(R),
there exists a sequence {Rn} such that u′c∗(Rn)→ 0 as Rn →∞. Suppose that
uc∗(Rn)→ λ ∈ (0, 1) as Rn →∞. Then∫ Rn

0

uc∗(1− uc∗)dz →∞ as Rn →∞,
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which contradicts the fact that

−du′c∗(Rn)− c∗uc∗(Rn) + du′c∗(0) +
c∗

2

tends to the bounded term −c∗λ+ du′c∗(0) + c∗

2 as Rn →∞.
The proof that uc∗(z) → 1 as z → −∞ is similar. Thus uc∗ coincides with

the unique solution uc∗,d of Problem (2.1)-(2.2) with c = c∗, which completes
the proof of Theorem 2.

3.3. convergence along minimum speed traveling waves
Next, instead of letting d tend zero with c fixed, we study the singular limit

of the travelling wave with the minimum velocity. The following result holds.

Theorem 3. Let uc,d be the solution of (2.1)-(2.2) and c∗(d) = 2
√
d. Then,

uc∗(d),d → w pointwise in R as d→ 0, where w is a step function given by

w(0) = 0.5 and w = χ(−∞,0) if z 6= 0. (3.7)

Proof. The function uc∗(d),d satisfies the equation,

du′′ + 2
√
du′ + u(1− u) = 0, z ∈ R,

together with the boundary conditions in (2.2). Set z =
√
d y and

uc∗(d),d(z) = φ(y) = φ(
z√
d

). (3.8)

Then φ satisfies φ′′+ 2φ′+φ(1−φ) = 0 on R and the same conditions in (2.2).
It follows from (3.8) that uc∗(d),d(z)→ w(z) for all z ∈ R as d→ 0.

3.4. limit along inviscid traveling waves
The convergence of the inviscid traveling waves vc to the step function w in

(3.7) as c → 0 is easily obtained from the explicit formula (2.5), i.e., vc → w
pointwise in R as c→ 0, where w is

4. Result and Discussion

Combining the previous convergence results we obtain a complete diagram
of convergence given in Figure 1. First, we find a parabola, c = 2

√
d, in (c, d)-

plane which shows the minimum traveling wave speed for a given diffusivity
d > 0. The area on its right side is the regime with diffusive traveling waves
uc,d. However, there is no traveling wave corresponding to the parameters in
the other regime.

The authors remind of the existence of inviscid traveling waves for any wave
speed c > 0 and demonstrated that the traveling wave speeds beyond the min-
imum speed is actually generated by reaction, but not diffusion. Theorem 1 is
the one that shows uniform convergence of uc,d to vc as d → ∞ with c fixed.
The uniform convergence of uc,d to the minimum speed traveling wave uc∗(d),d
as c → c∗(d) with d fixed is shown in Theorem 3. Both of uc∗(d),d and vc con-
verges pointwise to the step function w in (3.7) as d → 0 or c → 0, which is
shown in Theorem 2 and by the explicit formula (2.5).
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c

d
c = c∗(d)

c < c∗

regime without

traveling waves

c > c∗

regime with

traveling waves

w

uc,d

vc

uc∗(d),d

Thm 1

Thm 2

Thm 3

(2.5)

d: diffusivity parameter

c: wave speed parameter

c∗(d) = 2
√

d: minimum wave speed

uc,d: diffusive traveling wave corresponding to (c, d)

vc: inviscid traveling wave with speed c > 0

uc∗(d),d: diffusive traveling wave with minimum speed

w: step function given in (3.7)

Figure 1: This figure shows the convergence relations among inviscid and diffusive traveling
waves of the Fisher equation. The convergences to w are pointwise and to others are uniform.

5. Conclusion

In this paper we find the reason why there are many traveling wave speeds of
a reaction diffusion equation when the traveling wave connects a stable steady
state to an unstable one. We took the Fisher equation as a model case and
shown that the existence of inviscid (or zero diffusivity) traveling wave for any
wave speed c > 0, denoted by vc, is the reason for the non-uniqueness. In
fact, we have shown that a diffusive traveling wave of speed c > 0, denoted by
uc,d, converges to vc uniformly as d → 0, which confirms the conclusion. In
Figure 1 a complete diagram of their relation is given. The relation between
the diffusive and inviscid traveling waves provides a new view for the traveling
wave phenomenon with a monostable linearity.
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