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Abstract. The effect of dispersal under heterogeneous environment is studied in terms
of the singular limit of an Allen-Cahn equation. Since biological organisms often slow
down their dispersal if food is abundant, a food metric diffusion is taken to include such a
phenomenon. The migration effect of the problem is approximated by a mean curvature
flow after taking the singular limit which now includes an advection term produced by the
spatial heterogeneity of food distribution. It is shown that the interface moves towards a
local maximum of the food distribution. In other words, the dispersal taken in the paper
is not a trivialization process anymore, but an aggregation one towards food.

Keywords. Fokker-Planck type diffusion, food metric, singular limit, generation and
propagation of interface, perturbed motion by mean curvature

1. Introduction and biological context

The purpose of this paper is to study the singular limit, as ε→ 0, of the initial-boundary
value problem,

(P ε)





ut = ∇ ·

(
1

m
∇
( u
m

))
+

1

ε2
f(u) in Ω× (0,+∞),

∂u

∂ν
= 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x) in Ω,

where Ω is a smooth bounded domain in RN (N ≥ 1), ν is the outward unit normal
vector to the boundary ∂Ω, and ε > 0 is a small parameter. The unknown function u
is the population density, m > 0 is a given food (or chemical) distribution, and f is a
bistable nonlinearity such as f(u) = −u(u− 1

2)(u− 1). Specific assumptions on m, f , and
u0 will be given later in this section.

Migration is a key strategy for the survival of biological species and the importance
of formulating a realistic dispersal theory under heterogeneous environments has been
emphasized by many authors (see [17, Chapter 5], [19, 20]). Various Fokker-Planck type
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diffusion operators have been introduced to overcome the limitation that the homogeneous
diffusion model has (see, for example, [5, 18]). The heterogeneous diffusion operator in
(P ε) is one of such examples, which takes the effect of heterogeneity in food distribution
into account. If food is the reason for migration of a biological species, the migration
distance should be related to food distribution. Food metric measures such a distance and
is defined by

(1.1) ρ(x, y) :=
∣∣∣
∫

γ

m(s) ds
∣∣∣,

where γ is the line segment connecting the two points, x and y, and the integration is the
line integral along it. This functional is really a metric in one space dimension and the
diffusion operator in (P ε) is the Laplace-Beltrami operator related to this metric (see [6,
Appendix A]). For dimensions N > 1, the functional is not a metric if m is not constant.
However, in a microscopic scale, m can be considered as constant and the functional plays
the role of metric. Then, the same diffusion operator in (P ε) gives the macroscopic level
dispersal phenomenon. We refer to [7] for a microscopic scale level approach with the food
metric.

The main goal of the paper is to investigate the migration effect produced by the Fokker-
Planck type diffusion given in the model equation. The study of the singular limit of (P ε)
gives an excellent view to observe this effect. One might think that the reaction term would
dominate the dynamics if ε > 0 is small. However, that is true only for the first stage of a
short time period of order O(ε2| ln(ε)|) and, as soon as an interface is generated (Theorems
1.1 and 1.2), the diffusion plays its role of migration and the interface starts to move
towards food. Problem (IP ) in Proposition 1.1 gives the interface motion of the singular
limit. Note that, if m = 1, the problem turns into a classical case with homogeneous
diffusion and the interface problem becomes a pure mean curvature flow. This classical
case has been intensively studied (see [1, 4, 8] and references therein). However, if m is
not constant, the second term − ∂

∂n
( 1
m2 ) of (IP ) gives an extra dynamics. In particular,

in one space dimension, the mean curvature flow part disappears and the interface moves
towards a local maximum point of m because of this extra term (see Figures 1 and 2).
In other words, the diffusion taken in (P ε) is not a trivialization process, but a gathering
process towards food. This new feature of interface movement indicates a method how
biological organisms adapt the spatial heterogeneity of environment.

1.1. Assumptions and main results. The purpose of this paper is to investigate the
population motion induced by the Fokker-Planck type diffusion and compare it to the
classical one with homogeneous diffusion. We assume that the chemical concentration
m(x, t) : Ω× [0,∞) → R+ satisfies

(1.2)




m > 0 in Ω× [0,∞), m ∈ C3,1(Ω× [0,∞)),

and
∂m

∂ν
= 0 on ∂Ω× [0,∞).

Furthermore, we assume that the nonlinear function f satisfies

(1.3)





f is C2 on R,

f ′(0) < 0, f ′(a) > 0, f ′(1) < 0,

∫ 1

0
f(u) du = 0, and 0 < a < 1,

where 0, a and 1 are the only zeros of f . We define the ‘a’ level set of the initial value by

Γ0 := {x ∈ Ω : u0(x) = a},
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and suppose that

u0 ∈ C2(Ω),(1.4)

Γ0 is a C2+α hypersurface without boundary,(1.5)

Γ0 ⊂⊂ Ω, ∇u0 · n 6= 0 on Γ0,(1.6)

u0 > a in Ωin
0 , u0 < a in Ωex

0 ,(1.7)

where the exterior domain Ωex
0 denotes the region placed between the boundary ∂Ω and

Γ0, the interior domain Ωin
0 denotes the region enclosed by the level set Γ0, and n is the

outward unit normal vector of the interior domain Ωin
0 .

It is standard that Problem (P ε) has a unique classical solution. We will denote it
by uε when the ε dependency of the solution needs to be clarified. In the first stage of
the evolution of a solution, the effect of diffusion is negligible in comparison with that
of reaction if the initial value is away from steady states. Thus, uε evolves according to
the ordinary differential equation uεt = 1

ε2
f(uε). Since f is a bistable nonlinearity with

two stable zeros, u = 0, 1, the solution uε quickly approaches to either zero or one in
most regions of Ω. Accordingly, steep transition layers (or interfaces) develop between the
two regions {uε ≈ 0} and {uε ≈ 1}. These transition layers emerge along the level set
Γ0 = {x ∈ Ω : u0(x) = a}. Note that the transition layer is located in the region where
the gradient |∇uε| is large and we will see that it takes a time of order ε2| ln ε| for such a
transition layer to develop.

The first main theorem of this paper is about the generation of interface. We will use
the notations:

(1.8) µ0 := f ′(a) > 0, tε :=
1

µ0
ε2| ln ε|.

Theorem 1.1 (Generation of interface). Let m, f , and u0 satisfy (1.2), (1.3), and (1.4)–
(1.7), respectively, and uε be the solution of (P ε). For any given η > 0, there exist ε0 > 0
and M > 0 (depending only on η, f and the initial function u0) such that, for tε as in
(1.8) and 0 < ε < ε0,

−η ≤uε(x, tε) ≤ 1 + η for x ∈ Ω,(1.9)

uε(x, tε) ≥ 1− η if u0(x) ≥ a+Mε,(1.10)

uε(x, tε) ≤ η if u0(x) ≤ a−Mε.(1.11)

In the second stage, after the interface has been generated, the reaction term is no
longer dominant but of the same order as the diffusion. As a result, the interface starts
to move slowly. We will show that the interface motion is given by

(IP )




Vn = −(N − 1)

κ

m2
−

∂

∂n

(
1

m2

)
on Γt,

Γt

∣∣
t=0

= Γ0,

where Γt is the interface at time t > 0, Vn is the normal velocity of the interface, and κ
denotes its mean curvature. The existence and uniqueness of local-in-time solutions for
Problem (IP ) follows as in [3, Lemma 2.4]. We refer to [3, Theorem 2.1] for similar results
of a related system to (IP ); see also [10] for a study of global-in-time weak solutions.

Proposition 1.1. Assume that Γ0 is a C
2+α hypersurface of RN . Then, there exists T > 0

such that Problem (IP ) possesses a unique solution Γ[0,T ] := ∪t∈[0,T ]Γt × {t} ∈ C2+α, 2+α
2 .
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Similarly, we denote by Ωin
t the region enclosed by the interface Γt and by Ωex

t the
region between ∂Ω and Γt. Let d(x, t) be the signed distance to Γt defined by

(1.12) d(x, t) :=

{
dist(x,Γt) for x ∈ Ω

ex
t ,

− dist(x,Γt) for x ∈ Ωin
t ,

where dist(x,Γt) is the distance from x to Γt in RN . The second main theorem of this
paper is about the convergence of the solution of Problem (P ε) to a step function given
by the solution of the interface problem.

Theorem 1.2 (Fine generation of interface and interface motion). Assume the same
assumptions as in Theorem 1.1 and let T > 0 be as in Proposition 1.1. For any given
η > 0, there exist ε0 > 0 and C > 0 such that

−η ≤uε(x, t) ≤ 1 + η for x ∈ Ω,(1.13)

uε(x, t) ≥ 1− η if d̄(x, t) ≤ −εC,(1.14)

uε(x, t) ≤ η if d̄(x, t) ≥ εC,(1.15)

for all ε ∈ (0, ε0) and for all t ∈ (tε, T ] where tε is defined in (1.8).

The pointwise convergence of the solution to a step function is an immediate conse-
quence of Theorem 1.2.

Corollary 1.1. For any 0 < t ≤ T , we have the following pointwise convergence:

lim
ε→0

uε(x, t) =

{
1, for x ∈ Ωin

t ,

0, for x ∈ Ωex
t .

Remark 1.1. Let Γε
t be the ‘a’ level set of u

ε at time t defined by Γε
t := {x ∈ Ω : uε(x, t) =

a}. Then the interface Γt can be approximated by Γε
t as ε → 0. More precisely, by the

arguments in the proof of [1, Theorem 1.5], Theorems 1.1 and 1.2 imply that there exists
a constant C > 0 such that

Γε
t ⊆ NεC(Γt) for all 0 ≤ t ≤ T,

where Nr(Γt) := {x ∈ Ω : dist(x,Γt) ≤ r} is the r-neighborhood of Γt. Therefore, we have

dH(Γ
ε
t ,Γt) ≤ εC, for all t ∈ [0, T ].

Here dH(A,B) := max{supa∈A dist(a,B), supb∈B dist(b,A)} denotes the Hausdorff dis-
tance between two sets A and B. As a consequent, Γε

t → Γt as ε→ 0, uniformly in [0, T ],
in the sense of Hausdorff distance.

1.2. Movement of transition layer. Biological organisms often show a random walk
type migration (diffusion) and a chemotaxis type directed migration at the same time.
Chemotaxis refers to a movement induced by the gradient of a chemical substance, which
has been studied by many authors. For instance, Keller and Segel equation (see [14]) is
written as

ut = ∇ · (k(m)∇u− χ(m)u∇m),

where k and χ are diffusivity and chemotactic sensitivity, respectively. The Fokker-Planck
type diffusion in (P ε) contains an advection term of chemotaxis type due to the hetero-
geneity of resource. This can be seen clearly if we write the diffusion term in the form
of

∇ ·

(
1

m
∇
( u
m

))
= ∇ ·

(
1

m2

(
∇u−

u

m
∇m

))
= ∇ ·

(
1

m2
∇u+

u

2
∇

(
1

m2

))
,
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where the advection term gives directed movement. We can see the effect of this advec-
tion term in the movement of the transition layer in (IP ). Note that it vanishes for a
homogeneous environment case with constant m.

In one space dimension, N = 1, the movement of the transition layer (IP) is given by

Vn = −
∂

∂n

(
1

m2

)
. Therefore, if m is constant, the interface becomes stationary. This

phenomenon gives rise to a slow motion of the interface, namely if an initial value has a
transition layer structure, the solution maintains its transition layer and interfaces move
slower than any power of ε. However, if m is not constant, a transition point moves
because of the drift produced by heterogeneity in m. In particular, each interface point
follows the ordinary differential equation independently. For example, in the case that
there are only two transition points, say ξL on the left and ξR on the right, we have the
system





ξ̇L =
2mx(ξL, t)

m3(ξL, t)

ξ̇R =
2mx(ξR, t)

m3(ξR, t)
,

(1.16)

where ξ̇L := dξL/dt and ξ̇R := dξR/dt. In particular, we will see in Section 2.2 that when
m depends only on the spatial variable x, the transition points ξL and ξR approach to
local maximum points of m as t→ ∞.

In two space dimensions, N = 2, if m is constant, the interface problem becomes

(1.17)

{
Vn = −κ on Γt,

Γt

∣∣
t=0

= Γ0.

In this case, the interface turns into a circle asymptotically [11] and eventually shrinks
to a single point. On the other hand, when m is not constant, the drift term appears
and the solution Γt of Problem (IP ) with the same initial interface Γ0 as (1.17), may lose
convexity and develops very complicated patterns due to the form of food metric; see [3,
Figure 1, page 1177] for numerical computations in a similar case.

Organization of the remainder of the paper: In Section 2.1, we will formally derive the in-
terface motion equation in (IP ). The derivation is based on the method of matched asymp-
totic expansion and a change of variable which permits to deal with the non-homogeneous
structure of the diffusion term. Note that this argument has been proposed in [13] and
later applied to the case of the p-Laplacian reaction-diffusion equation [15] and to the
Lotka-Volterra system in a heterogeneous environment [12]. In Section 2.2, we prove that
in one space dimension, the individuals have a tendency to move towards regions of rich
food resources. The proofs of Theorems 1.1 and 1.2, based on the comparison principle,
are presented in Sections 3 and 4.

Throughout the paper, we denote by C a generic constant, which may vary from line
to line and use the following notation:

(1.18) C0 := ‖u0‖C(Ω) + ‖∇u0‖C(Ω) + ‖∆u0‖C(Ω) + 1.

2. Interface motion equation

2.1. Formal derivation of the interface equation. In this section, we apply the
method of matched asymptotic expansions together with a change variable to Problem
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(P ε) to formally derive the interface motion equation; we refer to the book [9] and the
articles [1, 16] for the method of matched asymptotic expansions for related problems.

There are two main tasks: First we need to define the interface Γt and then obtain
the equation describing its movement. As mentioned in the introduction, the interface is
located between the regions where {uε ≈ 0} and {uε ≈ 1} so that it is natural to formally
define Γt as the limit of Γε

t as ε→ 0, where

Γε
t = {x ∈ Ω : uε(x, t) = a}.

We refer to Remark 1.1 for a justification of this convergence. We may also define Γt in a
more explicit way by using a formal asymptotic expansion of the signed distance function
to Γε

t . To that purpose, we assume Γε
t is a smooth hypersurface for each t ∈ (0, T ].

Moreover, we define the signed distance function to Γε
t by

d
ε
(x, t) :=

{
dist(x,Γε

t ) for x ∈ Ω
ε,ex
t ,

− dist(x,Γε
t ) for x ∈ Ωε,in

t ,

where Ωε,in
t is the region enclosed by the level set Γε

t and Ωε,ex
t is the region located between

∂Ω and Γε
t . Note that d̄ε = 0 on Γε

t and |∇d
ε
| = 1 (see [2, Sections 3, 4 and 5] for further

properties about the signed distance function). Suppose further that d
ε
is expanded in

the form

d
ε
(x, t) = d0(x, t) + εd1(x, t) + ε2d2(x, t) + · · · ,(2.19)

and define

Γt := {x ∈ Ω : d0(x, t) = 0},

Ωin
t := {x ∈ Ω : d0(x, t) < 0},

Ωex
t := {x ∈ Ω : d0(x, t) > 0}.

Since |∇d
ε
| = 1 for all ε > 0 and d0 is the only term independent of ε, we have |∇d0| =

1. Therefore, d0 can be considered as the signed distance function to Γt, i.e., d̄ ≡ d̄0.
Hereafter, we will use the notation d for the signed distance function to Γt as in (1.12).

Formal asymptotic expansions of uε: We assume that Γt is smooth for all 0 < t ≤ T in
order to formally derive the equation for interface motion Γt. First, we write the outer
expansion of uε in the interior and exterior domains as

uε(x, t) = 0 + εu+1 (x, t) + ε2u+2 (x, t) + ε3u+3 (x, t) + · · · , x ∈ Qex
T ,(2.20)

uε(x, t) = 1 + εu−1 (x, t) + ε2u−2 (x, t) + ε3u−3 (x, t) + · · · , x ∈ Qin
T ,(2.21)

which are valid away from the interface Γ(0,T ] := ∪0<t≤T (Γt × {t}). Here, we note

Qex
T :=

⋃

0<t≤T

(
Ωex
t × {t}

)
, Qin

T :=
⋃

0<t≤T

(
Ωin
t × {t}

)
.

The inner expansion of uε is written in the form

(2.22) uε(x, t) = U0

(
x, t,

d(x, t)

ε

)
+ εU1

(
x, t,

d(x, t)

ε

)
+ ε2U2

(
x, t,

d(x, t)

ε

)
+ · · · ,

which is valid near the interface Γ(0,T ]. We assume that Uj(x, t, z)’s are smooth functions

defined for x ∈ Ω, t ≥ 0, and z ∈ R. The stretched space variable, d(x, t)/ε, has been
introduced to connect the two outer expansions. Since the inner expansion (2.22) connects
the two regions, {uε ≈ 0} and {uε ≈ 1}, the function U0 is chosen so that

(2.23) U0(x, t, 0) = a.
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In order to connect the inner expansion to the two outer expansions, we need the following
matching conditions:

U0(x, t,+∞) = 0, U0(x, t,−∞) = 1,(2.24)

Uk(x, t,+∞) = u+k , Uk(x, t,−∞) = u−k .(2.25)

Motion of the interface: We will substitute the transition layer expansion (2.22) in the
reaction-diffusion equation in (P ε) and obtain equations that the formal expansion should
satisfy. To that purpose, we write the reaction-diffusion equation in (P ε) as

ut = ∇ ·

(
1

m2
∇u

)
+

1

2
∇ ·

(
u∇

(
1

m2

))
+

1

ε2
f(u),(2.26)

or else

ut =
∆u

m2
+

3

2
∇(

1

m2
) · ∇u+

1

2
u∆(

1

m2
) +

1

ε2
f(u),(2.27)

and compute

uεt =

[
U0t + U0z

dt
ε

]
+ ε

[
U1t + U1z

dt
ε

]
+ · · · ,

∇uε =

[
∇U0 + U0z

∇d

ε

]
+ ε

[
∇U1 + U1z

∇d

ε

]
+ · · · ,

∆uε = ∆U0 +
2∇U0z · ∇d+ U0z∆d

ε
+
U0zz|∇d|

2

ε2

+ ε

[
∆U1 +

2∇U1z · ∇d+ U1z∆d

ε
+
U1zz|∇d|

2

ε2

]
+ · · · ,

f(uε) = f(U0) + εf ′(U0)U1 +O(ε2),

where ∇,∆ stand for the gradient and Laplacian with respect to x. We substitute the
above into (2.27). Then, the leading order terms are of order ε−2 which yield

0 =
U0zz

m2
+ f(U0),(2.28)

where we use the relation |∇d| = 1 near Γ(0,T ].

Introduce a new variable z̃ := zm and define Φ0 : Ω× [0, T ]×R → R by

Φ0(x, t, z̃) := U0(x, t,
z̃

m
) = U0(x, t, z).

Then, we have

U0z = mΦ0z̃, U0zz = m2Φ0z̃z̃.(2.29)

For a fixed (x, t), consider Φ0(x, t, ·) : R → R as a function of z̃. It follows from (2.28),
(2.29), (2.23) and (2.24) that Φ0(x, t, ·) satisfies

(2.30)




Φ0z̃z̃ + f(Φ0) = 0,

Φ0(−∞) = 1, Φ0(0) = a, Φ0(∞) = 0.

It is standard that (2.30) admits a unique solution so that Φ0 does not depend on (x, t).
Therefore, we will, hereafter, write Φ0(z̃) instead of Φ0(x, t, z̃) to stress that Φ0 only
depends on z̃. As a consequence, we could write U0 in the form of U0(x, t, z) = Φ0(zm).
Thus, we get

∇U0 = zΦ0z̃∇m, ∇U0z = (Φ0z̃ + z̃Φ0z̃z̃)∇m.(2.31)
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Some more properties of the function Φ0 is given in the following lemma.

Lemma 2.1 ([1, Lemma 2.1]). There exist positive constants C and λ such that

0 < 1− Φ0(z̃) ≤ Ce−λ|z̃| for z̃ ≤ 0,

0 < Φ0(z̃) ≤ Ce−λ|z̃| for z̃ ≥ 0.

In addition, Φ0 decreases strictly and satisfies

|Φ0z̃|+ |Φ0z̃z̃| ≤ Ce−λ|z̃| for z̃ ∈ R.

The next leading terms in (2.27) are of order ε−1 which yield

U0zdt =
1

m2

(
2∇U0z · ∇d+ U0z∆d+ U1zz

)
+

3

2
U0z∇

(
1

m2

)
· ∇d+ f ′(U0)U1,

or

U1zz

m2
+ f ′(U0)U1 = U0z

[
dt −

∆d

m2
−

3

2
∇

(
1

m2

)
· ∇d

]
−

2

m2
∇U0z · ∇d.(2.32)

Set

Φ1(x, t, z̃) := U1(x, t, z),

and rewrite the equation (2.32) in terms of Φ0,Φ1 using the relations in (2.29) and (2.31),

Φ1z̃z̃ + f ′(Φ0)Φ1

= mΦ0z̃

[
dt −

∆d

m2
−

3

2
∇

(
1

m2

)
· ∇d

]
− (Φ0z̃ + z̃Φ0z̃z̃)

2

m2
∇m · ∇d,

= mΦ0z̃

[
dt −

∆d

m2
−

3

2
∇

(
1

m2

)
· ∇d

]
+ (Φ0z̃ + z̃Φ0z̃z̃)m∇

(
1

m2

)
· ∇d,

= mΦ0z̃

[
dt −

∆d

m2
−

1

2
∇

(
1

m2

)
· ∇d

]
+mz̃Φ0z̃z̃∇

(
1

m2

)
· ∇d =: A(x, t; z̃).

Then, the equation becomes

(2.33) Φ1z̃z̃ + f ′(Φ0)Φ1 = A(x, t; z̃).

The following lemma gives the solvability condition.

Lemma 2.2 (Solvability condition, see [1, Lemmas 2.2 and 2.3]). Let B(z̃) be a bounded
function on R. Then the problem:




ψz̃z̃ + f ′(Φ0)ψ = B(z̃), z̃ ∈ R,

ψ(0) = 0, ψ ∈ L∞(R),

has a solution if and only if ∫

R

B(z̃)Φ0z̃(z̃) dz̃ = 0.

Furthermore:

(i) The solution, if it exists, is unique and satisfies for a constant C > 0,

|ψ(z̃)| ≤ C‖B‖L∞(R) for all z̃ ∈ R.

(ii) If there exists a constant δ1 > 0 such that B(z̃) = O(e−δ1|z̃|) as z̃ → ±∞, then

|ψz̃ |+ |ψz̃z̃| = O(e−δ2|z̃|) as z̃ → ±∞,

for some constant δ2 > 0.
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Applying the above lemma to the equation (2.33), we obtain
∫

R

A(x, t; z̃)Φ0z̃(z̃) dz̃ = 0.

It follows that
∫

R

m

(
Φ2
0z̃

[
dt −

∆d

m2
−

1

2
∇

(
1

m2

)
· ∇d

]
+ z̃Φ0z̃Φ0z̃z̃∇

(
1

m2

)
· ∇d

)
dz̃ = 0.

Thus, we have
[
dt −

∆d

m2
−

1

2
∇

(
1

m2

)
· ∇d

] ∫

R

Φ2
0z̃ dz̃ +∇

(
1

m2

)
· ∇d

∫

R

z̃Φ0z̃Φ0z̃z̃ dz̃ = 0.

Note that

(2.34)

∫

R

2z̃Φ0z̃Φ0z̃z̃ dz̃ = z̃(Φ0z̃)
2
∣∣∣
+∞

−∞
−

∫

R

(Φ0z̃)
2dz̃ = −

∫

R

(Φ0z̃)
2dz̃,

where we have used an integration by parts and the fact that
∣∣z̃(Φ0z̃)

2
∣∣ ≤ C|z̃|e−2λ|z̃| → 0 as z̃ → ±∞, (by Lemma 2.1).

Therefore,
[
dt −

∆d

m2
−

1

2
∇

(
1

m2

)
· ∇d

] ∫

R

Φ2
0z̃ dz̃ −∇

(
1

m2

)
· ∇d

∫

R

Φ2
0z̃

2
dz̃ = 0,

which yields

dt −
∆d

m2
−∇

(
1

m2

)
· ∇d = 0.

It is well-known that ∇d = n—the outward unit normal vector on Γt , −dt is equal to
the normal velocity Vn of interface Γt, and ∆d is equal to (N − 1)κ, where κ is the mean
curvature of Γt. Thus, we obtain

Vn = −(N − 1)
κ

m2
−

∂

∂n

(
1

m2

)
on Γt,(2.35)

which is the interface motion equation of Γt as desired.

2.2. Movement of the aggregation region in one-space dimension. In one space
dimension, the movement of an interface is as follows





ξ̇ =
2mx(ξ)

m3(ξ)

ξ(0) = ξ0.

(2.36)

The next lemma concerns the well-posedness and the long time asymptotic behavior of
solutions of (2.36) which follows from the standard theory of ordinary differential equa-
tions.

Lemma 2.3. Let Ω = (IL, IR) ⊆ R and ξ0 ∈ Ω. Suppose that m = m(x) > 0 and
m ∈ C2(Ω).

(i) If mx(ξ0) = 0, then ξ ≡ ξ0 is the unique solution of (2.36).
(ii) If mx(ξ0) < 0 and if there exists x∗ < ξ0 such that mx(x∗) = 0 and that mx < 0 on

(x∗, ξ0), then (2.36) has a unique solution on [0,∞). Moreover, limt→∞ ξ(t) = x∗.
(iii) If mx(ξ0) > 0 and if there exists x∗ > ξ0 such that mx(x

∗) = 0 and that mx > 0 on
(ξ0, x

∗), then (2.36) has a unique solution on [0,∞). Moreover, limt→∞ ξ(t) = x∗.
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IL IRξRξL x1

m(x1)
mx > 0 on (IL, x1)

mx < 0 on (x1, IR)
mx(x1) = 0

(a) Local maximum in Ωin.

IL IR

ξRξL

x1

m(x1)
mx > 0 on (IL; x1)

mx < 0 on (x1; IR)
mx(x1) = 0

(b) No critical point in Ωin.

IL IR

ξRξL

x2

m(x1)

x1 x3

m(x2)

m(x3)

(c) Local maximum in Ωin.

Figure 1. Movement of interface governed by the interface problem (IP ).
Each interface approaches to a local maximum of m and escapes from a
local minimum.

Lemma 2.3 explains the dynamics of the two interfaces, ξL and ξR, given in (1.16).
Consider three cases. First, suppose that there is a local maximum point of m between
ξL and ξR (see Figure 1(a) ). Then, the both interfaces move towards the maximum
point from different directions and finally meet at the maximum point for t = +∞. This
indicates that the interior domain Ωin ≈ {uε = 1}, which is the region with population,
disappears. Second, suppose that there is no critical point of m between ξL and ξR (see
Figure 1(b) ). Then, both interfaces move to the maximum point from the same direction.
This is also the case that the two points will meet at a local maximum point and the interior
domain Ωin ≈ {uε = 1} eventually disappears. Lastly, consider a case that there is a local
minimum point of m between ξL and ξR (see Figure 1(c) ). Then, the two interfaces move
towards the two closest local maximum points to the local minimum points in the interior
domain Ωin from the two sides. In this case the interior domain survives asymptotically.

40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1 m
t=0
t=0.1
t=6
t=12
t=18
t=23

(a) Extinction of interior domain Ωin.

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1 m
t=0
t=0.1
t=5
t=10
t=15
t=20

(b) Expansion of interior domain Ωin.

Figure 2. Evolution of solutions of the parabolic problem (P ε) in one
space dimension. If a local maximum point of m exists Ωin, the population
persists. Otherwise, the population perishes.

In Figure 2 numerical simulations of the parabolic problem (P ε) are given to compare its
dynamics and the interface problem. In the simulation we use two cases using parameter
values of

m(x) = (5 + sin(x/10))10−1 , ε2 = 0.01.

In the simulation we multiplied the diffusion term by the diffusivity constant D = 10. In
Figure 2(a) the evolution of the solution is given when a local maximum point of m is in
the interior domain Ωin. The initial value, t = 0, and the chemical concentration, m, are
given as in the figure with solid lines. The interface emerges as quickly as t = 0.1 and
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then moves towards the local maximum point. One may clearly observe that the interior
domain Ωin becomes narrower and disappears by t = 24 in the simulation. In Figure 2(b)
a case when a local minimum point of m is in Ωin. The interface emerges as quickly as
t = 0.1 and then moves towards the two closest local maximum points from each direction.
The interior domain Ωin converges to the region between the two adjacent local maximum
points. These simulations show that the dynamics of the interface given in (2.36) explains
the evolution of the reaction diffusion equation correctly.

3. Generation of interface

In this section, we will prove Theorem 1.1. Recall that the idea of the proof is based on
the comparison principle, hence we need to construct an appropriate pair of sub- and super-
solutions. Since the reaction term plays an important role in the formation of interface,
the form of sub-solutions and super-solutions will be based on the solution of the equation
without diffusion uτ = f(u) + δ, which is a modified equation of the ordinary differential
equation corresponding to (P ε). Here τ = t/ε2 and the parameter δ is introduced to take
into account the advection term in the equation (see the form of the equation in (2.26)).

Let δ0 > 0 be small enough such that for all δ ∈ (−δ0, δ0), the function f(u) + δ has
exactly three zeros denoted by a−(δ) < a0(δ) < a+(δ). Set µ(δ) := f ′(a0(δ)); then in view
of (1.8) we have µ(0) = µ0. It follows from [1, Lemma 4.1] that there exists a constant
C1 > 0 such that

(3.37) |µ(δ) − µ0| ≤ C1δ for all δ ∈ (−δ0, δ0).

For each δ ∈ (−δ0, δ0), let Y (τ ; ξ; δ) be the unique solution of the ordinary differential
equation

(3.38) (ODE)




Yτ = f(Y ) + δ, τ ≥ 0,

Y (0; ξ; δ) = ξ.

We have the following lemma.

Lemma 3.1. Then there exist positive constants δ0, C2, C3 such that

(i) |Y | ≤ C2,

(ii) Yξ > 0 and |
Yξξ
Yξ

| ≤ C3(e
µ(δ)τ − 1),

for all (τ ; ξ; δ) ∈ [0,∞) × (−2C0, 2C0)× (−δ0, δ0).

Proof. (i) follows from the fact that Y (τ ; ξ; δ) monotonically converges to an equilibrium
point of (ODE) as τ → ∞. For a proof of (ii), see [1, lemmas 3.2 and 4.2]. �

The next lemma is a “representation” of the formation of interface for the solution of
(P ε) by its corresponding differential equation. In other words, it is an “ODE version” of
Theorem 1.1.

Lemma 3.2 ([1, Lemma 4.7]). Let η > 0 be arbitrarily small. Then there exist positive
constants ε0 = ε0(η), C4 such that for all ε ∈ (0, ε0) and all ξ ∈ (−2C0, 2C0), we have

(i) for all ξ ∈ (−2C0, 2C0),

−η ≤ Y (µ−1
0 | ln ε|; ξ;±ε) ≤ 1 + η,

(ii) for all ξ ∈ (−2C0, 2C0) satisfying |ξ − a| ≥ C4ε, we have

if ξ ≥ a+ C4ε, then Y (µ−1
0 | ln ε|; ξ;±ε) ≥ 1− η,

if ξ ≤ a− C4ε, then Y (µ−1
0 | ln ε|; ξ;±ε) ≤ η.
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3.1. Constructing a pair of sub- and super-solutions: The case
∂u0
∂ν

= 0. We are

now ready to define a pair of sub- and super-solutions. Our pair of sub- and super-solutions
has the form of

wε,±(x, t) := Y (
t

ε2
;u0(x)± C5ε

2(eµ(ε)
t

ε2 − 1);±ε),

where C5 is a positive constant which will be selected later.

Remark 3.1. In view of (3.37) and (1.8), we can prove that as ε→ 0,

εeµ(ε)
tε

ε2 − ε = e
(
µ(ε)
µ0

−1)| ln ε|
− ε→ 1.

Thus, the monotonicity of the exponential function e(·) implies, for ε0 small enough,

(3.39) 0 < ε2(eµ(ε)
t

ε2 − 1) ≤ 2ε for all t ∈ [0, tε] and every ε ∈ (0, ε0).

Hence the perturbation C5ε
2(eµ(ε)

t

ε2 − 1) is of order ε.

Lemma 3.3. Assume that
∂u0
∂ν

= 0. Then there exist ε0 > 0 and C5 > 0 such that for all

ε ∈ (0, ε0), w
ε,± is a pair of sub- and super-solutions of (P ε) in the domain Ω× [0, tε].

Proof. It is easy to see that u0 = wε,+(0) and that
∂wε,+

∂ν
= 0. Next we claim that

L(wε,+) ≥ 0 in Ω× [0, tε], where L is defined by

(3.40) L(u) := ut −
∆u

m2
−

3

2
∇(

1

m2
) · ∇u−

1

2
u∆(

1

m2
)−

1

ε2
f(u).

Note that

wε,+
t =

1

ε2
Yτ + C5µ(ε)e

µ(ε) t

ε2 Yξ,

∇wε,+ = Yξ∇u0, ∆wε,+ = Yξξ|∇u0|
2 + Yξ∆u0.

Thus

L(wε,+) =
1

ε2

[
Yτ−f(Y )−

ε2

2
Y∆(

1

m2
)
]
+Yξ

[
C5µ(ε)e

µ(ε) t

ε2 −
|∇u0|

2

m2

Yξξ
Yξ

−
∆u0
m2

−
3

2
∇(

1

m2
)∇u0

]
.

Set

C̃ := max
Ω×[0,1]

{
1

2

∣∣∣∣∆(
1

m2
)

∣∣∣∣+
|∇u0|

2

m2
+

|∆u0|

m2
+

3

2

∣∣∣∣∇(
1

m2
)∇u0

∣∣∣∣
}
.

Then for ε0 small enough such that tε ≤ 1 for every ε ∈ (0, ε0), we have

L(wε,+) ≥
1

ε

[
1− εC̃ |Y |

]
+ Yξ

[
C5µ(ε)e

µ(ε) t

ε2 − C̃

∣∣∣∣
Yξξ
Yξ

∣∣∣∣− C̃

]
.

In view of the inequalities (3.39) and (1.18), we may again choose ε0 small enough such
that

|u0(x)± C5ε
2(eµ(ε)

t

ε2 − 1)| ≤ 2C0 for all t ∈ [0, tε], and every ε ∈ (0, ε0).

Therefore, by Lemma 3.1, we obtain

L(wε,+) ≥
1

ε

[
1− εC̃C2

]
+ Yξ

[
C5µ(ε)e

µ(ε) t

ε2 − C̃C3e
µ(ε) t

ε2 − C̃
]
,



ALLEN-CAHN EQUATION WITH A FOOD METRIC DIFFUSION 13

in the domain Ω× [0, tε]. Therefore, we have

L(wε,+) ≥
1

ε
[1− εC̃C2] + Yξ

[
(
C5

2
µ0 − C̃C3)e

µ(ε) t

ε2 − C̃

]
(by (3.37)),

≥ 0

provided that ε0 is small enough and that C5 ≥ 2µ−1
0 (C3 + 1)C̃. Similarly, we can show

that wε,− is a sub-solution of (P ε) which completes the proof. �

3.2. Constructing a pair of sub- and super-solutions: The general case. We will
construct a pair of sub and super-solution of the form:

ŵε,±(x, t) := Y (
t

ε2
;u±0 (x)± Ĉ5ε

2(eµ(ε)
t

ε2 − 1);±ε),

where u±0 is a modification of u0 such that u−0 ≤ u0 ≤ u+0 and ∂νu
±
0 = 0. Another essential

property of u±0 which will be used in next section is that u±0 must have Γ0 as their a-level
sets. More precisely, we need the following properties:
(3.41)
Γ0 = {x ∈ Ω : u±0 (x) = a}, Ωin

0 = {x ∈ Ω : u±0 (x) > a}, Ωex
0 = {x ∈ Ω : u±0 (x) < a}.

To that purpose, let d0 > 0 be small enough such that the function dist(x, ∂Ω) is smooth
in the set {x ∈ Ω : dist(x, ∂Ω) < 2d0} and that {x ∈ Ω : dist(x, ∂Ω) < 2d0} ∩ Γ0 = ∅. We
remark that the maximum of u0 on the compact set {x ∈ Ω : dist(x, ∂Ω) ≤ d0} is smaller
than a and denote it by a − ̺ for some constant ̺ > 0. Let χ : [0,∞) → R is a smooth
function satisfying χ(0) = χ′(0) = 0, 0 ≤ χ ≤ 1 and χ = 1 on [d0,∞). Set

u+0 (x, t) := χ(dist(x, ∂Ω))u0 + [1− χ(dist(x, ∂Ω))](a − ̺),

u−0 (x, t) := χ(dist(x, ∂Ω))u0 + [1− χ(dist(x, ∂Ω))]min
Ω
u0.

Then u+ = u− = u0 in the set {x ∈ Ω : dist(x, ∂Ω) ≥ d0} ⊃ Ωin
0 . Moreover, u−0 ≤ u0 ≤ u+0

on Ω and u±0 satisfies the homogeneous Neumann boundary condition due to the relations
χ(0) = χ′(0) = 0. Thus, a similar argument as in Lemma 3.3 shows that ŵε,± is a pair
sub- and super-solutions to (P ε) in the domain Ω× [0, tε].

3.3. Proof of Theorem 1.1. First we prove inequalities involving u0 and u±0 .

Lemma 3.4. Let M,ε be real positive numbers. Then

(i) u−0 (x) ≥ a+Mε iff u0(x) ≥ a+Mε;
(ii) for all ε ∈ (0, ̺

M
) , u+0 (x) ≤ a−Mε iff u0(x) ≤ a−Mε. Here ̺ is given in

Section 3.1.

Proof. (i) If one of the two inequalities in (i) holds, then we have x ∈ Ωin
0 . Thus (i) is

trivial since u−0 = u0 in Ωin
0 . (ii) If u0(x) ≤ a−Mε, then, in view of the expression of u+0 ,

we have

u+0 (x) ≤ max{u0(x), a− ̺} ≤ max{a−Mε, a − ̺} = a−Mε.

The inverse implication is trivial since u0 ≤ u+0 . �

Now we turn to the proof of Theorem 1.1. Since ŵε,± is a pair of sub- and super-solutions
of (P ε), we have
(3.42)

Y (
t

ε2
;u−0 (x)− Ĉ5ε

2(eµ(ε)
t

ε2 − 1);−ε) ≤ uε(x, t) ≤ Y (
t

ε2
;u+0 (x) + Ĉ5ε

2(eµ(ε)
t

ε2 − 1); ε).
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Note that |u±0 |C(Ω) ≤ C0, so that by virtue of (3.39), we have for ε0 small enough,

|u±0 (x)± Ĉ5ε
2(eµ(ε)

t

ε2 − 1)| ≤ 2C0 for all t ∈ [0, tε] and every ε ∈ (0, ε0).

Thus the first assertion (1.9) of Theorem 1.1 follows from Lemma 3.2 (i) and (3.42).
Next we prove the assertion (1.10). By (3.39), we have for ε0 small enough,

u−0 (x)− Ĉ5ε
2(eµ(ε)

t

ε2 − 1) ≥ u−0 (x)− 2Ĉ5ε for all t ∈ [0, tε] and every ε ∈ (0, ε0).

Thus, if u−0 (x) ≥ a+Mε with M ≥ C4 + 2Ĉ5, then

u−0 (x)− Ĉ5ε
2(eµ(ε)

t

ε2 − 1) ≥ a+ C4ε for all t ∈ [0, tε] and every ε ∈ (0, ε0).

Consequently, by Lemma 3.2 (ii), if u−0 (x) ≥ a+Mε with M ≥ C4 + 2Ĉ5, then

Y (
tε

ε2
;u±0 (x)− Ĉ5ε

2(eµ(ε)
tε

ε2 − 1);−ε) ≥ 1− η,

and hence uε(x, tε) ≥ 1 − η due to (3.42). On the other hand, by Lemma 3.4, u−0 (x) ≥
a+Mε is equivalent to u0(x) ≥ a +Mε so that (1.10) follows. The assertion (1.11) can
be treated by the same way. This completes the proof of Theorem 1.1.

4. Motion of interface

This section is devoted to the proof of Theorem 1.2. The idea of the proof is based
on the observation given in Section 2.1, that the interface moves according to motion by
mean curvature with drift and that the profile of the transition layer is well approximated
by the expansion (2.22). Therefore, we will construct a pair of sub- and super-solutions
uε,± of the form

uε,±(x, t) ≈ U0

(
x, t,

d̄(x, t)

ε

)
+ εU1

(
x, t,

d̄(x, t)

ε

)
.

The construction of this pair of sub- and super-solution consists of several steps and
will be presented in next subsections. More precisely, in Subsections 4.1 and 4.2, as a
preparation, we first introduce the cut-off distance function d̂(x, t), and a corresponding

function Û1 and estimate them. Then in Subsection 4.3, we give the explicit form for
sub-solutions, super-solutions and state the key lemma 4.7. The proof of Lemma 4.7 is
presented in Subsection 4.4. Finally, we apply the key lemma Lemma 4.7 to prove Theorem
1.2 in Subsection 4.5.

4.1. Modification of the signed distance function. Next we introduce the cut-off
function d̂(x, t), which coincides with d̄(x, t) near Γt and is constant near ∂Ω in order
to take into account the Neuman boundary condition (4.57). Since the interface Γ[0,T ] is

C2+α, 2+α
2 , it follows from [2, Theorems 1 and 2] that there exists d1 > 0 small enough

such that dist(Γt, ∂Ω) ≥ 3d1 and that d is C2+α, 2+α
2 in the tubular neighborhood {(x, t) ∈

Ω × [0, T ] : d(x, t) < 3d1} of Γ[0,T ]. Let ζ(s) be a smooth increasing function on R such
that

ζ(s) =





s if |s| ≤ d1,

−2d1 if s ≤ −2d1,

2d1 if s ≥ 2d1.

(4.43)

We define the modified signed distance d̂ by

d̂(x, t) = ζ(d(x, t)).
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Note that

{(x, t) ∈ Ω× [0, T ] : |d(x, t)| < d1} = {(x, t) ∈ Ω× [0, T ] : |d̂(x, t)| < d1},

and that d̂ coincides with d̄ in that region. As a consequence, we have

(4.44) d̂t −
∆d̂

m2
−∇d̂ · ∇(

1

m2
) = 0 on Γt.

Moreover, d̂ is constant near ∂Ω and the following properties hold.

Lemma 4.1. There exists a constant Cd > 0 such that

(i) |d̂|+ |∇d̂|+ |∆d̂| ≤ Cd,

(ii) |d̂t −
∆d̂

m2
−∇d̂ · ∇(

1

m2
)| ≤ Cd|d̂|,

in Ω× [0, T ].

Proof. (i) Since |d̂|, |∇d̂|, |∆d̂| are continuous in the compact set Ω × [0, T ], they are
uniformly bounded. Thus the first inequality follows.

(ii) In the region {|d| < d1}, the inequality follows from (4.44), the mean value theorem

and the fact that d̂(x, t) = d̄(x, t) ∈ C2+α, 2+α
2 in this region. Next, in the region {|d| ≥ d1},

we have |d̂| ≥ d1 since ζ is increasing. Thus (ii) follows from the uniform boundedness of

|d̂t −
∆d̂
m2 −∇d̂ · ∇( 1

m2 )|(|d̂|)
−1 in that region. �

Lemma 4.2. Given a positive real number M ′ > 0. Then there exits ε0 = ε0(M
′) > 0

small enough such that the followings hold for every ε ∈ (0, ε0),

d̄(x, t) ≥M ′ε ⇔ d̂(x, t) ≥M ′ε,

d̄(x, t) ≤ −M ′ε ⇔ d̂(x, t) ≤ −M ′ε.

Proof. The lemma follows from the fact that d̄ = d̂ in the region {|d̄| ≤ d1} = {|d̂| ≤ d1}.
We omit the details of the proof. �

4.2. Estimates for the functions U0, Φ̂1, Û1. Recall that the function U0 : Ω× [0, T ]×
R → R is defined by

U0(x, t, z) = Φ0(m(x, t)z).

We have the following lemma.

Lemma 4.3. There exists a constant Ĉ1 > 0 such that

(i) |U0|+ |U0t|+ |∇U0|+ |∆U0| ≤ Ĉ1,

(ii) |U0z|+ |U0zz| ≤ Ĉ1 exp(−λ1|z|),
(iii) ∇U0 · ν = 0 on ∂Ω× [0, T ] ×R,

for all (x, t, z) ∈ Ω× [0, T ] ×R.

Proof. (i) and (ii) Let us compute the derivatives of U0 with respect to t, x and z. We
obtain

U0t = mtzΦ0z̃, ∇U0 = zΦ0z̃∇m, ∆U0 = zΦ0z̃∆m+ z2Φ0z̃z̃|∇m|2,

U0z = mΦ0z̃, U0zz = m2Φ0z̃z̃.

The above identities, the estimates in Lemma 2.1 and the uniform boundedness ofm, |∇m|,
∆m in Ω× [0, T ] imply (i) and (ii).

(iii) The hypothesis
∂m

∂ν
= 0 implies

∇U0 · ν = zΦ0z̃∇m · ν = 0,
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which completes the proof of (iii). �

Consider the function Φ̂1 : Ω× [0, T ]×R → R, which satisfies

(4.45)




Φ̂1z̃z̃ + f ′(Φ0)Φ̂1 = m

(
1

2
Φ0z̃ + z̃Φ0z̃z̃

)
∇

(
1

m2

)
· ∇d̂,

Φ̂1(x, t, 0) = 0.

For each (x, t) ∈ Ω × [0, T ], the problem is solvable due to Lemma 2.1 and the identity
(2.34).

Lemma 4.4. For all (x, t, z) ∈ Ω× [0, T ]×R, we have

(i)
∣∣∣Φ̂1

∣∣∣+
∣∣∣Φ̂1t

∣∣∣+
∣∣∣∇Φ̂1

∣∣∣+
∣∣∣∆Φ̂1

∣∣∣ ≤ Ĉ2,

(ii)
∣∣∣Φ̂1z̃

∣∣∣+
∣∣∣Φ̂1z̃z̃

∣∣∣+
∣∣∣z̃Φ̂1z̃z̃

∣∣∣ ≤ Ĉ2 exp(−λ2|z̃|),

(iii) Φ̂1 = 0 and ∇Φ̂1 = 0 on ∂Ω × [0, T ] ×R.

Proof. (i) According to Lemma 2.1, the functions Φ0z̃ and z̃Φ0z̃z̃ are uniformly bounded

in R. Furthermore, ∇

(
1

m2

)
· ∇d̂ is continuous in the compact set Ω× [0, T ], hence uni-

formly bounded. Therefore, the right-hand-side in the first equation of (4.45) is uniformly

bounded in Ω×[0, T ]×R. Thus, we deduce from Lemma 2.2 that Φ̂1 is uniformly bounded.

Next we prove the boundedness of Φ̂1t. Since Φ0 does not depend on t, taking the
derivative with respect to t in the first equation of (4.45) yields

(4.46) Φ̂1tz̃z̃ + f ′(Φ0)Φ̂1t =

(
1

2
Φ0z̃ + z̃Φ0z̃z̃

)
∂

∂t

(
m∇

(
1

m2

)
· ∇d̂

)
,

so that applying the above arguments and Lemma 2.2 to the function Φ̂1t, we deduce the
uniform boundedness of Φ̂1t in Ω × [0, T ] ×R. Similar results for ∇Φ̂1 and ∆Φ̂1 can be
proven by the same way.

(ii) Assertion (ii) follows from Lemma 2.2 (ii).

(iii) Since d̂(x, t) is constant for all x near ∂Ω and all t ∈ [0, T ], it follows that

(4.47) Φ̂1z̃z̃ + f ′(Φ0)Φ̂1 = 0,

for all x near ∂Ω and all t ∈ [0, T ], z̃ ∈ R. Therefore, Φ̂1(x, t, z̃) is identically zero for all
x near ∂Ω and all t ∈ [0, T ], z̃ ∈ R; hence (iii) follows. �

Set Û1(x, t, z) := Φ̂1(x, t,mz); then, in view of (4.45), it is easy to check that

Û1zz

m2
+ f ′(U0)Û1 = −

1

2
U0z∇

(
1

m2

)
· ∇d̂−

2

m2
∇U0z · ∇d̂.(4.48)

The next lemma gives estimates for Û1 and its derivatives.

Lemma 4.5. For all (x, t, z) ∈ Ω× [0, T ]×R, we have

(i)
∣∣∣Û1

∣∣∣+
∣∣∣Û1t

∣∣∣+
∣∣∣∇Û1

∣∣∣+
∣∣∣∆Û1

∣∣∣ ≤ Ĉ3,

(ii)
∣∣∣Û1z

∣∣∣+
∣∣∣Û1zz

∣∣∣ ≤ Ĉ3 exp(−λ3|z|),

(iii) ∇Û1 · ν = 0 on ∂Ω× [0, T ] ×R.

The above lemma follows from a similar argument in the proof of Lemma 4.3; we omit
its proof.
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4.3. The form of the pair sub- and super-solutions. In order to define a pair of sub-
and super-solutions, we first introduce a constant β which only depends on f . Fix b > 0
small enough such that f ′(s) < 0 on [0, b] ∪ [1− b, 1]; set

(4.49) −β := sup

{
f ′(s)

3
: s ∈ [0, b] ∪ [1− b, 1]

}
.

We define two positive constants m,m by

(4.50) m := inf
Ω×[0,T ]

m, m := sup
Ω×[0,T ]

m.

The following result plays an important role in the proof of Lemma 4.7 below.

Lemma 4.6. Let β be given by (4.49). Then there exists a constant σ0 small enough such
that for every 0 ≤ σ < σ0, we have

U0z + σf ′(U0) ≤ −3σβ in Ω× [0, T ]×R.

Proof. The assertion is trivial when σ = 0. Next consider the case σ > 0. Since

U0z + σf ′(U0) = mΦ0z̃ + σf ′(Φ0) ≤ mΦ0z̃ + σf ′(Φ0),

it is sufficient to show that there exists σ0 > 0 such that for all σ ∈ (0, σ0),

(4.51)
mΦ0z̃(z̃)

σ
+ f ′(Φ0(z̃)) ≤ −3β for all z̃ ∈ R.

Note that since 0 ≤ Φ0(z̃) ≤ 1 for all z̃ ∈ R, we can write R as R = J1 ∪ J2 with

J1 := {z̃ : Φ0(z̃) ∈ [0, b] ∪ [1− b, 1]}, and J2 := {z̃ : Φ(z) ∈ [b, 1− b]}.

Hence we need to prove (4.51) for z̃ ∈ J1 and z̃ ∈ J2:
The case that z̃ ∈ J1: On the set J1 := {z̃ : Φ0(z̃) ∈ [0, b] ∪ [1 − b, 1]}, we have that by

(4.49), for all σ > 0,

sup
z̃∈J1

(
mΦ0z̃

σ
+ f ′(Φ0)

)
≤ sup

z̃∈J1

f ′(Φ0) = −3β,

where we have used the property Φ0z̃ < 0.
The case that z̃ ∈ J2: On the compact set J2 := {z̃ : Φ(z) ∈ [b, 1− b]}, we have

sup
z̃∈J2

(
mΦ0z̃

σ
+ f ′(Φ0)

)
≤
m supz̃∈J2 Φ0z̃

σ
+ sup

s∈[b,1−b]
f ′(s),

so that

lim
σ→0+

sup
z̃∈J2

(
mΦ0z̃

σ
+ f ′(Φ0)

)
≤ lim

σ→0+

(
m supz̃∈J2 Φ0z̃

σ
+ sup

s∈[b,1−b]
f ′(s)

)
= −∞,

which implies (4.51). Thus we complete the proof of Lemma 4.6. �

We define uε,± as follows

(4.52) uε,±(x, t) = U0

(
x, t,

d̂(x, t) ± εp(t)

ε

)
+ εÛ1

(
x, t,

d̂(x, t)± εp(t)

ε

)
± q(t),

where

p(t) = e−
βt

ε2 − eLt −K,

q(t) = σ(βe−
βt

ε2 + ε2LeLt).(4.53)
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Here β is defined in (4.49) and the positive constants L,K, σ will selected later. Note that

pt = −
q

σε2
, |p(t)| ≤ 1 + eLT +K for t ∈ [0, T ].(4.54)

Let define two constants σ1, σ2 by

(4.55) σ1 :=
1

2(β + 1)
, σ2 :=

2

(β + 1) sups∈[−1,2] |f
′′(s)|

and recall the definition of operator L in (3.40):

L(u) := ut −
∆u

m2
−

3

2
∇(

1

m2
) · ∇u−

1

2
u∆(

1

m2
)−

1

ε2
f(u).

Lemma 4.7. Let β be given by (4.49) and fix η ∈ (0, η0) and 0 < σ < min{σ0, σ1, σ2}.
Then for each K > 0, there exist L > 0 large enough and ε0 small enough such that

L(uε,−) ≤ 0 ≤ L(uε,+) in Ω× [0, T ],(4.56)

∂uε,−

∂ν
=
∂uε,+

∂ν
= 0 on ∂Ω× [0, T ],(4.57)

for every ε ∈ (0, ε0).

The proof of the lemma will be presented in next subsection. We first make some
remarks. We will proceed with the proof under the assumptions that

(4.58) ε20Le
LT ≤ 1, ε0Ĉ3 ≤

1

2
,

where Ĉ3 is given in Lemma 4.5. Therefore, it follows that

(4.59) 0 < q(t) ≤ σ(β + 1) in [0, T ].

The assumption σ < σ1 implies that |q(t)| < 1
2 . Consequently, we have

(4.60) −1 ≤ uε,± ≤ 2 in Ω× [0, T ].

4.4. Proof of Lemma 4.7. First we prove (4.57). Since d̂ is constant near ∂Ω, we have

∂d̂

∂ν
= 0 on ∂Ω× [0, T ]. On the other hand, by Lemmas 4.3 (iii) and 4.5 (iii),

∂U0

∂ν
=
∂U1

∂ν
= 0 on ∂Ω× (0, T ).

Therefore

∂uε,+

∂ν
= ∇uε,+ · ν = ∇U0 · ν + U0z

∇d̂

ε
· ν + ε∇Û1 · ν + Û1z∇d̂ · ν = 0 on ∂Ω× (0, T ).

Similarly, we have
∂uε,−

∂ν
= 0 on ∂Ω× [0, T ].

In the remaining part of this subsection, we will prove the inequality L(uε,+) ≥ 0. The
inequality L(uε,−) ≤ 0 can be shown by the same argument. The main idea of the proof
is to expand L(uε,+) using the form of uε,+ in (4.52), collect terms of the same order (e.g.,
ε−2, ε−1), and then estimate them. First we have

uε,+t = U0t + U0z(
d̂t
ε
+ pt) + εÛ1t + Û1z(d̂t + εpt) + qt

=
[
U0zpt + qt

]
+
[
U0z

d̂t
ε
+ Û1zεpt

]
+
[
U0t + Û1z d̂t + εÛ1t

]
,
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where pt, qt are terms of order ε−2 (see the relation (4.54)). A straight forward computation
yields

∇uε,+ = ∇U0 + U0z
∇d̂

ε
+ ε∇Û1 + Û1z∇d̂,

∆uε,+ = ∆U0 +
2∇U0z · ∇d̂+ U0z∆d̂

ε
+
U0zz|∇d̂|

2

ε2

+ ε∆Û1 + 2∇Û1z · ∇d̂+ Û1z∆d̂+
Û1zz|∇d̂|

2

ε
,

f(uε,+) = f(U0) + (εÛ1 + q)f ′(U0) +
1

2
(εÛ1 + q)2f ′′(θ)

=
[
f(U0) + qf ′(U0) +

q2

2
f ′′(θ)

]
+
[
εÛ1f

′(U0) + εÛ1qf
′′(θ)

]
+
ε2(Û1)

2f ′′(θ)

2
.

Here we have used the Taylor expansion in the expression of f(uε,+), and we remark that
in view of (4.60), θ = θ(x, t) ∈ (−1, 2). Next we write L(uε,+) in the form

L(uε,+) = S1 +R1 + S2 +R2 +R3 +R4,

where S1, S2, inspired from Section 2, are of order ε−2, ε−1, respectively; R1, R2 are the
remaining terms of order ε−2, ε−1 which were neglected in the formal computations in
Section 2 and R3, R4 are terms of order 1. More precisely,

S1 :=
1

ε2

[
−
U0zz

m2
|∇d̂|2 − f(U0)

]
,

R1 :=
[
U0zpt + qt

]
−

1

ε2

[
qf ′(U0) +

q2

2
f ′′(θ)

]
,

S2 := U0z
d̂t
ε
−

2∇U0z · ∇d̂+ U0z∆d̂

m2ε
−
Û1zz|∇d̂|

2

m2ε
−

3

2
U0z

∇d̂

ε
· ∇

(
1

m2

)
−

1

ε
Û1f

′(Û0),

R2 := Û1zεpt −
1

ε
Û1qf

′′(θ),

R3 :=
[
U0t + Û1z d̂t + εÛ1t

]
−

1

m2

[
∆U0 + ε∆U1 + 2∇Û1z · ∇d̂+ Û1z∆d̂

]
,

R4 := −
3

2

[
∇U0 + ε∇Û1 + Û1z∇d̂

]
· ∇

(
1

m2

)
−

1

2
(uε,+)∆

(
1

m2

)
−

(Û1)
2f ′′(θ)

2
,

In what follows, we will estimate the terms above in the domain Ω × [0, T ]. Note that
R1 and R2 play an important role to deduce the sign for L(uε,+) and that the values of

U0, Û1 are computed at the point (x, t,
d̂(x, t) + εp(t)

ε
).

Estimate of the term S1

Using (2.28), we write S1 in the form

S1 = −
1

ε2
U0zz

m2

(
|∇d̂|2 − 1

)
.

In the region where |d̂| ≤ d1, we have |∇d̂| = 1 so that S1 = 0. On the other hand, in the

region where |d̂| ≥ d1, we have (cf. Lemma 4.3 (ii) and (4.54)),

|U0zz|

ε2
≤
Ĉ1

ε2
e
−λ1

∣

∣

∣

d̂
ε
+p(t)

∣

∣

∣

≤
Ĉ1

ε2
e−λ1[

d1
ε
−|p(t)|] ≤

Ĉ1

ε2
e−λ1[

d1
ε
−(1+eLT+K)].
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Choosing ε0 small enough such that

(4.61)
d1
2ε0

− (1 + eLT +K) ≥ 0,

we deduce that
|U0zz|

ε2
≤
Ĉ1

ε2
e−λ1

d1
2ε → 0 as ε→ 0.

Thus, for ε0 small enough,
|U0zz|

ε2
is uniformly bounded in the region {|d̂| ≥ d1}, hence so

is S1. Consequently, there exists a constant C̃1 independent of ε, L such that

(4.62) |S1| ≤ C̃1 in Ω× [0, T ]

provide that ε0 satisfies (4.61).

Estimate of the term R1

Substituting pt = −
q

σε2
and then replacing q by its explicit form (4.53), we obtain

R1 =
q

σε2

[
− U0z − σf ′(U0)−

qσ

2
f ′′(θ)

]
+ qt

=
1

ε2
(βe−

βt

ε2 + ε2LeLt)
[
− U0z − σf ′(U0)−

σ2

2
(βe−

βt

ε2 + ε2LeLt)f ′′(θ)
]
−

1

ε2
σβ2e−

βt

ε2 + ε2σL2eLt

=
1

ε2
βe−

βt

ε2 (I − σβ) + LeLt[I + ε2σL],

where

I := −U0z − σf ′(U0)−
σ2

2
(βe−

βt

ε2 + ε2LeLt)f ′′(θ).

Lemma 4.6 and the hypothesis σ < σ2 (cf. (4.55)) yield

I ≥ 3σβ −
σ2

2
(β + 1)|f ′′(θ)| ≥ 2σβ,

so that

(4.63) R1 ≥
σβ2

ε2
e−

βt

ε2 + 2σβLeLt.

Estimate of the term S2

Using (4.48), we have

S2 =
U0z

ε

[
d̂t −

∆d̂

m2
−∇d̂ · ∇

(
1

m2

)]

−

[
2∇U0z · ∇d̂

m2ε
+

1

2
U0z

∇d̂

ε
· ∇

(
1

m2

)
+
Û1zz|∇d̂|

2

m2ε
+

1

ε
Û1f

′(U0)

]

=
U0z

ε

[
d̂t −

∆d̂

m2
−∇d̂ · ∇

(
1

m2

)]
−

1

ε

Û1zz

m2

[
|∇d̂|2 − 1

]
:= S2a + S2b.(4.64)

The second term of (4.64) (denoted by S2b) can be estimated by using a similar argument

for the term S1. We deduce that there exist ε0 small enough and C̃2 independent of ε, L
such that

(4.65) |S2b| ≤ C̃2 in Ω× [0, T ].
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Next we estimate the first term in the right-hand-side of (4.64) which we denote by S2a.
By Lemma 4.1, we have

|d̂t −
∆d̂

m2
−∇d̂ · ∇

(
1

m2

)
| ≤ Cd|d̂|

It follows that

|S2a| ≤ Cd|d̂|
|U0z |

ε
≤ CdĈ1

|d̂|

ε
e−λ1|

d̂
ε
+p| ≤ CdĈ1 max

ξ∈R
|ξ|e−λ1|ξ+p|.

An elementary observation shows that the function g(ξ) := |ξ|e−λ1|ξ+p| satisfies

max
ξ∈R

g(ξ) ≤ max{g(−p), g(
1

λ1
), g(−

1

λ1
)} ≤ max{|p|,

1

λ1
} ≤ |p|+

1

λ1
.

Thus,

(4.66) |S2a| ≤ CdĈ1(|p|+
1

λ1
) ≤ CdĈ1(1 +K + eLt +

1

λ1
),

so that

(4.67) |S2a| ≤ C̃3e
Lt + C̃4,

where C̃3 := CdĈ1(1 +K + 1
λ1
), C̃4 := CdĈ1.

Estimate of the term R2

Substituting pt = −
q

σε2
and then replacing q by its explicit form (4.53), we obtain

R2 =
q

ε

[
− Û1z − σÛ1f

′′(θ)
]

=
1

ε
σ(βe−

βt

ε2 + ε2LeLt)
[
− Û1z − σÛ1f

′′(θ)
]
.

Since the last factor in the above expression is uniformly bounded in Ω× [0, T ], it follows

that there exists a constant C̃5 such that

(4.68) |R2| ≤ C̃5

[β
ε
e−

βt

ε2 + εLeLt
]
.

Estimate of the terms R3 and R4

It is easy to see that all the terms in the expressions of R3, R4 are bounded, so that
there exists a constant C̃6 such that

(4.69) |R3|+ |R4| ≤ C̃6.

Combination of the above estimates

Collecting the estimates (4.62), (4.63), (4.65), (4.67), (4.68), (4.69), we obtain

L(uε,+) ≥

[
σβ2

ε2
− C̃5

β

ε

]
e−

βt

ε2 +
[
2σβL− εC̃5L− C̃3

]
eLt − C̃1 − C̃2 − C̃4 − C̃6

=

[
σβ2

ε2
− C̃5

β

ε

]
e−

βt

ε2 +

[
2σβ

3
L− εC̃5L

]
eLt(4.70)

+

[
2σβ

3
L− C̃3

]
eLt +

[
2σβ

3
LeLt − C̃7

]
,(4.71)

where C̃7 := C̃1 + C̃2 + C̃4 + C̃6. We first choose L large enough such that the terms in
(4.71) are positive, then we choose ε0 small enough (which satisfies (4.58), (4.61)) such
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that the two terms in (4.70) are positive, thus we obtain L(uε,+) ≥ 0. We complete the
proof of Lemma 4.7.

4.5. Proof of Theorem 1.2. Let us briefly explain the idea of the proof. As we see
in the proof of Theorem 1.1, the solution uε is sandwiched between the pair of sub- and
super-solutions ŵε,± and develops steep transition layers at the time tε. In this section,
by choosing an appropriate constant K in the expression (4.52) of uε,±, we will show that
ŵε,± at the time tε is sandwiched between the sub-solution and super-solution uε,± at the
time t = 0, namely

(4.72) uε,−(x, 0) ≤ ŵε,−(x, tε) ≤ uε(x, tε) ≤ ŵε,+(x, tε) ≤ uε,+(x, 0).

Therefore, Lemma 4.7 and the comparison principle implies the results in Theorem 1.2.

We need the following auxiliary results.

Lemma 4.8. Given M > 0, then there exist M ′, ε0 such that

d̄(x, 0) ≥M ′ε implies u0(x) ≤ a−Mε(4.73)

d̄(x, 0) ≤ −M ′ε implies u0(x) ≥ a+Mε,(4.74)

for all x ∈ Ω and every ε ∈ (0, ε0).

Proof. We only prove (4.73). We deduce from (1.6) and (1.7) that
∂u0
∂n

< 0 on Γ0. We

can choose d∗ small enough such that in the neighborhood V := {x ∈ Ω : |d̄(x, 0)| < d∗}
of Γ0 there holds

(4.75) −k := inf
x∈V

∂u0
∂n

< 0.

We consider two regions: {x ∈ Ω :M ′ε ≤ d̄(x, 0) ≤ d∗} and {x ∈ Ω : d̄(x, 0) ≥ d∗}.

Case 1. In the region {x ∈ Ω : d̄(x, 0) ≥ d∗}, we have

ã := sup{u0(x) : x ∈ Ω, |d̄(x, 0)| ≥ d∗} < a.

Choosing ε0 ≤ (a− ã)/M , we deduce that u0(x) ≤ ã ≤ a−Mε.
Case 2. Consider {x ∈ Ω :M ′ε ≤ d̄(x, 0) ≤ d∗}. By the mean value theorem, we have

u0(x)− a = d̄(x, 0)
∂u0
∂n

(θ) for some θ ∈ V.

Therefore, using (4.75), we obtain u0(x) ≤ a−kM ′ε ≤ a−Mε, provide thatM ′ ≥
M

k
. �

Remark 4.1. The above lemma implies that {x ∈ Ω : |u0(x) − a| ≤ Mε} ⊂ {x ∈ Ω :
|d̄(x, 0)| ≤M ′ε}, so that its thickness is of order ε.

The proof of Theorem 1.2 is divided in two steps.

Step 1. We will prove that

(4.76) uε,−(x, t) ≤ uε(x, tε + t) ≤ uε,+(x, t) for all x ∈ Ω, t ∈ [0, T − tε].

We apply Theorem 1.1 by replacing η by
σβ

3
and let M be the corresponding constant.

Lemmas 4.8 and 4.2 imply that there exists M ′ > 0, ε0 such that for all ε ∈ (0, ε0), we
have

d̂(x, 0) ≥M ′ε implies u0(x) ≤ a−Mε,

d̂(x, 0) ≤ −M ′ε implies u0(x) ≥ a+Mε,
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where we recall that d̂ is the modified signed distance to Γ[0,T ]. It follows from (1.13) that

−
σβ

3
≤ uε(x, tε) ≤ 1 +

σβ

3
for all x ∈ Ω.

We deduce from (1.15) that

(4.77) uε(x, tε) ≤ v+(x) :=





1 +
σβ

3
if d̂(x, 0) ≤M ′ε

σβ

3
if d̂(x, 0) > M ′ε.

Next we apply (1.14) to deduce that

(4.78) uε(x, tε) ≥ v−(x) :=





1−
σβ

3
if d̂(x, 0) < −M ′ε

−
σβ

3
if d̂(x, 0) ≥ −M ′ε.

Next we show that

(4.79) uε,−(x, 0) ≤ v−(x) and v+(x) ≤ uε,+(x, 0).

Let m,m are defined in (4.50). We have

uε,+(x, 0) = U0(x, 0,
d̂(x, 0)

ε
−K) + εÛ1(x, 0,

d̂(x, 0)

ε
−K) + σ(β + ε2L)

= Φ0(m(x, 0)
d̂(x, 0)

ε
−m(x, 0)K) + εÛ1(x, 0,

d̂(x, 0)

ε
−K) + σ(β + ε2L)

≥ Φ0(m
d̂(x, 0)

ε
−mK) + εÛ1(x, 0,

d̂(x, 0)

ε
−K) + σβ,(4.80)

where we have used the monotonicity of Φ0 in the last inequality.
Let Ĉ3 be defined in Lemma 4.5 and choose ε0 such that ε0Ĉ3 ≤

σβ
3 . Then

εÛ1(x, 0,
d̂(x, 0)

ε
−K) ≤

σβ

3
.

The inequality (4.80) and the positivity of Φ0 imply that

uε,+(x, 0) ≥
2σβ

3
for all x ∈ Ω.(4.81)

On the other hand, since Φ0(−∞) = 1, we may choose K large enough such that

Φ0(mM
′ −mK) ≥ 1−

σβ

3
.

As a consequence, using (4.80) and (4.77), we obtain

uε,+(x, 0) ≥ Φ0(mM
′ −mK) +

2σβ

3
≥ 1 +

σβ

3
≥ v+(x)

for all x ∈ Ω such that d̂(x, 0) ≤M ′ε and all ε ∈ (0, ε0). This together with (4.81) implies
the second inequality in (4.79). The first inequality in (4.79) can be proven in a similar
way. Therefore,

uε,−(x, 0) ≤ uε(x, tε) ≤ uε,+(x, 0) for all x ∈ Ω,

which together with Lemma 4.7 and the comparison principle imply that

uε,−(x, t) ≤ uε(x, tε + t) ≤ uε,+(x, t) for all x ∈ Ω, t ∈ [0, T − tε].
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Step 2. Choose ε0, σ small enough such that

(4.82) ε0Ĉ3 + σ(β + ε20Le
LT ) ≤

η

2
.

Then it is easy to check that

−
η

2
≤ uε,−(x, t) ≤ uε(x, tε + t) ≤ uε,+(x, t) ≤ 1 +

η

2
for all (x, t) ∈ Ω× [0, T − tε],

which implies (1.13). It remains to claim that there exists a constant C > 0 such that

d̄(x, t+ tε) ≥ Cε implies uε(x, t+ tε) ≤ η,

d̄(x, t+ tε) ≤ −Cε implies uε(x, t+ tε) ≥ 1− η.

Note that

d̄(x, t+ tε) ≥ εC ⇔ d̂(x, t+ tε) ≥ εC ⇒ d̂(x, t) ≥
εC

2

for all (x, t) ∈ Ω×[0, T−tε] and every ε ∈ (0, ε0) with ε0 small enough. Thus the inequality
d̄(x, t+ tε) ≥ εC implies in view of (4.82)

uε,+(x, t) = Φ0(m(x, t)
d̂(x, t)

ε
+m(x, t)p(t)) + εÛ1(x, t,

d̂(x, t)

ε
+ p(t)) + σ(βe−

βt

ε2 + ε2LeLt)

≤ Φ0(m
C

2
−m max

t∈[0,T ]
|p(t)|) + εĈ3 + α(β + ε2LeLT )

≤ Φ0(m
C

2
−m(1 + eLT +K)) +

η

2
.

Choosing C large enough such that Φ0(m
C

2
−m(1 + eLT +K)) ≤

η

2
, we deduce that for

all (x, t) ∈ Ω × [0, T − tε] such that d̄(x, t + tε) ≥ εC, we have uε,+(x, t) ≤ η and hence
uε(x, t+tε) ≤ η. Similarly, the inequality d̄(x, t+tε) ≥ −εC implies that uε(x, t+tε) ≥ 1−η.
This completes the proof of Theorem 1.2.
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