
INVISCID TRAVELING WAVES OF MONOSTABLE NONLINEARITY

SUNHO CHOI1, JAYWAN CHUNG2, AND YONG-JUNG KIM2,3,∗

1 Department of Applied Mathematics, Kyung Hee University, Yongin, 17104, Korea
2 Thermoelectric Conversion Research Center, Korea Electrotechnology Research Institute, Changwon-si,
Gyeongsangnam-do, 51543, Korea
3 Department of Mathematical Sciences, KAIST, Daejeon, 34141, Korea

Abstract. Inviscid traveling waves are ghost-like phenomena that do not appear in reality
because of their instability. However, they are the reason for the complexity of the traveling
wave theory of reaction-diffusion equations and understanding them will help to resolve related
puzzles. In this article, we obtain the existence, the uniqueness and the regularity of inviscid
traveling waves under a general monostable nonlinearity that includes non-Lipschitz continuous
reaction terms. Solution structures are obtained such as the thickness of the tail and the free
boundaries.
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1. Phantom of traveling waves

Traveling wave solutions with a monostable nonlinearity have been intensively studied (see
[3]). For example, consider a reaction diffusion equation,

ut = d(um)xx + uβ(1− uα), t, α, β, d,m > 0, x ∈ R, (1.1)

where subindexes indicate partial derivatives. The usual traveling wave phenomenon is produced
by a correlation between diffusion and reaction. However, there are phantom-like traveling waves
for any speed c ∈ R which are produced entirely by reaction (d = 0). The reason why the
reaction-diffusion equation admits a traveling wave of any speed greater than a minimum one,
|c| ≥ c∗ > 0, is related to such traveling waves.

These phantom-like traveling wave solutions satisfy an inviscid equation,

vt = vβ(1− vα), t > 0, x ∈ R, (1.2)

where v(x, ·) solves the the ODE independently for each x ∈ R. Consider a traveling wave
solution of speed c > 0, v(x, t) = v(x− ct) (here, we are abusing notation by using the same “v”
for the traveling wave profile). Then, v = v(z) satisfies

cv′ + vβ(1− vα) = 0, α, β > 0, z ∈ R. (1.3)

We restrict our study to a traveling wave with monotonicity. The solution is global and unique
at least for β ≥ 1 by the Cauchy Lipschitz theorem and satisfies boundary conditions

lim
z→−∞

v(z) = 1, lim
z→∞

v(z) = 0, v(0) = 0.5. (1.4)

Here, we have chosen a decreasing traveling wave. Since a traveling wave is invariant in trans-
lation, the extra condition v(0) = 0.5 is taken for the uniqueness. An inviscid traveling wave,
denoted by v = vc,α,β, depends on three parameters, c, α, β.

For the Fisher equation case (α = β = 1) the inviscid traveling wave is simply the logistic
function given in (2.3). This information of inviscid traveling waves was the key to obtain the
connection between viscous and inviscid traveling waves (see [5]). The purpose of this paper is
to obtain the properties of inviscid traveling waves required to show similar connections in the
general setting of the above.
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2. Three examples of inviscid traveling waves

We consider three cases of inviscid traveling waves solutions. They may have an algebraic
tail, an exponential tail, or a free boundary, respectively.

Case 1. α = 1, β = 2 (algebraic tail). Separate variables in (1.3) and obtain − c
v2(1−v)v

′ = 1.

Integrate both sides on (0, z) and obtain

−
∫ z

0

cv′(s)

v2(s)(1− v(s))
ds = z.

A change of variable and the condition v(0) = 1/2 yield that

−
∫ z

0

cv′(s)

v2(s)(1− v(s))
ds = −

∫ v(z)

v(0)

c

v2(1− v)
dv = c

(
1

v(z)
+ log

1− v(z)

v(z)
− 2

)
.

Therefore, we have

c

(
1

v(z)
+ log

1− v(z)

v(z)
− 2

)
= z. (2.1)

From this implicit formula, one may easily check the boundary conditions (1.4) and, furthermore,

lim
z→∞

zvc,α=1,β=2(z) = c. (2.2)

Thus, the traveling wave has an algebraic tail vc,α=1,β=2(z) ∼= cz−1 for z large.

Case 2. α = 1, β = 1 (exponential tail). In this case the equation (1.3) is written as

v′ = −1

c
v(1− v), z ∈ R.

The traveling wave is the logistic function and is given by

vc,α=1,β=1(z) =
(
1 + exp

(
z/c
))−1

. (2.3)

This solution satisfies the conditions in (1.4) and vc,α=1,β=1(z) ∼= e−
1
c
z for z large.

Case 3. α = 1, β = 0.5 (free boundary). We separate variables and obtain

− c

v1/2(1− v)
v′ = 1.

Integrate it over (0, z) and obtain

−
∫ v(z)

v(0)

c

v1/2(1− v)
dv = c

(
log

1−
√
v(z)

1 +
√
v(z)

− log

√
2− 1√
2 + 1

)
= z. (2.4)

The solution is explicitly given by

v(z) =

(
2

1 + e
z
c
+log

√
2−1√
2+1

− 1

)2

+

. (2.5)

This solution has a free boundary at z0 = c log
(√

2+1√
2−1

)
and is positive for z ∈ (−∞, z0).

Remark 2.1 (Regularity of traveling wave near free boundary). Formally speaking, the right
hand side of (1.3) is bounded near the free boundary for all α, β > 0. Hence, we expect C1

regularity of the traveling wave. Consider the derivative of (1.3),

c2v′′ = −c
(
vβ(1− vα)

)′
= −cβvβ−1(1− vα)v′ + cαvβvα−1v′

= βv2β−1(1− vα)2 − αvα+2β−1(1− vα).

The most singular term near the free boundary is v2β−1 which is unbounded for β < 1
2 . In fact,

the traveling wave given in (2.5) is the border case with C2 regularity.
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3. Existence and uniqueness of traveling waves

If β < 1 and the solution of (1.2) is not unique in general. However, the traveling wave is
unique for all β > 0. We show the uniqueness and the existence of a traveling wave solution for
all β > 0, where the Cauchy Lipschitz theorem covers the case with β ≥ 1.

Theorem 3.1 (Existence, Uniqueness, and C1 regularity). For any α, β, c > 0, there exists a
unique solution v = vc,α,β ∈ C1(R) of (1.3)–(1.4). Furthermore,

(1) vc,α,β(z) < 1 for all z ∈ R.
(2) If 0 < β < 1, there exists z0 <∞ such that vc,α,β(z) > 0 iff −∞ < z < z0.
(3) If β ≥ 1, vc,α,β(z) > 0 for −∞ < z < z0 :=∞.
(4) vc,α,β(z) is strictly decreasing for −∞ < z < z0.
(5) vc,α,β(z)→ 1 for z < 0 and vc,α,β(z)→ 0 for z > 0 as c→ 0.

Proof. Rewrite the equation (1.3) as − cv′

vβ(1−vα) = 1 and integrate it on (0, z) to obtain

−
∫ z

0

cv′(s)

vβ(s)(1− vα(s))
ds = −

∫ v(z)

v(0)

c

yβ(1− yα)
dy = z. (3.1)

Let G(v) := −
∫ v
v(0)

c
yβ(1−yα)dy. Then we have G(v(z)) = z. Since G′(v) = − c

vβ(1−vα) < 0 for

0 < v < 1, G(v) is continuous and strictly decreasing on the unit interval (0, 1). Therefore, G is
invertible on (0, 1) and v is given uniquely as its inverse function, i.e., v(z) = G−1(z). This also
implies that v is C1(R) and strictly decreasing as long as 0 < v < 1. Furthermore, G(v)→ 0 as
c→ 0 and hence its inverse v(z) satisfies (5).

Now we check the boundary conditions in (1.4). Let s = yα. Then, the integral is written as

G(v) = −
∫ v

v(0)

c

yβ(1− yα)
dy = −

∫ vα

vα(0)

c

αs(α+β−1)/α(1− s)
ds.

Therefore,

lim
v→1−

G(v) = −∞, lim
z→−∞

v(z) = 1, and v(z) < 1.

Similarly we can compute

lim
v→0+

G(v) = − lim
v→0+

∫ v

v(0)

c

yβ(1− yα)
dy =

{
∞, β ≥ 1,
z0, β < 1.

Therefore, v(z) > 0 if β ≥ 1, and limz→z0 v(z) = 0 if 0 < β < 1. Furthermore, the nonnegativity
and monotonicity of v implies v(z) = 0 for all z ≥ z0 if 0 < β < 1. �

4. Free boundary and tail thickness

The thickness of the tail or the free boundary decides the asymptotic behavior of a traveling
wave. The thickness is proportional to the wave speed in a certain sense. In this section we
define the thickness in a way to be identical to the wave speed.

Definition 4.1. The limit λ := limz→∞(β − 1)vβ−1(z)z is called the algebraic tail thickness of
v of degree 1

β−1 if the limit exists as z →∞.

If λ 6= 0, such a traveling wave asymptotically satisfies

v(z) ∼=
(β − 1

λ
z
)− 1

β−1
for z ∼=∞. (4.1)

The traveling wave implicitly given by (2.1) is an example with α = 1 and β = 2. In the case,
the tail thickness is limz→∞(β − 1)v(z)β−1z = limz→∞ vc,α=1,β=2(z)z = c. The algebraic tail

thickness of the traveling wave vc,α=1,β=2 of degree 1
β−1(= 1) is λ(c, α = 1, β = 2) = c, i.e., the

wave speed. We will see it is true for all α > 0 and β > 1.
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Theorem 4.1. Let α > 0 and β > 1. Then, the traveling wave vc,α,β has the algebraic tail

thickness of degree 1
β−1 which is same as the wave speed c, i.e.,

λ(c, α > 0, β > 1)
(

:= lim
z→∞

(β − 1)vβ−1c,α,β(z)z
)

= c. (4.2)

Proof. The relation (3.1) is written as

z = −
∫ z

0

cv′(s)

vβ(s)(1− vα(s))
ds = − c

1− β

∫ z

0

d

ds
[v1−β(s)]

1

(1− vα(s))
ds

= − cv1−β

(1− β)(1− vα)

∣∣∣z
0
− c

β − 1

∫ z

0

αvα−β(s)

(1− vα(s))2
v′(s) ds.

(4.3)

As z →∞, v(z)→ 0 and the last term in (4.3) is estimated by, if α− β 6= −1,∣∣∣∣ ∫ v(z)

v(0)

αvα−β

(1− vα)2
dv

∣∣∣∣ . ∫ v(0)

v(z)
vα−β dv . v(z)α−β+1 + v(0)α−β+1,

where the inequality . denotes that a positive constant is omitted in the inequality. If α− β =
−1, the upper bound is replaced by | ln v(z)| + | ln v(0)|. Multiply the both sides of (4.3) by
(β − 1)v(z)β−1 and obtain

(β − 1)vβ−1(z)z = c
1

1− vα(z)
− cvβ−1(z)

( v1−β(0)

1− vα(0)
−
∫ z

0

αvα−β(s)

(1− vα(s))2
v′(s) ds

)
.

Take limit as z →∞ and obtain limz→∞(β − 1)vβ−1(z)z = c. �

Definition 4.2. The limit λ := limz→∞
z

− ln v(z) is called the exponential tail thickness of v if

the limit exists as z →∞.

If λ 6= 0, such a traveling wave asymptotically satisfies

v(z) ∼= e−
1
λ
z for z ∼=∞. (4.4)

The traveling wave explicitly given by (2.3) is an example with α = β = 1. In this case the
traveling wave has an exponential tail thickness of

λ(c, α = 1, β = 1) = c.

In the following theorem we show that the tail thickness is independent of α > 0.

Theorem 4.2. Let α > 0 and β = 1. Then, the traveling wave vc,α,β=1 has the exponential tail
thickness which is same as the wave speed c, i.e.,

λ(c, α > 0, β = 1)

(
:= lim

z→∞

z

− ln vc,α,1(z)

)
= c. (4.5)

Proof. From (3.1),

z = −c
∫ v(z)

v(0)

( d
dv

ln v
)

(1− vα)−1 dv.

Integrate it by parts and obtain

z = −c ln v(z)

1− vα(z)
+ c

ln v(0)

1− vα(0)
+ c

∫ v(z)

v(0)

αvα−1 ln v

(1− vα)2
dv.

Note that the third term is bounded as v(z) → 0 since α > 0. Divide both sides by − ln v(z),
take the limit as z →∞, and obtain limz→∞

z
− ln v(z) = c. �

Lastly, consider a traveling wave that has a free boundary of its support at z = z0.

Definition 4.3. The limit λ := limz→z−0
(β − 1)vβ−1(z)(z − z0) is called the thickness of a free

boundary of v of degree 1
1−β as z → z−0 if the limit exists.
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If λ 6= 0, such a traveling wave satisfies

v(z) ∼=
(1− β

λ
(z0 − z)

) 1
1−β

for z0 − ε < z < z0. (4.6)

The traveling wave explicitly given by (2.5) is an example with α = 1 and β = 0.5. In this case

the traveling wave has a free boundary at z0 = c log
(√

2+1√
2−1

)
and

λ(c, α = 1, β = 1/2) = − lim
z→z0

1

2
v−

1
2 (z − z0) = − lim

z→z0

1

2

(
2

1 + e
1
c
(z−z0)

− 1

)−1
(z − z0)

= − lim
z→z0

1

2

(
1 + e

1
c
(z−z0)

1− e
1
c
(z−z0)

)
(z − z0) = c.

Therefore, the front thickness of this inviscid traveling wave is same as its traveling wave speed.
This holds for all β < 1.

Theorem 4.3. Let α > 0, 0 < β < 1, and z = z0 be the free boundary of vc,α,β. The thickness

of the free boundary of degree 1
1−β is the wave speed c, i.e.,

λ(c, α > 0, β)

(
:= lim

z→z−0
(β − 1)vβ−1c,α,β(z)(z − z0)

)
= c. (4.7)

Proof. Rewrite the equation (1.3) as − cv′

vβ(1−vα) = 1 and integrate it from z to z0 to obtain

z0 − z =

∫ v(z)

0

c

vβ(1− vα)
dv.

Integration by parts gives

z0 − z = c
v1−β(z)

(1− β)(1− vα(z))
− c

1− β

∫ v(z)

0

αvα−β

(1− vα)2
dv. (4.8)

The second term is estimated by∣∣∣∣ ∫ v(z)

0

αvα−β

(1− vα)2
dv

∣∣∣∣ . vα+1−β(z).

Multiply 1−β
v1−β

to (4.8) and take limit as z → z−0 , which gives limz→z−0
(1− β) z0−z

v1−β(z)
= c. �

5. Discussions

If m + β ≥ 2 and the wave speed c is greater than or equal to a minimum wave speed,
c∗ > 0, there exists a traveling wave solution of (1.1) (see [3, Theorem 10.5]), and its profile,
u(x− ct) = u(x, t), satisfies

d(um)′′ + cu′ + uβ(1− uα) = 0, α, β > 0, z ∈ R, (5.1)

lim
z→−∞

u(z) = 1, lim
z→∞

u(z) = 0, u(0) = 0.5. (5.2)

The traveling wave profile, u(z) = ud,m,c,α,β(z), is a member of five parameters family of functions
and inviscid traveling waves of the paper provide a useful tool to understand the dynamics in
the diffusive traveling waves. Take a diffusive traveling wave as an initial value and consider a
Cauchy problem,

ut = d
(
um
)
xx

+ uβ(1− uα), t > 0, x ∈ R,
u(x, 0) = ud,m,c,α,β(x).

(5.3)

The dynamics of this Cauchy problem can be viewed from its inviscid correspondence,

vt = vβ(1− vα), t > 0, x ∈ R,
v(x, 0) = vc,α,β(x).

(5.4)

If β < 1, the initial value vc,α,β(x) has a free boundary at x = z0. The interesting part is that
the reaction term is not Lipschitz continuous and the solution of (5.4) is not unique. The solution
behavior for x < z0 is determined since v(x, 0) > 0. However, for x ≥ z0, the solution behavior is
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decided by the firing moment which could be given arbitrarily.1 The non-uniqueness of solution
comes from this arbitrariness. The unique traveling wave solution obtained in Theorem 3.1 is
the one that the firing moment at x > z0 is t = x−z0

c . There is no dynamics in the model
that gives such a firing and hence we call it a phantom-like traveling wave. The solution of
the reaction-diffusion equation (5.3) is not unique, neither. The minimum traveling wave speed,
c = c∗, is when the firing moment is given by the diffusion process. If there is a ghost which
controls the firing moment, the ghost can only speed up the traveling wave, i.e., c ≥ c∗, since
the solution is determined as soon as the wave is fired by the diffusion. We may conjecture that
the initial propagation speed of the free boundary of a Cauchy problem,

ut = d(um)xx, u(x, 0) = ud,m,c,α,β, x ∈ R, t > 0,

is c if and only if c = c∗. Otherwise, slower.
If β ≥ 1, the reaction term is Lipschitz and the solution of (5.4) is unique. The initial value

vc,α,β(x) is strictly positive and the growth (or firing) moment is already encoded in the tail.
For example, for x > 0, the tail thickness is the initial value, v(x, 0) = vc,α,β(x) > 0, where the

solution of the ODE has the value v(x, t) = 0.5 when t = x−0
c . Therefore, the value v = 0.5 is

traveling with speed c. Remember that, if m > 1 and β ≥ 1, the traveling wave of (1.1) with
the minimum speed is the only one without a tail (see [4, Theorem 3.1]). In other words, the
propagation of the wave is entirely given by the diffusion, but not the tail of initial value.

The properties of inviscid traveling waves vc,α,β naturally indicate some properties of traveling
waves of diffusive traveling waves ud,m,c,α,β. For example, since vc,α,β exists for any c > 0, it is
expected that the minimum traveling wave speed, c∗ = c∗(d,m, β), converges to zero as d→ 0.
In fact, this convergence has been shown for many cases such as m + β = 2. One may ask if
the diagram of convergence corresponding to [5, Figure 1]) can be completed. For example, let
c > c∗(d,m, β). Then, there exists a diffusive traveling wave of the speed c. If such a traveling
wave is related to the dynamics of the reaction term, it is expected that ud,m,c,α,β → vc,α,β as
d → 0. In fact such a limit has been shown for Fisher’s equation case (see [5, Theorem 1]).
As d → 0, the diffusive traveling wave of the minimum speed is supposed to have zero wave
speed and inviscid structure. It has been shown that vc,α,β → χ(−∞,0) as c→ 0 (Theorem 3.1).
Therefore, it is expected that ud,m,c∗(d,m,β),α,β → χ(−∞,0) as d → 0. This limit has been shown
for Fisher’s equation case (see [5, Theorem 3]). The vanishing viscosity limit has been mostly
studied for under the effect of advection or hyperbolic problems (see [1, 2, 6]). In that case, even
if the diffusion disappears, the advection gives a migration phenomenon. The inviscid traveling
wave of this paper shows the possibility of generation of traveling wave phenomena without any
migration mechanism which is quite a ghost-like one.
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