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Abstract. A spatially heterogeneous nonsymmetric random walk system is introduced
when the walk length depends on space variables and walking direction. We derive an
advection-diffusion equation related to such a random walk system which covers both
isotropic and anisotropic dispersal. The resulting equation is similar to the ones obtained
from a kinetic transport equation by Hillen et al. [4, 5]. The derived equation is applied to
model anisotropic dispersal of fungus in vineyard. Monte-Carlo simulations are compared
with the solution of model equations.

1. Spatially heterogeneous nonsymmetric random walk

The purpose of this paper is to introduce a space jump process based on a general
random walk system and derive an anisotropic diffusion equation. Similar anisotropic
diffusion models have been obtained using a velocity jump process based on a transport
equation and the method of the paper gives an alternative model equation. We test
the anisotropic diffusion models with Monte-Carlo simulations in the context of fungus
spreading in a vineyard.

1.1. Random walk in one space dimension. We start with one space dimension.
The notations of a random walk system and its illustration are given in Table 1 and
Figure 1. There are a few differences of our random walk system in comparison with
traditional ones. First, the parameters of the random walk system in Table 1 are all
spatially heterogeneous, i.e., ∆x = ∆x(x),∆t = ∆t(x), and so on. Hence, we cannot
exchange the order of parameters and differential operators. We will consider a random
walk system in the context of biological dispersal. Since biological organisms may stay or
depart depending on the environment, we introduce departing probability γ(x) (see [3]).
However, for a comparison, we mostly take γ = 1, which is the case of Brownian particles.

U i U i+1
q1γU

i

q2γU
i+1

U i−1 U i+2

xi xi+1xi−1 xi+2∆x
∣

∣

xi+1/2

Figure 1. Diagram of a space-jump process of this paper in 1-D.

We assume that the probability for a particle to move to right is q1(x) and to left
is q2(x), where q1(x) + q2(x) = 1. Hence, the particle flux that crosses the midpoint
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Table 1. Notation and parameters of the random system in R1.

notation definition and meaning

xi grid point

xi+1/2 midpoint between xi and xi+1 (xi+1/2 := (xi + xi+1)/2)

∆x|xi mesh size (∆x|xi = xi+1/2 − x1−1/2)
∆x|xi+1/2 walk length (∆x|xi+1/2 = xi+1 − xi)
∆t|xi+1/2 jumping (or traveling) time from xi to xi+1 or vice versa
U i population at xi

ui population density at xi (ui = U i/∆x)
γ departing probability during the time period ∆t
q1, q2 probability for a particle to move right and left, respectively

f |xi+1/2 flux across a midpoint xi+1/2

xi+1/2 from left to right is q1γU
∆t

∣

∣

x=xi . Similarly, the flux from right to left is q2γU
∆t

∣

∣

x=xi+1 .

Therefore, in terms of particle density, u = U
∆x , the net flux across x = xi+1/2 is given by

f(xi+
1

2 ) =
q1∆x

∆t
γu

∣

∣

∣

xi
− q2∆x

∆t
γu

∣

∣

∣

xi+1
.

Let v := ∆x
∆t be the particle speed and µ = 1

∆t the turning frequency, which are functions
of the space variable, i.e., v = v(x) and µ = µ(x). Then, the flux is approximated by

f(xi+
1

2 ) = q1vγu
∣

∣

xi − q1vγu
∣

∣

xi+1 + (q1 − q2)vγu
∣

∣

xi+1

= −∆x
∣

∣

xi+1
2

(q1vγu
∣

∣

xi − q1vγu
∣

∣

xi+1

xi − xi+1

)

+ (q1 − q2)vγu
∣

∣

xi+1

∼= − 1

µ
v
∂

∂x

(

q1vγu
)∣

∣

xi+1
2
+ (q1 − q2)vγu

∣

∣

xi+1 .

Note that the first term, − 1
µv

∂
∂x

(

q1vγu
)

, in the final approximation can be written as

− 1
µ

∂
∂x

(

q1v
2γu

)

only if v is constant. Otherwise, one of the velocities should stay outside.

1.2. Random walk in Rn. Next we extend the one dimensional flux to multi-dimensions.
We introduce notations in multi-dimensions and rewrite the flux in a multi-dimensional
context. Denote

e1 = (1, 0, · · · , 0), · · · , en = (0, · · · , 0, 1), v1 := ve1, and v2 = −ve1.

Then, one can easily check that the first component of a vector,

f(x) ∼= − 1

µ
v1∇ · (q1v1γu)

∣

∣

x
+ (q1v1 + q2v2)γu

∣

∣

x+ ε
2

,

is same as the previous flux for one space dimension and all the other components are
zero. If we swap the role of q1v1 and q2v2 and take ε → 0, we obtain

f(x) ∼= − 1

µ
v2∇ · (q2v2γu)

∣

∣

x
+ (q1v1 + q2v2)γu

∣

∣

x
.

Add the two expressions and divide the sum by 2 to obtain

f(x) = − 1

2µ

2
∑

i=1

(

vi∇ · (qiviγu)
)

+

2
∑

i=1

(qivi)γu.
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This is the one dimensional random walk flux in multi-space dimensions. Note that both
vi’s and qi’s are spatially heterogeneous here.

In one space dimension, there are basically two directions, ±e1, which is why we only
took two velocity vectors. However, in multi-dimensions, we cannot enjoy this simplicity.
Let V be the collection of all possible velocities in Rn and q(x,v) be the probability
distribution measure that a particle moves with the velocity v at the position x. Here,
the spatial heterogeneity is in q and

∫

V q(x,v) = 1. The flux is similarly given by

f = − 1

2µ

∫

V

(

v∇ · (vq(x,v)γu)
)

dv + γuE, E :=

∫

V
vq(x,v)dv.

The corresponding conservation law is

(1) ut +∇ · (γuE) = ∇ ·
( 1

2µ

∫

V

(

v∇ · (vq(x,v)γu)
)

dv
)

.

If |v| = constant, the first part of the flux is written as

(2) − 1

2µ

∫

V

(

v∇ · (vq(x,v)γu)
)

dv = − 1

2µ
∇ · (Dγu), D =

∫

V
(v ⊗ v)q(x,v)dv,

where v ⊗ v denotes tensor product. Then, Eq. (1) can be simplified as given in Table
2 depending on the parameters. Note that, if q(x,−v) = q(x,v), the advection part
disappears since E = 0.

Table 2. Three diffusion equations obtained from (1) when E = 0. In

(D2) we denote by ∇∇ : (Du) =
∑n

i,j=1
∂2(Diju)
∂xi∂xj

.

diffusion equation diffusion tensor parameter conditions

(D1) ut = ∇·
(

1
2µ∇·

(

Du
))

D =
∫

V (v ⊗ v)q(x,v)dv γ = 1, |v| is constant
(D2) ut = ∇∇ :

(

Du
)

D = 1
2µ

∫

V (v⊗v)q(x,v)dv γ = 1, |v| and µ are constant

(D3) ut = ∇ ·
(

D∇u
)

D = 1
2µ(x)

∫

V (v⊗v)q(v)dv γ = 1, q = q(v)

Note that the diffusion tensor could be spatially heterogeneous, D = D(x), for both
cases of (D2) and (D3). However, the corresponding diffusion equations are different. A
constant state is a steady state of (D3), but not necessarily of (D2). In other words, the
spatial heterogeneity in turning frequency µ = µ(x) and the one in probability distribution
q = q(x,v) gives different consequences.

1.3. Diffusion scaling and examples. Let γ = 1, the walk length ∆x be of order ε, and
the turning frequency 1

∆t of order µ. Then, the speed is of order εµ and, hence, D and E

are of orders ε2µ2 and εµ, respectively. Therefore, the conservation law (1) is written as

ut + εµ∇ · (uE0) = ∇ · ε
2µ

2

(

∇ · (D0u)
)

,

where E0 and D0 are the ones obtained with unit velocity vectors. Diffusion scaling is the
one that keeps ε2µ constant when taking ε → 0 and µ → ∞. Such a scaling is meaningful
only when E = 0.1 Now we consider two example cases. For simplicity we only consider
cases without advection, i.e., E = 0. If E 6= 0, anisotropic dispersal theory of fungus in
vineyard requires a study of systems of fungus and spores (see [8].)

1If D̃0 and E0 are obtained and E0 6= 0, then µ and ε can be computed by measuring the diffusivity
and advection. This may provide an alternative method of measuring instantaneous speed of Brownian
particles [6].
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Example 1 (Isotropic diffusion). In a traditional random walk system in Rn particles walk

to one of 2n directions, ±ei, and γ = 1. Let ∆x = ε and ∆t = 1/µ. The corresponding

velocity set is V = {±εµei}ni=1 with the uniform probability q = 1/2n. Then, E = 0 and

D = ε2µ
2n I, where I is the identity matrix. The corresponding diffusion equation is

(3) ut =
ε2µ

2n
∆u.

Instead of taking directions along coordinates, we may take all possible directions. Let

n = 2, γ = 1, V = {εµ(cos θ, sin θ) : 0 ≤ θ < 2π}, and q = 1
2πdθ. Then, E = 0 and

D =
1

2µ

∫

V
(v ⊗ v)q(x,v) =

ε2µ

4π

∫ 2π

0

(

cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

)

dθ =
ε2µ

4
I.

Therefore, we still obtain (3). Remember that it is enough to take a simplified random

walk system of 2n orthogonal walking directions to cover an isotropic case.

Example 2 (Anisotropic diffusion). We may generalize the isotropic random walk system

by taking ∆x = aiε, i = 1, · · · , n. Then, V = {±εµaiei}ni=1, q = 1/2n, E = 0, and

D =
ε2µ

2n







a21 · · · 0
...

. . .
...

0 · · · a2n






.

Therefore, the corresponding diffusion equation is anisotropic, i.e.,

ut =
ε2µ

2n
(a21ux1x1

+ · · ·+ a2nuxnxn).

Let n = 2, γ = 1, V = {εµ(0.5 cos θ, sin θ) : 0 ≤ θ < 2π}, and q = 1
2πdθ. Then, E = 0 and

D =
1

2µ

∫

V
(v ⊗ v)q(x,v) =

ε2µ

16π

∫ 2π

0

(

cos2 θ 2 cos θ sin θ
2 cos θ sin θ 4 sin2 θ

)

dθ =
ε2µ

16

(

1 0
0 4

)

.

Therefore, we obtain the same anisotropic diffusion equation as the case with a1 = 1/2
and a2 = 1. Note that we may obtain the same anisotropic diffusion using a simplified

random walk system of 2n orthogonal walking directions if the directions are eigenvectors.

However, if the symmetry is broken, the situation becomes more complicate.

1.4. Derivation of anisotropic diffusion from a kinetic equation. Similar anisotropic
diffusion equations have been obtained using a velocity jump process based on a kinetic
transport equation and used to model biological phenomena (see Hillen et al. [4, 5]). The
model equation is written as

(4) ut = ∇ ·
( 1

µ
∇ ·

(

Dū
)

)

,

which takes the same D in (2). It is surprising that two different approaches end up in
the same equations. However, there is not the factor 1

2 in (4) which exists in the equation
(D1). The reason for this difference seems to be related to the fact that Eq. (4) models
a velocity jump process and the jumping time ∆t is a random variable with mean 1/µ.
For example, if ∆t is a random variable taking 0 or 2

µ with the equal probability, then the

mean is 1/µ and the diffusivity is the double of the one with fixed jumping time ∆t = 1/µ.
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2. Anisotropic diffusion in a vineyard

We consider the dispersal in a vineyard as an example of the anisotropic diffusion.
Population spreading in an anisotropic environment has been studied in two different
contexts, where one is focused on the role of dispersal (see [1, 2]) and the other is of
growth rate (see [7, 9]). We assume the fungus in a vineyard is spread by wind, where the
wind speed is constant, its direction is changed with a constant frequency µ, and a new
wind direction is given randomly, i.e., the distribution of wind is isotropic. However, the
anisotropic dispersal in a vineyard comes up since wind is deflected by grapevine rows.
The effective wind speed and direction in a vineyard should account for the structure of
each vineyard.

We assume a linear relation,

v = Au,

where u is the wind velocity outside of the vineyard, v is the effective one that carries
spores, and A is a symmetric matrix. For simplicity, we assume that |u| = 1, the vineyard
rows are parallel to the y axis, and the effectiveness matrix is given by

A =

(

0.5 0
0 1

)

.

We set u = (cos θ, sin θ) for 0 ≤ θ < 2π. Then,

v = Au =

(

0.5 0
0 1

)(

cos θ
sin θ

)

=

(

0.5 cos θ
sin θ

)

, and D =
1

16

(

1 0
0 4

)

,

which is the case of Example 2 with ε = µ = ∆t = 1. Then, the anisotropic diffusion
equation becomes

(5) ut = d11uxx + d22uyy, d11 = 1/16, d22 = 1/4.

Now we are ready to do a Monte-Carlo simulation and compare it to the solution of the
anisotropic diffusion equation. Each particle starts from the origin. Let pn be the position
of a particle after n steps. To take the next step, we choose an angle 0 ≤ θ < 2π randomly
and set pn+1 = pn + v for v = (0.5 cos θ, sin θ). Note that the jumping time is fixed by
∆t = 1 in this simulation. In Figure 2(a) the contour map of the density distribution of a
Monte-Carlo simulation of 106 particles is given when each of them finished 103 walks.
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(a) Space jump (t = 1000).
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(b) Solution of the model.
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(c) Velocity jump (t = 500).

Figure 2. Contour maps of Monte-Carlo simulation and explicit solution (6).

The initial value for the diffusion equation (5) corresponding to the previous Monte-
Carlo simulation is

u(x, 0) = 106δ(x),
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where δ(x) is the Dirac delta distribution. We can find the exact formula for the equation
in terms of the heat kernel φ(x, t) after changing variables

(6) u(x, y, t) =
106√
d11d22

× φ(x/
√

d11, y/
√

d22, t) =
106

4πt
√
d11d22

e−(x2/d11+y2/d22)/4t.

Since the particles walked 103 steps and ∆t = µ = 1, the corresponding time is t = 103.
The contour map of this explicit solution is given Figure 2(b). We can see that the solution
of the anisotropic diffusion equation perfectly matches to the Monte-Carlo simulation. If
one takes the diffusion equation (4), the corresponding diffusivity constants are d11 = 1/8
and d22 = 1/2. Therefore, to obtain the profile in Figure 2(b) using (4), one should
compute the equation for t = 500. In Figure 2(c), a Monte-Carlo simulation of a velocity
jumping process is given. In this simulation the jumping time ∆t is not fixed, but ln(∆t) is
a random variable which follows the normal distribution with a standard deviation σ = 0.6
and a mean zero. The final simulation time is t = 500 in this case.

3. Conclusion

There have been a lot of efforts to develop better biological diffusion models. Anisotropic
diffusion is one of them which arises due to direction dependency in various mechanisms
related to biological dispersal such as the probability to choose the direction, migration
distance before making a turn, and the turning frequency itself. In this paper we have
developed an anisotropic diffusion model (1) based on a general space jump process in
multi-dimensions. This model covers a general case that the parameters may have spatial
and temporal dependency and turns into simplified ones, (D1)–(D3), if parameters and the
probability kernel are independent of the space variable. The Monte-Carlo simulation in
Section 2 is developed as a simplest way to test anisotropic dispersal in a biology context.
Its comparison to the exact solution shows that the diffusion equation explains anisotropic
phenomenon correctly.
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