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Abstract. In this paper we derive diffusion equations in a heterogeneous environment.
We consider a system of discrete kinetic equations that consists of two phenotypes of
different turning frequencies. The two phenotypes change their states according to state
transition frequencies which depend on environment. We show that the density of the
total population of the two phenotypes converges to the solution of a Fokker-Planck type
diffusion equation if turning frequencies are of higher order than the state transition
frequencies. If it is the other way around, i.e., if the state is changed many times between
each turning, the density converges to the solution of a Fickian diffusion equation.

1. Introduction

The random dispersal of minute particles suspended in fluid is often mathematically
modeled by a diffusion equation. The same diffusion equation is also taken to model the
random migration of biological organisms and successfully provides fundamental insights
into the role of migration in the context of spatial ecology (see [4, 23, 28]). The purpose
of this paper is to develop a diffusion model based on the behavior of individual biological
organisms instead of simply adopting a diffusion model for Brownian particles. In this
way we hope to obtain a better diffusion theory that explains dispersal phenomena of
biological organisms correctly.

The main difference between biological organisms and Brownian particles is in the
way to adapt to spatial and temporal variation of environments. If the environment is
homogeneous, the difference is neutralized and the two would show the same dispersal
phenomenon. Therefore, we need to consider heterogeneous environments to understand
a biologically meaningful dispersal. In fact, the reason for biological organisms to migrate
is to find a better place for living and hence a biological diffusion theory in a homogeneous
environment is an oversimplification. Indeed, many researchers emphasized the importance
of formulating a realistic dispersal theory for biological species that takes into account
interactions between individuals and responses to environmental variations (see Skellam
[29, 30] and Okubo & Levin [23, Chapter 5]).

There have been many efforts and discussions to find a correct diffusion equation for
physical particles in heterogeneous environments. For example, if temperature is spatially
heterogeneous, Brownian particles often aggregate and form a nonconstant steady state.
This phenomenon is called by many names such as the thermal diffusion, thermophoresis,
or Soret effect. For such a case the diffusivity is spatially nonconstant, i.e., D = D(x).
Three diffusion models are often considered:

ut = ∇ ·
(
D(x)∇u

)
,(1)

ut = ∇ ·
(√

D(x)(∇
√
D(x)u)

)
,(2)

ut = ∆(D(x)u),(3)

which are all identical if the diffusivity is constant. Equation (1) is called Fick’s law and
any constant state is a steady state. Equations (2) and (3) were derived by Wereide [34]
and Chapman [6], respectively, and steady states are nonconstant if the diffusivity is not
constant. The three equations are also satisfied by the probability density function of
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a stochastic process when the variation of jumping distance, denoted by |△x|2, depends
on the terminal, middle, or starting point of each jump, respectively, in the order. In
other words, (2) and (3) are obtained by the Stratonovich and Ito integrals of a stochastic
process, respectively. Note that in the three cases of stochastic processes, the jumping
time, denoted by △t, is spatially homogeneous. If both of △x and △t are spatially
heterogeneous, another diffusion equation,

(4) ut = ∇ · α(x)∇(v(x)u),

has been considered in [7], where v(x) = △x
△t and α(x) = D(x)/v(x). If △t is constant, (2)

and (4) are identical to each other. The Fickian type diffusion (1) and the Fokker-Planck
type one (3) are often compared as mathematical dispersal models for physical particles
and biological species in heterogeneous environment (see [3, 33]).

The diffusion model for biological species requires extra ingredients to include the adap-
tation ability to environmental heterogeneity. The adaptation ability is often based on a
simple mechanism. For example, many species often increase their motility and move to
another place if starvation started. If the departing probability, denoted by γ, depends
on the information where they live, the corresponding diffusion equation is given by (6).
Even if they do not know the direction for a better place and hence their migration is
completely random and unbiased, such an behavior may increase their chance for survival
(see [7]). These strategies have been developed through the natural selection process and
only successful ones are selected (see [19, 20]).

In this paper, we develop a biological diffusion model as a diffusion limit of an unbi-
ased discrete kinetic equations of a microscopic (or mesoscopic) scale level. Understanding
the connection between macroscopic scale collective phenomena we observe and the mi-
croscopic scale individual behavior biological traits dictate has been one of main goals of
mathematical modeling. In particular, the connection between macroscopic model and mi-
croscopic or mesoscopic scale kinetic model attracted much attention recently. For exam-
ple, a link between Keller-Segel type macroscopic scale chemotaxis equations and individ-
ual bacterium level kinetic models has been intensively examined (see [1, 5, 12, 13, 14, 24]).
In these models individuals are assumed to sense the chemical gradient and changes their
turning frequencies depending on the gradient direction. It is such a bias that produces a
chemotactic drift. In this context, the approach of this paper is quite different since indi-
viduals do not sense the chemical gradient and hence the random walk system is unbiased.

The key idea comes from Funaki et al. [10] which considers a model with two sub-
population groups of different diffusion rates. We apply the idea into the context of
discrete kinetic equations. In n space dimensions, the system consists of 4n equations
(7)-(8). For simplicity, we consider one space dimension first, where the system is written
as

(5)



∂tu+ +
1

ϵ
∂xu+ =

ωu

ϵ2
(u− − u+) +

η

ϵ2
(gv+ − fu+),

∂tu− − 1

ϵ
∂xu− =

ωu

ϵ2
(u+ − u−) +

η

ϵ2
(gv− − fu−),

∂tv+ +
1

ϵ
∂xv+ =

ωv

ϵ2
(v− − v+) +

η

ϵ2
(fu+ − gv+),

∂tv− − 1

ϵ
∂xv− =

ωv

ϵ2
(v+ − v−) +

η

ϵ2
(fu− − gv−).

Here, u+ and v+ are population densities that moves to right and u− and v− are the
ones to left. The partial sums, u := u+ + u− and v := v+ + v−, are population densities
of two population groups with different turning frequencies ωu and ωv, respectively, and
ρ := u + v is the total population. We regard the turning frequencies as their dispersal
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strategies and assume that they are constants such that

0 < ωv < ωu,

i.e., u is the state that the species turns more frequently.1 The assumption that a species
changes its turning frequency depending on the environmental variation is widely accepted.
For example, Keller and Segel [17] derived their chemotaxis model under the assumption
that a species increases its turning frequency when the signaling chemical is abundant.
Starvation driven dispersal is another example, where the two phenotypes represent stuffed
and hungry individuals. It is observed that a ladybug reduces its turning rate when it is
hungry (see [16]).

The coefficients, f = fu→v and g = gv→u, are state transition frequencies between the
two population groups. Note that it is the ability of transition between two groups with
different dispersal strategies that gives extra adaptation ability to biological organisms
when the environment is spatially and temporally variant. The value of this paper is
in comparing the biological diffusion obtained by the effect of this state transition and
the particle diffusion represented by (1)–(3). The other coefficients, ε and η, are scaling
parameters and we consider solution sequences uε,η, vε,η and ρε,η. We took ε as the param-
eter for diffusion scaling and we will take the limit as ε→ 0. The other parameter η is to
compare the size of the state transition and the turning frequencies. The meaningful case
is when ωu, ωv ≫ η, i.e., an individual changes its moving direction many times before a
state transition occurs. The opposite case, ωu, ωv ≪ η, implies that the state of an indi-
vidual changes many times between two consecutive directional turn. In the case, dividing
the population into two groups of different turning frequencies becomes meaningless and
the whole population behaves as a single group.

The advection parts have velocity of ±1
ε for both phenotypes. However, if one pheno-

type changes its moving direction more frequently, its mean speed drops due to its time
consumption during tumbling and acceleration processes. Note that the effect of reduced
speed is not included in this paper and the both phenotypes are assumed to have the same
speed.2

We will find diffusion limits of 4n equations (7)–(8) in n-space dimensions. The diffusion
equation corresponding to the meaningful case of ωu, ωv ≫ η is obtained by taking limit
(ε, η) → (0, 0) with η/ε2 → ∞. We show that the limit satisfies a Fokker-Planck type
diffusion equation,

ρt = ∆(γ(ρ,x)ρ), ρ := lim
(ε,η)→(0,0)

ρε,η,

where γ(ρ,x) is given by (11). This Fokker-Plank type diffusion equation can be written
into two parts,

ρt = ∇ ·
((
γ + ρ

∂γ

∂ρ

)
∇ρ+ ρ∇xγ

)
,

where (γ + ρ∂γ
∂ρ

)
∇ρ is a Fickian type diffusion term and ρ∇xγ(ρ,x) is an advection term.

We also take the limit (ε, η) → (0,∞) for the case of ωu, ωv ≪ η and show that the
limit satisfies a Fickian type diffusion equation,

ρt = ∇ · (γ̃(ρ,x)∇ρ), ρ := lim
(ε,η)→(0,∞)

ρε,η,

1One may extend the theory to nonconstant and nonlinear turning frequencies such as ωu = ωu(u,x)
and ωv = ωv(v,x) following the method in [8] and [21]. However, we will focus on the nonlinearity and
spatial heterogeneity in the state transition frequencies f and g since these are the ones that decide the
type of diffusion.

2The effect of reduced speed could be critical. For example, the density of Brownian particles is reversely
proportional to the speed. Therefore, the reduction of mean speed can induce a population aggregation.
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where γ̃(ρ,x) is given by (11). In this case there is no advection phenomenon. If (ϵ, η) →
(0, ℓ2) for some constant ℓ > 0, the limit satisfies a diffusion equation (14) which is a
combination of the previous two.

The approach developed in this paper can be applied to various situations if the whole
population is split into two or more groups with different dispersal strategies and the
transition from one group to another is allowed. In Section 7, we apply this idea to derive
the starvation driven diffusion, or SDD for brevity, from this kinetic model by splitting
the population with two groups of hungry and stuffed ones. The SDD is a dispersal model
of a biological species given by

(6) ρt = ∆(γ(s)ρ),

where γ(s) is the departing probability which is an increasing function of a starvation
measure s (see [7, 18, 19, 20]). In this situation, u and v represent population density
who are stuffed or starved, respectively. The assumption 0 < ωv ≤ ωu implies that the
hungry population, v, change the moving direction less frequently. The state transition
phenomenon in this case is the one that a hungry individual becomes stuffed one or vice
versa. If a hungry one consumes enough food or a stuffed on does not consume food for a
while, then the state transition occurs.

We may take the following ratios as starvation measures:

s := su + sv =
ρ

2nm
, where su :=

u

2nm
, sv :=

v

2nm
,

where m = m(x) is a food (or resource) distribution and n is the space dimension. The
ratio m

ρ is the amount of resource per population which measures how favorable the envi-

ronment is. Hence, its reciprocal ρ
m measures starvation of the species. We multiply 1

2n
and take s = ρ

2nm for a notational convenience in a later use. Finally, we take transition
frequencies as functions of starvation measures given by

f(τ,x) = f̂
( τ

m(x)

)
and g(τ,x) = ĝ

( τ

m(x)

)
,

where the spatial heterogeneity comes from the nonconstant food distribution m(x). We
assume that the ratio of hungry population v increases if the starvation measure increases,
i.e.,

v

u
=
f̂(su)

ĝ(sv)
↑ as s ↑ ∞, where f̂(su) = f

( u
2n
,x
)
, ĝ(sv) = g

( v
2n
,x
)
.

Then, as the starvation measure increases, the average dispersal rate of the species in-
creases and hence the species may migrate more.

The analytical component of this paper is in proving diffusion limits of the discrete
kinetic model. Whenever we look for a hydrodynamic or relaxation limit for a small
parameter ε → 0, an uniform estimate of the solution sequence is necessary. For kinetic

models, obtaining a uniform estimate of the flux (Ju,ε
i,j :=

ui−uj

ε in our case) is the key.
Since the state transition frequencies, f and g, are spatially heterogeneous and nonlinear,
we choose an energy functional reflecting these situations and show such an estimate in
Section 4. Then, a strong convergence of solutions in the limit is shown in Section 5 using
the div-curl lemma. In Section 6, we identify flux terms, Ji,j ’s and Hi’s, and find the
limiting diffusion equation that ρ satisfies in the three cases. The existence theory of a
solution to the kinetic equations follows from the semigroup theory outlined in [11, 25] and
is introduced in Section 3. We have obtained diffusion limits when f and g are given. The
last question is about the existence of state transition frequencies, f and g, that produces
a given Fokker-Planck type diffusion equation ρt = ∆(γ(ρ,x)ρ). We show that there is a
one to one correspondence between (f, g) and γ in an admissible and normalized class of
functions in Section 7.
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2. Notation and main results

In this section we introduce the discrete kinetic model of the paper in multi-space di-
mensions and our main results. Since many quantities and indexes appear in the paper,
it is important to be consistent in notation. We take a rectangular domain with periodic
boundary conditions. The space dimension is n and we consider 2n number of directions.
The population density is divided into 2n fractional ones. For example, uk+ is the popula-
tion density of a phenotype u that moves to the positive direction of the k-th coordinate.
We will reserve indexes i and j to denote these 2n directions, i.e., i, j = 1±, · · · , n±. The
space dimension will be denoted by k, the sequence index by h, and a subsequence one by
l.

Let Q = [−1, 1]n ⊂ Rn, QT = Q× (0, T ), and Q∞ = Q× (0,∞). Consider a system of
4n equations for uεi and vεi for i = 1±, · · · , n±;

∂

∂t
ui +

1

ε
ei · ∇ui =

ωu

2nε2

n±∑
j=1±

(uj − ui) +
1

δ2
(g(vi,x)vi − f(ui,x)ui),(7)

∂

∂t
vi +

1

ε
ei · ∇vi =

ωv

2nε2

n±∑
j=1±

(vj − vi) +
1

δ2
(f(ui,x)ui − g(vi,x)vi),(8)

where (x, t) ∈ Q∞. The parameter η in (5) corresponds to ε2/δ2. Let uk± and vk±
be fractional population densities of the two population groups that move to directions
ek± := ±ek, respectively. We will denote the solution using a vector notation, u± :=
(u1±, · · · , un±) and v± := (v1±, · · · , vn±) if needed. We consider the problem with initial
values and periodic boundary conditions, for i = 1±, · · · , n±,

ui(x, 0) = ui,0(x), vi(x, 0) = vi,0(x),(9)

ui(x1, t) = ui(x2, t), vi(x1, t) = vi(x2, t) if (x2 − x1) ∈ [2Z]n.(10)

The initial values are also denoted by (u±,v±)(0) or (u±,0,v±,0) using a vector notation.
Denote

Ju,ε
i,j =

ui − uj
ε

, Ju,ε
k = Ju,ε

k+,k−, Ju,ε = (Ju,ε
1 , Ju,ε

2 , . . . , Ju,ε
n ),

which are called fluxes of u. The fluxes of v are similarly denoted. The fluxes of the whole
species ρ are defined as the sum of the two, i.e.,

Jρ,ε
i,j = Ju,ε

i,j + Jv,ε
i,j , Jρ,ε

k = Ju,ε
k + Jv,ε

k , Jρ,ε = Ju,ε + Jv,ε.

These are fluxes related to the turning dynamics. Similar quantities corresponding to state
transition are denoted by

Hδ
i =

f(ui,x)ui − g(vi,x)vi
δ

.

Note that, in (7) and (8), f and g depend only on the fractional populations ui± and vi±
for an analysis convenience. However, through the randomness, such a dependency turns
into the one on the total population after taking the limit ε→ 0.

Equations (7) and (8) describe the dispersal dynamics of population when a species has
two migration states. We define the solution of the above periodic boundary initial value
problem in a weak sense. The uniqueness and the existence of the weak solution could be
shown on a broader class of initial value, L2(QT ). If the initial value is smooth enough to
have derivatives, then this weak solution is actually a strong solution of the problem.

Definition 2.1. Let f and g : R+ ×Q→ R+ be periodic in x ∈ Q, τf(τ,x) and τg(τ,x)
be C1(R+ ×Q),

f̃(τ,x) := ∂τ (τf(τ,x)), and g̃(τ,x) := ∂τ (τg(τ,x)).
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We call f and g are admissible state transition frequencies if f̃ and g̃ are bounded, bounded
away from zero, and ∇xf and ∇xg are uniformly bounded, i.e., if there exists a constant
M > 1 such that

(1) M−1 ≤ f̃(τ,x), g̃(τ,x) ≤M , and
(2) ∥∇xτf(τ,x)∥, ∥∇xτg(τ,x)∥ ≤M |τ |,

where ∥ · ∥ denotes the uniform norm in this paper.

Remark 2.2. The functions τ → τf(τ,x) and τ → τg(τ,x) only need to be defined for
τ ≥ 0. For a notational convenience, we extend them for τ ∈ R into odd functions

−τf(−τ,x)) = −τf(τ,x), −τg(−τ,x)) = −τg(τ,x),
which are used in Proposition 5.4 and Lemma 7.1. Note that τf(τ,x) and τg(τ,x) are
now C1(R×Q), and (1)-(2) in Definition 2.1 hold in R×Q.

Since f̃ and g̃ are bounded away from zero, τ → τf(τ,x) and τ → τg(τ,x) are strictly
increasing function in τ . Therefore, for any given (ρ,x) ∈ R+×Q and admissible transition
frequencies f and g, there exists a unique positive pair (u, v) such that

u+ v = ρ,
u

2n
f
( u
2n
,x
)
=

v

2n
g
( v
2n
,x
)
.

Using the pair we define

γ(ρ,x) :=
1

n

[
1

ωu

g(v/2n,x)

f(u/2n,x) + g(v/2n,x)
+

1

ωv

f(u/2n,x)

f(u/2n,x) + g(v/2n,x)

]
,

γ̃(ρ,x) :=
1

n

[
ωu

g̃(v/2n,x)

f̃(u/2n,x) + g̃(v/2n,x)
+ ωv

f̃(u/2n,x)

f̃(u/2n,x) + g̃(v/2n,x)

]−1

.

(11)

Notice that ργ(ρ,x) and γ̃(ρ,x) are in Ck(R+ × Q) and Ck−1(R+ × Q), respectively, if
τf(τ,x) and τg(τ,x) are in Ck(R+ ×Q) for k ≥ 1 (see Proposition 7.2).

Finally, we introduce the main theorem of the paper.

Theorem 2.3 (Diffusion Limit). Let f and g be admissible transition frequencies and
τf(τ,x) and τg(τ,x) be C2(R+ × Q). Let (εh, δh) → (0, 0) and (uhi,0, v

h
i,0) → (ui,0, vi,0)

in [L4(Q)]4n as h → ∞. Then, the weak solutions (uhi , v
h
i ) of the boundary value problem

(7)–(10) with these parameters and initial values converge to the same limit ( u
2n ,

v
2n), the

mean of their sums, i.e., for all T > 0,

uhi → u

2n
and vhi → v

2n
in L2(QT ) as h→ ∞.

Therefore,
n±∑

i=1±
uhi → u and

n±∑
i=1±

vhi → v in L2(QT ) as h→ ∞.

Furthermore,

(12)
u

2n
f
( u
2n
,x
)
=

v

2n
g
( v
2n
,x
)
,

and the limit of total population ρ := u+ v satisfies the following diffusion equations:

(i) If limh→∞ εh/δh = 0, ρ is the unique weak solution of

(13) ρt = ∆(γ(ρ,x)ρ).

(ii) If limh→∞ εh/δh = ℓ ∈ (0,∞), ρ is the unique weak solution of

(14) ρt = ∇ ·

(1 + f̃

ωu
ℓ2 +

g̃

ωv
ℓ2

)−1

∇(γ(ρ,x)ρ) +

(
nωuωv

(f̃ + g̃)ℓ2
+

1

γ̃(ρ,x)

)−1

∇ρ

 ,
where f̃(x, t) = f̃(u(x, t)/2n,x) and g̃(x, t) = g̃(v(x, t)/2n,x).
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(iii) If limh→∞ εh/δh = ∞, ρ is the unique weak solution of

(15) ρt = ∇ · (γ̃(ρ,x)∇ρ).

The Fokker-Planck type diffusion equation (13) has nonlinearity and spatial heterogene-
ity together. In particular, the spatial heterogeneity produces an advection phenomenon
as written by

ρt = ∇ ·
(
(γ + ρ∂ργ)∇ρ+ ρ∇γ

)
.

A constant state is not a steady state solution due to the spatial dependency in γ(ρ,x),
but not to the nonlinearity. Having a spatial heterogeneity is crucial since it gives a chance
to adapt to environment.

Notice that the transport and tumbling terms in the kinetic equations system are un-
biased and there is no directional information. However, the state transition phenomenon
decides the proportion of the two population groups, u and v, in a spatially heterogeneous
way according to the relation (12) and the advection phenomenon comes out of it. On
the other hand, the Fickian type diffusion equation (15) does not contain any advection
phenomenon even if the proportion is still given by the same relation. Remember that the
state of an individual changes a lot of times between two consecutive turns and the het-
erogeneity in the proportion of u and v does not have any meaning in this case. Find that
we may recover (13) and (15) from (14) by taking a limit ℓ→ 0 and ℓ→ ∞, respectively.
The solution convergence as ℓ→ 0 or ℓ→ ∞ is not shown.

Remark 2.4 (Regularity). We assume τf(τ,x) and τg(τ,x) are C2(R, Q) to ensure the
C2 regularity of γ(ρ,x)ρ (c.f. Proposition 7.2) and hence the uniqueness of the weak
solution of (13). Until the last paragraph of Section 6, the proof is still valid with only C1

assumption and we obtain convergence along a subsequence of weak solutions.

Remark 2.5 (Uniform bounds). It is clear from (11) that γ and γ̃ are bounded by

(16)
1

nωu
< γ(ρ,x), γ̃(ρ) <

1

nωv
.

Therefore, Eq. (34) is satisfied for some ε > 0 and we have obtained the existence of
admissible transition frequencies f and g that produce the given motility function γ. Note
that equality holds for (16) if f = g = 0 or f̃ = g̃ = 0 which are excluded in Definition
2.1.

3. Existence and uniqueness

Existence of a solution to the discrete kinetic equations (7)–(10) follows a classical
semigroup theory and we briefly introduce it (see [11, 25] for details). For an easier
application of the theory, we rewrite the equations in a classical form as follows. Let
X = (u1+, u1−, . . . , v1+, . . . , vn−) ∈ [Lp(Q)]4n for p ≥ 1. Then, equations (7)–(8) are
written as

∂

∂t
X = AX +BX +G(X),

where

AX =



−∂1u1+
...
∂nun−

−∂1v1+
...
∂nvn−


, BX =



ωu
∑n±

j=1± uj − u1+
...

ωu
∑n±

j=1± uj − un−
ωv
∑n±

j=1± vj − v1+
...

ωv
∑n±

j=1± vj − vn−


,
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and

G(X) =



g(v1+, ·)v1+ − f(u1+, ·)u1+
...

g(vn−, ·)vn− − f(un−, ·)un−
f(u1+, ·)u1+ − g(v1+, ·)v1+

...
f(un−, ·)un− − g(vn−, ·)vn−


.

Here, the partial derivative ∂
∂xk

u is denoted by ∂ku. The domain of the linear functional

A : D(A) → [Lp(Q)]4n is

D(A) =

{
(u1+, . . . , vn−) ∈ [Lp(Q)]4n

∣∣∣∣ ∂kuk+, ∂kuk−, ∂kvk+, ∂kvk− ∈ Lp(Q),

uk±, vk± are periodic in the kth direction

}
,

which is dense in [Lp(Q)]4n. The operators A and B are linear and G is nonlinear. One
may check that A is dissipative and there exists λ0 > 0 such that the range of λ0I −A is
in [Lp(Q)]4n (see [11, Section 3]). Therefore, the linear operator A generates a strongly
continuous semigroup of contraction, T (t) for t ≥ 0, in [Lp(Q)]4n (see [25, Theorem 4.3 in
Section 1]).

On the other hand, B is bounded and G is uniformly Lipschitz in [Lp(Q)]4n if f and
g are admissible transition frequencies. Therefore, we may apply Theorem 1.2 in [25,
Section 6] and obtain a unique mild solution w ∈ C([0, T ], [Lp(Q)]4n) for all T > 0 if
w0 ∈ [Lp(Q)]4n. The mapping w0 7→ w is Lipschitz continuous. Here, a mild solution w is
the one that satisfies

w(t) = T (t)w0 +

∫ t

0
T (t− s)(Bw(s) +G(w(s)))ds.

Finally, Bw +G(w) ∈ C([0, T ], [Lp(Q)]4n) and hence we apply the main theorem of [2] to
conclude that w is the unique weak solution.

4. Flux estimates using energy functional

In this section we derive a priori estimates in L2-norm for Ji,j and Hi in terms of the
initial value which is similar to energy estimate for parabolic equations. These estimates
are uniform with respect to ε and δ and are main steps to show the convergence of the
three diffusion limits in Theorem 2.3. To manage the spatial heterogeneity in f and g, we
start with an appropriate energy functional.

Definition 4.1. Let ψ : R → R be a convex function. For a given transition frequency
f : R+ × Q → R+ and a population density w : Q × R+ → R+, we define the energy
functional by

Ef (w)(t) :=
∫
Q
Ψf (w(x, t),x)dx with Ψf (w,x) :=

∫ w

0
ψ(τf(τ,x))dτ.

The total energy of the solutions of the 4n equations, (7)–(10), is defined by

E(u±,v±) :=
n±∑

i=1±
[Ef (ui) + Eg(vi)] .

We take ψ(s) = |s|κ with κ ≥ 1 in this paper.

Proposition 4.2. Let (ui, vi), i = 1±, · · · , n±, be smooth solutions of (7)–(10). Then,
for any fixed T > 0,

(1) There exists CT (κ, n,Q) > 0 such that for all t ∈ [0, T ],

(17) E(u±,v±)(t) ≤ CT [1 + E(u±,v±)(0)] .
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(2) There exists an upper bound LT (∥ui,0∥L2(Q), ∥vi,0∥L2(Q), n,Q) > 0 such that

(18)

n±∑
i,j=1±

[∥∥∥Ju,ε
i,j

∥∥∥2
L2(QT )

+
∥∥∥Jv,ε

i,j

∥∥∥2
L2(QT )

]
+

n±∑
i=1±

∥∥∥Hδ
i

∥∥∥2
L2(QT )

≤ LT .

Proof. Multiply ψ(uif(ui,x)) and ψ(vig(vi,x)) to (7) and (8), respectively, integrate the
sum of the 4n equations over the domain Q, and obtain

∂

∂t
E(u±,v±) =− 1

ε

n±∑
i=1±

∫
ei · ∇x

[
Ψf (ui(x, t),x) + Ψg(vi(x, t),x)

]
dx

+
1

ε

n±∑
i=1±

∫
ei ·

∂

∂x

[
Ψf (ui,x) + Ψg(vi,x)

]
dx

− ωu

4nε2

n±∑
i,j=1±

∫ (
ψ(uif(ui,x))− ψ(ujf(uj ,x))

)
(ui − uj)dx(19)

− ωv

4nε2

n±∑
i,j=1±

∫ (
ψ(vig(vi,x))− ψ(vjg(vj ,x))

)
(vi − vj)dx

− 1

δ2

n±∑
i=1±

∫ (
ψ(uif(ui,x))− ψ(vig(vi,x))

)(
uif(ui,x)− vig(vi,x)

)
dx.

The fifth term on the right side is negative since ψ is an increasing function. Furthermore,
since τf(τ,x) and τg(τ,x) are increasing functions with respect to τ , the third and fourth
terms are also negative. The first term vanishes due to the divergence theorem and the
boundary condition. Therefore, the only term left is the second one and we estimate it to
obtain (18). We start with the first part of the second term.

n±∑
i=1±

1

ε

∫
ei ·

∂

∂x
Ψf (ui,x)dx =

1

ε

n∑
i=1

∫
ei ·

∂

∂x

[
Ψf (ui+,x)−Ψf (ui−,x)

]
dx

=
1

ε

n∑
i=1

∫
ei ·

∂

∂x

(∫ ui+

ui−

ψ(τf(τ,x))
)
dτdx

=
1

ε

n∑
i=1

∫∫ ui+

ui−

ei ·
∂

∂x

(
ψ(τf(τ,x))

)
dτdx

≤ 1

ε

n∑
i=1

∫ ∣∣∣ ∫ ui+

ui−

ψ′(τf(τ,x)) ·
∥∥∥ ∂
∂x

(τf(τ,x))
∥∥∥dτ ∣∣∣dx

≤ 1

ε

n∑
i=1

∫ ∣∣∣ ∫ ui+

ui−

κ(Mτ)κ−1Mτdτ
∣∣∣dx

≤
n∑

i=1

∫
κMκ(ui+ + ui−)

κ
∣∣∣ui+ − ui−

ε

∣∣∣dx
≤

n∑
i=1

∫
4λ(M(ui+ + ui−))

κ+1dx+

∫
κ2

λ
(M(ui+ + ui−))

κ−1
∣∣∣ui+ − ui−

ε

∣∣∣2dx,
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where λ > 0. We use τf(τ,x) ∈ C1 in the third line. Next, the second term in the last
line can be controlled by the third term of (19) as the following. Consider

− ωu

4nε2

n±∑
i,j=1±

∫ (
ψ(uif(ui,x))− ψ(ujf(uj ,x))

)
(ui − uj)dx

= −
n±∑

i,j=1±

∫
ωu

4nε2
ψ(uif(ui,x))− ψ(ujf(uj ,x))

uif(ui,x)− ujf(uj ,x)
×

(uif(ui,x)− ujf(uj ,x))(ui − uj)dx

≤ −
n±∑

i,j=1±

∫
ωu

4n
ψ′
(uif(ui,x) + ujf(uj ,x)

2

) 1

M

∣∣∣ui − uj
ε

∣∣∣2dx
≤ −

n±∑
i,j=1±

∫
κωu

4nM(2M)κ−1
(ui + uj)

κ−1
∣∣∣ui − uj

ε

∣∣∣2dx.
By taking λ(ωu, ωv, κ, n) large, we obtain the desired estimate. Same relations hold for
the second part of the second term and we finally obtain

∂

∂t
E(u±,v±) ≤

n∑
i=1

∫
4λ(M(ui+ + ui−))

κ+1 + 4λ(M(vi+ + vi−))
κ+1dx

−
n±∑

i,j=1±

∫
κωu

8nM

(
ui + uj
2M

)κ−1 ∣∣∣∣ui − uj
ε

∣∣∣∣2 dx(20)

−
n±∑

i,j=1±

∫
κωv

8nM

(
vi + vj
2M

)κ−1 ∣∣∣∣vi − vj
ε

∣∣∣∣2 dx
−

n±∑
i=1±

∫
(ψ(uif(ui,x))− ψ(vig(vi,x)))

uif(ui,x)− vig(vi,x)

δ2
dx.

Since Ψf (ui(x),x) =
∫ ui(x)
0 (τf(τ,x))κdτ ≥

∫ ui(x)
0 ( τ

M )κdτ = 1
Mκ

uκ+1
i
κ+1 , we can bound the

first term by a constant times of
∑n±

i=1± [Ef (ui) + Eg(vi)]. Therefore, we can apply Gron-
wall’s inequality to obtain the first conclusion (1). The second one (2) would follow directly
from the first one when κ = 1 and time integration of (20). �

Corollary 4.3. If ui,0, vi,0 ∈ Lp(Q) for i = 1±, · · · , n±, then ui, vi ∈ Lp(Q) for i =
1±, · · · , n±, and

||(u±,v±)(t)||[Lp(Q)]4n ≤ C ′
T

(
1 + ||(u±,v±)(0)||[Lp(Q)]4n

)
for t ≤ T.

Proof. Choose ψ(s) = |s|κ and notice that 1
Mκ

uκ+1
i
κ+1 ≤ Ψf (ui(x),x) ≤ Mκ uκ+1

i
κ+1 . Then, the

above follows from the energy estimate. �

Proposition 4.4. Let (ui, vi) be the unique weak solutions of the equation (7)–(10) with
initial values in L2(Q). Then, (17) in Proposition 4.2 still holds.

Proof. As mentioned in the existence theorem,

(21) (u±,0,v±,0) 7→ (u±,v±)

is a Lipschitz continuous mapping from [L2(Q)]4n into C([0, T ], [L2(Q)]4n). We can pick
a sequence of smooth, periodic initial values (uli,0, v

l
i,0) such that

uli,0 → ui,0, v
l
i,0 → vi,0 in L2(Q) as ℓ→ ∞.
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Then, the solutions (uli, v
l
i) with the smooth initial values are smooth and

uli → ui, v
l
i → vi in C([0, T ], L2(Q)) as l → ∞

due to the Lipschitz continuity of the mapping (21). The flux terms in (17) also converge
to the flux terms related to (ui, vi) in C([0, T ], [L

2(Q)]4n). Therefore, we can pass to the
limit and have the same estimate for weak solutions. �

5. Convergence

In this section we show the convergence in Theorem 2.3. We take a superscript to denote

quantities related to scaling parameters (εh, δh) as in u
h
i and Ju,h

i,j . First, we obtain a weakly
convergent solution subsequence as a consequence of Proposition 4.2 and Corollary 4.3.

Corollary 5.1. Let uhi and vhi satisfy (7)–(10) with scaling parameters (εh, δh) → 0 as
h→ ∞ and uniformly bounded initial values uhi,0 and v

h
i,0 in L

2(Q). Then, there is a weakly

convergent subsequences uhl
i and vhl

i (or simply uli and v
l
i) such that, for any T > 0,

uli ⇀ ui, vli ⇀ vi in L2(QT )

Ju,l
i,j ⇀ Ju

i,j , J
v,l
i,j ⇀ Jv

i,j in L2(QT )

and

H l
i =

ulif(u
l
i,x)− vlig(v

l
i,x)

δl
⇀ Hi in L

2(QT ).

Proof. The uniform estimate of
∑n±

i=1±

[
E1,f (uhi,0) + E1,g(vhi,0)

]
gives a uniform L2(QT )

bound of all sequences above and we can find a weakly convergent subsequence using
classical diagonal arguments. �

Lemma 5.2 (Div-Curl Lemma [22]). For an open set A ⊂ Rn+1, let wl and ηl be two
sequences such that

wl ⇀ w weakly in [L2(A)]n+1,

ηl ⇀ η weakly in [L2(A)]n+1,

div(wl) is bounded in L2(A) or compact in H−1(A), and

curl(ηl) is bounded in [L2(A)](n+1)2 or compact in [H−1(A)](n+1)2 .

Then

⟨wl, ηl⟩ −→ ⟨w, η⟩ in distribution sense,

where ⟨·, ·⟩ denotes the inner product in Rn+1.

Choose A = QT ⊂ Rn+1, wl = (Jl, ρl), and ηl = (0, ρl) in [L2
x,t(QT )]

n+1. Then,

(22) divx,tw
l = divx,t(J

l, ρl) = divxJ
l + ∂tρ

l = 0,

which is obtained by adding (7) and (8) over all indices. The curl operator, defined by

(curl F )ij =
∂Fi
∂xj

− ∂Fj

∂xi
, becomes

curl ηl =


0 · · · 0 −∂x1ρ

l

...
. . .

...
...

0 · · · 0 −∂xnρ
l

∂x1ρ
l · · · ∂xnρ

l 0

 .
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We now show that each entry of the matrix is compact in H−1(A). Consider the equations
in (7) and (8). If we subtract the equation for i = k− from the one for i = k+ and multiply
εl to it, we obtain

(23)


ε2l ∂tJ

u,l
k + ∂k(u

l
k+ + ulk−) = −ωuJ

u,l
k +

εl
δl
(H l

k− −H l
k+),

ε2l ∂tJ
v,l
k + ∂k(v

l
k+ + vlk−) = −ωvJ

v,l
k +

εl
δl
(H l

k+ −H l
k−).

Here, the equation has been simplified using the relation of

1

2nεl

n±∑
j=1±

[
ωu(u

l
j − ulk+)− ωu(u

l
j − ulk−)

]
=

1

2n

n±∑
j=1±

[
−ωuJ

u,l
k

]
= −ωuJ

u,l
k .

Add the two equations in (23) and get H l
i ’s cancelled. Moreover, we have the convergence,

ε2l ∂tJ
u,l → 0 and ε2l ∂tJ

v,l → 0 in H−1(A),

and the compactness of

ωu

(ulj − uli)

εl
and ωv

(vlj − vli)

εl
in H−1(A),

which are from the uniform L2(A) boundedness of Ju,l
i,j and Jv,l

i,j . Thus, we conclude that

∂k(u
l
k+ + ulk− + vlk+ + vlk−)

are compact in H−1(A). Denote ρlk := ulk+ + ulk− + vlk+ + vlk−. Using the total population

ρl, we may write

∂kρ
l
k =

1

n
∂kρ

l +
n∑

m=1

1

n
∂k(ρ

l
k − ρlm).

Since
ρlk − ρlm = εl(J

u,l
k+,m+ + Ju,l

k−,m− + Jv,l
k+,m+ + Jv,l

k−,m−) → 0 in L2(A),

∂kρ
l is compact in H−1(A). Now we are able to apply div-curl lemma which gives the

following proposition.

Proposition 5.3. If initial values ui,0 and vi,0 are in L4(Q), then there is a subsequence
such that, for all T > 0 and k = 1, · · · , n,

ρlk → 1

n
ρ in L2(QT ).

Proof. Since [L4(Q)]4n ⊂ [L2(Q)]4n, Corollary 4.3 implies that

ρlk ⇀ ρk weakly in L2(QT ).

Since (ρlk−ρlm) → 0 in L2(QT ), we have ρk = 1
nρ for some ρ ∈ L2(QT ). Next, the div-curl

lemma implies that

(ρlk)
2 →

(
1

n
ρ

)2

in distribution sense.

The uniform boundedness of (ρlk)
2 and

(
1
nρ
)2

in L2, which comes from Corollary 4.3 with
p = 4, improves above convergence into(

ρli

)2
⇀

(
1

n
ρ

)2

in L2(QT ).

The strong L2 convergence comes from [26, Lemma 7] which states:

If |A| <∞, ρl ⇀ ρ and (ρl)2 ⇀ ρ2 in L2(A), then ρl → ρ in L2(A).

�



FICKIAN VERSUS FOKKER-PLANCK TYPE DIFFUSION 13

Next, we will show that ul and vl converge strongly in L2 as well.

Proposition 5.4. Under the conditions of Proposition 5.3, uli → u/2n, vli → v/2n strongly
in L2(QT ) for all T > 0 along a subsequence. The fractional populations, u and v, and
the total population, ρ = u+ v, satisfy

u =

(
g
(

v
2n ,x

)
g
(

v
2n ,x

)
+ f

(
u
2n ,x

)) ρ.
Proof. We have already obtained

uli − ulj → 0, vli − vlj → 0, ρl = ul + vl → ρ, and δlH
l
i → 0 in L2(QT ).

The first three convergence relations imply

wl
i := uli + vli →

1

2n
ρ in L2(QT ).

Let α : R× R×Q→ R be given by

α(s, r,x) := sf(s,x)− (r − s)g(r − s,x).

Then,∣∣∣α(uli, ρ2n,x)∣∣∣ = ∣∣∣ulif (uli,x)− ( ρ2n − uli

)
g
( ρ
2n

− uli,x
)∣∣∣

≤ δl|H l
i |+

∣∣∣( ρ
2n

− uli

)
g
( ρ
2n

− uli,x
)
−
(
wl
i − uli

)
g
(
wl
i − uli,x

)∣∣∣
≤ δl|H l

i |+M
∣∣∣ ρ
2n

− wl
i

∣∣∣ ,
which converges to zero in L2(QT ) as l → ∞. Moreover,

2M−1
∣∣∣uli − umi

∣∣∣ ≤ ∣∣∣α(uli, ρ2n,x)− α(umi ,
ρ

2n
,x)
∣∣∣ ≤ 2M

∣∣∣uli − umi

∣∣∣ ,
which implies {uli} is a cauchy sequence in L2(QT ). Therefore, the convergence of |uli −
ulj | → 0 in L2(QT ) implies that there is u ∈ L2(QT ) such that

uli →
u

2n
in L2(QT ) as l → ∞ and α(

u

2n
,
ρ

2n
,x) = 0.

Finally, let’s denote v := ρ − u and see vli = wl
i − uli →

ρ−u
2n = v

2n in L2(QT ). The last
equation of the proposition follows from α( u

2n ,
ρ
2n ,x) = 0. �

6. Diffusion equations

We have shown that ρl = ul+vl → ρ, ul → u, and vl → v in L2(QT ) with f(u/2n,x)u/2n =
g(v/2n,x)v/2n. In this section, we find diffusion equations satisfied by the total popula-
tion ρ = liml→∞

∑n±
i=1±(u

l
i + vli). The convergence of ρl, Ju,l and Jv,l as l → ∞ together

with (22) implies that

(24) ∂tρ+∇ · (Ju + Jv) = 0

in the distribution sense. We split the case into two. First, let liml→∞ εl/δl = ℓ ∈ [0,∞),
which covers the cases of Theorem 2.3 (i) and (ii). From (23), the following equations are
satisfied in the distribution sense:

(25)

{
∂ku/n = −ωuJ

u
k + ℓ(Hk− −Hk+),

∂kv/n = −ωvJ
v
k − ℓ(Hk− −Hk+).

We denote f(u/2n,x), g(v/2n,x), f̃(u/2n,x), and g̃(v/2n,x) by f , g, f̃ , and g̃, respec-
tively, for brevity. Since any two of {u, v, ρ} are decided by any one of them, the four
frequencies can be considered as a function of ρ after appropriate compositions.
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Lemma 6.1. Let liml→∞ εl/δl = ℓ. Then, for i, j = 1±, · · · , n±,

Hi −Hj = ℓ(Ju
i,j f̃ − Jv

i,j g̃).

Proof. Consider the relation,

H l
i −H l

j =
f(uli,x)u

l
i − f(ulj ,x)u

l
j

δl
−
g(vli,x)v

l
i − g(vlj ,x)v

l
j

δl
(26)

=
f(uli,x)u

l
i − f(ulj ,x)u

l
j

uli − ulj

uli − ulj
εl

εl
δl

−
g(vli,x)v

l
i − g(vlj ,x)v

l
j

vli − vlj

vli − vlj
εl

εl
δl
.

The convergence of uli, v
l
i, J

u,l
i,j and Jv,l

i,j , the mean value theorem, and liml→∞ εl/δl = ℓ
implies that

H l
i −H l

j → Hi −Hj = ℓ(Ju
i,j f̃ − Jv

i,j g̃).

�

Next we derive equations satisfied by the limit of the total population ρ. By plugging
the relation of the lemma into (25) with i = k− and j = k+, we obtain

−Ju
k (ωu + ℓ2f̃) + Jv

k ℓ
2g̃ =

1

n
∂ku,

−Jv
k (ωv + ℓ2g̃) + Ju

k ℓ
2f̃ =

1

n
∂kv.

Now, by plugging them into (24), we can express Ju
k and Jv

k in terms of other terms above
and obtain

(27) ∂tρ =
1

n
∇ ·

(
ℓ2(f̃ + g̃) + ωv

ωuωv + ℓ2(ωug̃ + ωvf̃)
∇u+

ℓ2(f̃ + g̃) + ωu

ωuωv + ℓ2(ωug̃ + ωvf̃)
∇v

)
.

We have

u =
g

f + g
ρ and v =

f

f + g
ρ

by Proposition 5.4. Plug them into (27), which directly gives (13) when ℓ = 0. If ℓ ̸= 0,
we can separate it into Fickian and Fokker-Plnack parts as given in (14).

Finally, we consider the other case of Theorem 2.3(iii) when liml→∞ εl/δl = ∞. By
similarly rearranging terms as done in (26), we get

δl
εl
(H l

i −H l
j) → (Ju

i,j f̃ − Jv
i,j g̃) = 0.

The last equality is from L2 boundedness of H l
i on each QT and liml→∞ δl/εl = 0. There-

fore,

Ju
i,j =

g̃

f̃ + g̃
Ji,j and Jv

i,j =
f̃

f̃ + g̃
Ji,j .

After adding the two equations in (23) and then taking l → ∞, we obtain

1

n
∂kρ = −ωuJ

u
k − ωvJ

v
k = − γ̃

−1(ρ,x)

n
Jk.(28)

The diffusion equation (15), ρt = ∇ · (γ̃(ρ,x)∇ρ), comes from (24) and (28).
The next step is to identify the initial value of ρ. Using (22), we have∫ ∞

0

∫
Q
ρl∂tϕ+ ⟨Jl,∇ϕ⟩dxdt+

∫ n±∑
i=1±

[uli,0 + vli,0]ϕdx = 0
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for all ϕ ∈ C∞(Q∞), which is periodic in x and vanishes on t > T for some T > 0. By
taking l → ∞, we have∫ ∞

0

∫
Q
ρ∂tϕ+ ⟨J,∇ϕ⟩ dxdt+

∫ n±∑
i=1±

[ui,0 + vi,0]ϕdx = 0,

where J ∈ [L2(QT )]
n and

J =


−∇(γ(ρ,x)ρ) if εl/δl → 0

−

(
1 +

f̃

ωu
ℓ2 +

g̃

ωv
ℓ2

)−1

∇(γρ) +

(
nωuωv

(f̃ + g̃)ℓ2
+

1

γ̃

)−1

∇ρ if εl/δl → ℓ

− γ̃(ρ,x)∇ρ if εl/δl → ∞.

The above implies that ρ is a weak solution of parabolic equations (13), (14), and (15),
respectively, with initial value

∑n±
i=1±[ui,0 + vi,0].

Remark 6.2 (Convergence). By Proposition 7.2, which will be proved in the next sec-
tion, we have γ(ρ,x)ρ is C2, 1

nωu
≤ ∂ρ(γ(ρ,x)ρ) ≤ 1

nωv
, and |∇x(γ(ρ,x)ρ)| ≤ Mρ for

some M > 0 if τf(τ,x) and τg(τ,x) are C2 and admissible. From standard theories for
uniformly parabolic equations of divergence type, each of the three cases, (13), (14), and
(15), has a unique weak solution when the periodic boundary condition and initial value
are imposed. This uniqueness implies that the subsequential convergence of {uh, vh} is
actually the convergence.

7. Characterization of the motility function

The diffusion equations in Theorem 2.3 are obtained when turning frequencies, ωu and
ωv, and state transition frequencies, f and g, are given. The motility function γ depends
on these parameter functions. The remaining question is the existence of such parameters
that produce a given motility function γ. We first obtain a regularity and a gradient
estimate of ργ(ρ,x) when transition frequencies f and g are admissible. Then, we will
see that the obtained regularity properties are sufficient conditions to obtain admissible
transition frequencies f and g that produce the same motility function γ. In the second
part of the section, we show that starvation driven diffusion is obtained as a diffusive limit.

7.1. Characterization of γ. We consider the regularity relation among u, v, ρ, γ and γ̃.
If ρ is given, we can find u and v implicity by the two relations in (29). The regularity of f
and g is naturally conveyed to others by the implicit function theorem. We often consider
ρ as an independent variable. Then, u and v are functions of ρ and x.

Lemma 7.1. Let α : R× R×Q→ R be given by

α(s, r,x) := sf(s,x)− (r − s)g(r − s,x),

where the odd extension of τf(τ,x) and τg(τ,x) in Remark 2.2 is taken. Then, for each
(r,x) ∈ R+ ×Q, there is a unique s = s(r,x) ∈ [0, r] such that

α(s(r,x), r,x) = 0,

and s(r,x) is in Ck(R+ ×Q) if τf(τ,x) and τg(τ,x) are in Ck(R+ ×Q) for some k ≥ 1.

Proof. By (2) of Definition 2.1, ∂α
∂s ≥ 2

M > 0. Unique existence of s(r,x) for each
(r,x) follows from the intermediate value theorem. We conclude the function s(r,x) is in
Ck([0,∞)×Q) by the implicit function theorem. �



16 BEOMJUN CHOI AND YONG-JUNG KIM

Proposition 7.2. Let f and g be admissible frequencies, τf(τ,x) and τg(τ,x) be Ck(R+×
Q) for k ≥ 1, and u = u(ρ,x) and v = v(ρ,x) be defined by two relations,

(29) u+ v = ρ and
u

2n
f(

u

2n
,x) =

v

2n
g(
v

2n
,x).

Then, u and v are in Ck([0,∞)×Q),

γ̃(ρ,x) ∈ Ck−1([0,∞)×Q), γ(ρ,x)ρ ∈ Ck([0,∞)×Q),

1

nωu
(1 + ε) ≤ γ̃(ρ,x), ∂ρ (γ(ρ,x)ρ) ≤

1

nωv
(1− ε) for some ε > 0,

and

|∇xγ(ρ,x)ρ| ≤ M̃ρ for some M̃ > 0.

Proof. The first part of the proposition comes from Lemma 7.1 if we choose

u(ρ,x) = 2ns(ρ/2n,x) and v(ρ,x) = ρ− u(ρ,x),

where s(ρ/2n,x) is the one in Lemma 7.1. Since τf(τ,x), τg(τ,x) ∈ Ck([0,∞) ×Q), we
have

f̃(τ,x), g̃(τ,x) ∈ Ck−1([0,∞)×Q).

Thus, the regularity of u, v, f̃ , and g̃ implies that γ̃(ρ,x) in (11) is Ck−1([0,∞)×Q) since
it is a composition of Ck and Ck−1 functions. Upper and lower bounds of γ̃ is from the
ones of f̃ and g̃.

Observe that f(u/2n,x)
f(u/2n,x)+g(v/2n,x)ρ = v(ρ,x) ∈ Ck([0,∞) × Q). Therefore, γ in (11)

satisfies

γ(ρ,x)ρ =
1

n

[
1

ωu
(ρ− v(ρ,x)) +

1

ωv
v(ρ,x)

]
∈ Ck([0,∞)×Q).

By differentiating the implicit relation,

(30)
ρ− v

2n
f

(
ρ− v

2n
,x

)
− v

2n
g
( v
2n
,x
)
= 0,

with respect to ρ, we obtain

1

M2 + 1
≤ ∂v

∂ρ
=

∂τ (τ f̂(τ,x))|τ=u/2n

∂τ (τ f̂(τ,x))|τ=u/2n + ∂τ (τ ĝ(τ,x))|τ=v/2n

≤ M2

M2 + 1
.

Therefore, the upper bound for ∂ρ(γ(ρ,x)ρ) immediately follows. If we differentiate (30)
with respect to x with a fixed ρ, we obtain[

∂

∂τ
(τ f̂(τ,x))

∣∣∣∣
τ= ρ−v

2n

+
∂

∂τ
(τ ĝ(τ,x))

∣∣∣∣
τ= v

2n

]
∇xv

= ∇x

[
ρ− v

2n
f

(
ρ− v

2n
,x

)
− v

2n
g
( v
2n
,x
)]
.

This implies that

|∇xv| ≤
M

2

[
M

u

2n
+M

v

2n

]
=
M2

4n
ρ.

Since ∇xργ(ρ,x) =
1
n

(
1
ωu

− 1
ωv

)
∇xv, the last estimate of the proposition follows. �

We now consider the existence of state transition frequencies for a given γ. For a simpler
presentation, we write it in terms of v(ρ,x) and ρ is considered as an independent variable
in the following proposition. First, consider an elementary lemma.



FICKIAN VERSUS FOKKER-PLANCK TYPE DIFFUSION 17

Lemma 7.3. Let a function r be Ck([0,∞)) for k ≥ 1 with r(0) = 0. Then,

r(x)

x
∈ Ck−1([0,∞))

and (
r(x)

x

)(k)

= o

(
1

x

)
as x→ 0+.

Proof. Note that r(x)/x is already in Ck((0,∞)). For x > 0 and 0 ≤ h ≤ k,(
r(x)

x

)(h)

=
(−1)hh!

xh+1

[
h∑

i=0

(−x)i r
(i)(x)

i!

]
.

For 0 ≤ h < k, L’hospital’s rule gives

lim
x→0+

(
r(x)

x

)(h)

= lim
x→0+

(−1)hh!
[∑h

i=0(−x)i
r(i)(x)

i!

]
xh+1

= lim
x→0+

(−1)hh![(−x)h r(h+1)(x)
h! ]

(h+ 1)xh
=
r(h+1)(0)

h+ 1
.

Therefore, r(x)
x ∈ Ch([0,∞)) for 0 ≤ h < k. Similar argument based on L’hospital’s rule

leads to

lim
x→0+

x

(
r(x)

x

)(k)

= 0.

�

Proposition 7.4. Let 0 < ωv < ωu, u(ρ,x) ∈ C1([0,∞)×Q) and γ(ρ,x)ρ ∈ C1([0,∞)×
Q) satisfy periodic boundary condition in x ∈ Q, and

γ(ρ,x)ρ =
1

n

[
1

ωu
u(ρ,x) +

1

ωv
(ρ− u(ρ,x))

]
.

Suppose that there exist ε and M > 0 such that

(1) ε ≤ ∂ρu(ρ,x) ≤ 1− ε,
(2) ∥∇xu(ρ,x)∥ ≤Mρ.

Then, there exist a pair of admissible transition frequencies f and g which satisfy

u

2n
f
( u
2n
,x
)
=
ρ− u

2n
g

(
ρ− u

2n
,x

)
,

and a normalization condition

f
( u
2n
,x
)
+ g

(
ρ− u

2n
,x

)
= 1

for all (ρ,x) ∈ R+ × Q. Under this normalization condition, f(τ,x) and g(τ,x) are
uniquely decided for all τ > 0.

Proof. We consider existence and the admissibility conditions for τf(τ,x). Similar argu-
ments give the same result for τg(τ,x). During the proof, we may set

(31) v = v(ρ,x) = ρ− u(ρ,x).

First, the condition (1) and the inverse function theorem implies (u,x) 7→ (ρ,x) is C1 on
[0,∞)×Q and vice versa. Moreover, for u ̸= 0, conditions imply

u

2n
f(

u

2n
,x) =

u

2nρ
v(ρ,x) =

u

2nρ
(ρ− u) =

u

2n

(
1− u

ρ

)
.
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By using the relation ρ = ρ(u,x), the above equation is written as

(32) τf(τ,x) = τ

(
1− 2nτ

ρ(2nτ,x)

)
.

This explicit expression gives the uniqueness of such τf(τ,x). By Lemma 7.3 applied to

u(ρ,x)
(
u(ρ,x)

ρ

)
, we have

A(ρ,x) :=
u(ρ,x)

2n

(
1− u(ρ,x)

ρ

)
∈ C1([0,∞)×Q).

Therefore,

τf(τ,x) = A(ρ(2nτ,x),x) ∈ C1([0,∞)×Q).

It remains to show admissibility conditions of τf(τ,x). From (32), for τ > 0,

∂τ (τf(τ,x)) = 1− 2
2nτ

ρ
+

(2nτ)2

ρ2
(∂uρ)

=

(
1− u

ρ

)2

+
u2

ρ2

(
1

∂ρu
− 1

)
.

Since ε ≤ ∂ρu = ∂ρ(ρ− v), u
ρ , (1−

u
ρ ) ≤ 1− ε, we have

ε2

1− ε
= ε2 + ε2((1− ε)−1 − 1)

≤ ∂τ (τf(τ,x)) ≤ (1− ε)2 + (1− ε)2(ε−1 − 1) =
(1− ε)2

ε
,

and the first admissibility condition is obtained.
Finally, from (32),

∇x(τf(τ,x)) =
2nτ2

ρ2
∇xρ.

Taking derivative of u(ρ(τ,x),x) = τ with respect to x, we get

∇xu+ ∂ρu∇xρ = 0

and hence

|∇xρ| ≤
|∇xu|
∂ρu

≤ M

ε
ρ.

Therefore,

|∇x(τf(τ,x))| ≤
2nτ2

ρ2
∥∇xρ∥ ≤ u

ρε
τM ≤ 1− ε

ε
τM.

�
7.2. Application to starvation driven diffusion. In the context of starvation driven
diffusion, we may take γ as a departing probability depending on the environment. If
starvation started, the species increases the departing probability and the corresponding
situation can be modeled by a Fokker-Planck type diffusion equation,

(33) ρt = ∆(γ(s)ρ),

where the quantity s measures the intensity of starvation and γ is an increasing function
of s, i.e.,

γ′(s) ≥ 0.

We may ask if there exist a pair of transition frequencies f and g which are functions of
the starvation measure s and produce the same diffusion equation as the diffusion limit.
In this way we may justify the classical idea of heterogeneous departing probability in
terms of microscopic individual dynamics.
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From the characterization of γ shown previously, we know when there exist a pair of
transition frequencies f(τ,x) and g(τ,x) which produce a given starvation driven diffu-
sion in Fokker-Planck type such as (13). Moreover, we will see in a moment that such
SDD equations are obtained by choosing transition frequencies as functions of fractional
starvation measures, i.e.,

f(τ,x) = f
( τ

m(x)

)
and g(τ,x) = g

( τ

m(x)

)
.

The proof is quite straightforward. In the limit, by Theorem 2.3, the transition frequencies
f and g are functions of the starvation measures

su =
u(ρ,x)

2nm(x)
and sv =

v(ρ,x)

2nm(x)
, respectively,

and the ratio between su an sv are determined by

suf(su) = svg(sv).

Therefore, if any one of su, sv and s is given, the others are determined. Thus, the motility
γ in (11) is a function of the starvation measure

s = su + sv =
ρ

2nm(x)
.

Theorem 7.5. Suppose that γ(s) and m(x) are C1, bounded, and bounded away from
zero. Furthermore, assume that ∥∇xm∥ and sγ′(s) are bounded, m(x) is periodic, and
γ′(s) ≥ 0. Then, for each pair (ωu, ωv) such that

(34)
1

nωu
+ ε < (sγ(s))′ = γ(s) + sγ′(s) <

1

nωv
− ε for some ε > 0,

there exists a unique pair of admissible transition frequencies such that τf(τ,x) and
τg(τ,x) are in C1, the limit of the total population ρ in Theorem 2.3 satisfies (33) if
ε/δ → 0, and [

f

(
u(ρ,x)

2n
,x

)
+ g

(
v(ρ,x)

2n
,x

)]
= 1 for ρ > 0.

Moreover, f and g are of a form

f(τ,x) = f(τ/m(x)) and g(τ,x) = g(τ/m(x))

Proof. By regarding γ(s)ρ as a function of (ρ,x),

∂ρ

[
γ

(
ρ

2nm(x)

)
ρ

]
= γ

(
ρ

2nm(x)

)
+ γ′

(
ρ

2nm(x)

)(
ρ

2nm(x)

)
= ∂s(sγ(s))

and

∇x

[
γ

(
ρ

2nm(x)

)
ρ

]
= γ′(s)s

(
−∇xm(x)

m(x)

)
ρ

imply γ(s)ρ satisfies assumptions of Proposition 7.4. Hence by the proposition, unique
existence of f and g are known. We only needs to prove the last statement. By writing

γ(s)s =
1

n

[
1

ωu
(1− h(s))s+

1

ωv
h(s)s

]
,

we notice

su =
u(ρ,x)

2nm(x)
= s(1− h(s)) = sg

(
v(ρ,x)

2n
,x

)
= s

(
1− f

(
u(ρ,x)

2n
,x

))
.

Since δ ≤ (s(1 − h(s)))′ ≤ 1 − δ for some δ > 0, we have α(·) which is the C1 inverse
function of s(1− h(s)). Now for ρ > 0 and hence u(ρ,x) > 0,

f

(
u(ρ,x)

2n
,x

)
= h(α(su)) = h

(
α

(
u(ρ,x)

2nm(x)

))
.
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Therefore, f(τ,x) = (h ◦ α)(τ/m(x)) and similar results holds for g. �

8. Summary and conclusion

Diffusion is a macroscopic scale observation of microscopic scale random movement,
which is one of the most widely observed transport phenomena. Diffusion limits of various
kinetic models have been investigated to understand the connection between the two pro-
cesses of different scales. The focus of this paper is in verifying biological diffusion models
in spatially heterogeneous environment. There has been a long controversy in finding
the correct diffusion. In particular, Fickian and Fokker-Planck type diffusions are often
claimed as the correct one. The main contribution of this paper is to clarify the relation
between the two models by deriving the both from a single kinetic system and provides
insight what they are modeling for.

In this paper we have considered a mesoscopic scale discrete kinetic model (7)-(8) in
the context of bacteria chemotaxis in n space dimensions (or (5) with η = ε2/δ2 in 1-D).
Note that there is no term biased by a chemical gradient which is usually taken to obtain
a chemotactic term (see [31, 32]). Instead, there are two states of organisms, u and v,
which tumble with different frequencies ωv < ωu. The population ratio of the two states
depends on the spatially heterogeneous chemical (or food) distribution and is decided by
transition frequencies. Finally, it is shown in Theorem 2.3 that, if ε/δ → ℓ, the limit of
the total population, ρ = u+ v, satisfies the diffusion equation (14). This equation turns
into Fokker-Planck or Fickian type diffusion equation as ℓ→ 0 or ℓ→ ∞, respectively.

The case of ε/δ → 0 (ℓ = 0) is the one that the turning (or tumbling) mechanism
is more frequent than the state transition one. In this case the spatial heterogeneity of
the ratio of the two state produces Fokker-Planck type diffusion in (13). On the other
hand, ε/δ → ∞ (ℓ = ∞) is the case that there are a lot of state transitions between two
consecutive turns. In this case the state of different turning frequencies loses its meaning
and the Fickian diffusion is obtained. Hence, we conclude that the Fokker-Planck type
diffusion is the meaningful biological diffusion in the context of the discrete kinetic system
of the paper.

The main goal of the chemotaxis theory is to understand the advection phenomenon
activated by nonuniform chemical distributions. Traditional kinetic models are biased
by the chemical gradient and produce Fickian diffusion and advection separately. Those
theories are based on the hypothesis that organisms can measure the chemical gradient.
There are relatively less efforts to explain the phenomenon without such a hypothesis.
Fokker-Planck type diffusion in an exact form such as (13) can be found from cross dif-
fusion theory (see [15, 27]) or starvation driven diffusion theory([7]). Such a diffusion has
been applied to chemotaxis models and has produced the traveling wave, the aggregation
phenomena and global existence [9, 35, 36].

Acknowledgement. Yong-Jung Kim was supported by National Research Foundation
of Korea (NRF-2017R1A2B2010398).

Appendix A. List of notation used in the paper

In this paper we are using the following notations:

(1) Indices: i, j ∈ {1+, 1−, . . . , n+, n−}; k,m, h, l ∈ {1, 2, . . .}.
(2) ek± = ±ek where {ek} is the standard orthonormal basis of Rn.

(3) u =

n±∑
i=1±

ui, v =

n±∑
i=1±

vi.

(4) Q = [−1, 1]n, QT = Q× (0, T ), Q∞ = Q× (0,∞), R+ = [0,∞).

(5) Ju,ε
i,j =

ui − uj
ε

, Ju,ε
k = Ju,ε

k+,k−, J
u,ε = (Ju,ε

1 , Ju,ε
2 , . . . , Ju,ε

n ).
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(6) Jv,ε
i,j =

vi − vj
ε

, Jv,ε
k = Jv,ε

k+,k−, J
v,ε = (Jv,ε

1 , Jv,ε
2 , . . . , Jv,ε

n ).

(7) Jρ,ε
i,j = Ju,ε

i,j + Jv,ε
i,j , J

ρ,ε
k = Ju,ε

k + Jv,ε
k ,Jρ,ε = Ju,ε + Jv,ε.

(8) Hδ
i =

f(ui,x)ui − g(vi,x)vi
δ

.

(9) sign+(a) =

{
1, a > 0,

0, a ≤ 0.

(10) ∥ · ∥ denotes the uniform norm.

Appendix B. Relation between microscopic and macroscopic scales

The diffusion limit with a single phenotype group is well understood. Here we briefly
introduce the scaling relation between the microscopic and macroscopic quantities and
show how the diffusivity du of a species is related by microscopic scale quantities. Let u
be the population density of the species. Using the random walk idea it is assumed that
each individual moves to one of the 2n directions, ±ek, k = 1, · · · , n, in n dimensional
space with the unit speed in the microscopic scale. Denote ek± = ±ek and let ui be the
fractional population densities that moves to directions ei, i = 1±, · · · , n±. Then, we
have

u =

n±∑
i=1±

uk.

If the species changes the moving direction randomly with a rate ωu, then the evolution
of the population density is modeled by

∂sui + ek · ∇yui =
ωu

2n

n∑
j=1

(uj+ + uj−)− ωuui.

The time and space variables, s and y, in the equation are of microscopic scale. Let ε > 0
be small and introduce variables in a macroscopic scale,

t = ε2s, x = εy.

Here, we have taken the scale of diffusion phenomenon. Then, after changing the variables,
we obtain

∂tui +
1

ε
ek · ∇xui =

1

ε2

(ωu

2n

n∑
j=1

(uj+ + uj−)− ωuui

)
.

Notice that solutions depend on the parameter ε > 0, i.e., u = uε, and the convergence
uε → U as ε→ 0 has been understood well and the limit satisfies

∂tU = du∆U with du =
1

nωu
.

If f = 0 and v(0) = 0, then v(t) = 0 for all t ≥ 0 and hence the system (7)-(8) is identical
to the above. In the case, γ in (11) is γ = 1

nωu
. Therefore, the equation (13) is written as

ut =
1

nωu
∆u,

which is identical to the single phenotype case.
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