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Abstract. We consider a chemotaxis model which belongs to the class of

logarithmic models. It naturally appears when one drops the assumption that
microscopic scale organisms measure a macroscopic scale chemical gradient.

We show that weak solutions exist globally in time in coefficient regimes that

include an aggregation phenomenon in dimensions n ∈ {1, 2, 3} and for large
initial data. We also show the instability of constant steady states and provide

numerical simulations which illustrate the formation of aggregation patterns.

1. Introduction and conclusion

The purpose of this paper is to develop a chemotaxis theory which is based on
a Fokker-Planck type diffusion equation,

(1.1) ut = ∆(γc(v)u), x ∈ Ω, t > 0,

where u is the cell density, v is the chemical concentration, Ω is a smooth bounded
domain of Rn (n ∈ {1, 2, 3}), and γc is the cell motility given by

(1.2) γc(v) =
1

c+ vk
, k > 0, c ≥ 0.

The cell density equation contains a diffusion term which writes as the Laplacian of a
nonlinear term. We do not assume in the modeling that microscopic scale organisms
have to measure a macroscopic scale chemical gradient. However, technically, the
model covers both bounded and unbounded chemosensitivity cases. By rewriting
the diffusion as

ut = ∆(γc(v)u) = ∇ · (γc(v)∇u+ γ′c(v)u∇v)

= ∇ ·
(
γc(v)

(
∇u− k

vk

c+ vk
u

v
∇v
))

,
(1.3)

we see that, if c > 0 and k ≥ 1, the coefficient of the advection term is bounded. If
c = 0, the Fokker-Planck type diffusion gives a logarithmic model type advection,

ut = ∇ ·
(
γ0(v)

(
∇u− k

u

v
∇v
))

,

which has unbounded chemosensitivity as v → 0.
One can consider this equation as a special case of the original model of Keller

and Segel [14, (6) and (9)] when the effective body ratio is α = 0 (see Appendix B
for an extra discussion). In this paper, we focus on the chemotactic self-aggregation
phenomenon where the chemical concentration v is assumed to satisfy

(1.4) vt = ε∆v + u− v, x ∈ Ω, t > 0.
1
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This model equation indicates that the chemical is diffused with a constant dif-
fusivity ε > 0, produced by cells with production rate one, and degraded with
degradation rate one.

We study the problem with strictly positive smooth initial values,

(1.5) u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω.

The domain Ω ⊂ Rn is smooth and bounded. We take the usual zero flux boundary
condition,

∂ν(γc(v)u) = 0, ∂νv = 0 on ∂Ω,

which is equivalent to the homogeneous Neumann boundary condition,

(1.6) ∂νu = 0, ∂νv = 0 on ∂Ω.

The global existence of weak solutions to the system (1.1)–(1.6) is obtained in
Section 2. Keller and Segel introduced their first chemotaxis equations to explain
the initiation of the aggregation phenomenon of slime mold. They considered a
logarithmic model [13, (2.3) and (2.4)] and viewed the aggregation as the insta-
bility of constant steady states. They showed that the instability occurs when the
chemosensitivity is greater than the diffusivity, which corresponds to the model
equation (1.3) with k > 1 and c = 0. However, the global existence of strong or
weak solutions for the logarithmic model has been obtained only for the cases when
the constant steady state is stable, or in specific cases (low dimension, very weak
(renormalized) solutions, etc. see discussion in Appendix C). Our main goal is to
obtain the instability and the global existence at the same time. The global exis-
tence obtained in this paper, Theorem 2.1, includes cases of multi-space dimensions
and both bounded and unbounded chemosensitivity cases c ≥ 0. More precisely,
the global existence is obtained for 0 < k < 7/3 if n = 1, for 0 < k < 2 if n = 2,
and for 0 < k < 4/3 if n = 3 without any smallness assumption on the initial data
or parameters.

The instability of homogeneous steady states is obtained in Section 3. For the
case with c = 0, it is shown that constant steady states are unstable if ε < k−1

µ1
,

where µ1 > 0 is the principal eigenvalue of the Laplace operator −∆ on Ω (see [35]).
The population size is not involved in this unbounded chemosensitivity case. We ex-
tend the instability analysis in Theorem 3.1 to include the bounded chemosensitivity
case with c > 0. If c > 0, there is a minimum population size required for aggre-

gation (that is,
(

c
k−1

) 1
k |Ω|). If the average of the population is u > u1 :=

(
c

k−1

) 1
k

and ε < (k−1)ūk−c
µ1(c+ūk)

, then the constant state is unstable.

Numerical simulations for the aggregation phenomenon are given in Section 4.
We can observe from numerical simulations that the instability conditions in The-
orem 3.1 provide sharp bounds on coefficients and population size for a pattern
formation when c ̸= 0. If the domain size is small and the population size is bigger
than a critical one for a given diffusivity ε > 0, we obtain a single hump solution.
If the domain size is large, multiple peaks appear in the first stage and then are
combined to eventually form a larger single peak. We can observe a similar be-
havior for the solutions for all space dimensions. Remember that the behavior of
solutions for the minimal model (cf. Appendix B) is different when different space
dimensions n ∈ {1, 2, 3} are considered. In Appendices B and C we discuss the
results of this paper and compare them to the ones in the literature. In particular,
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a brief comparison between the original Keller-Segel equations and the ones in this
paper is given.

2. Global existence

In this section, we show the existence of global weak solutions to the initial-
boundary problem (1.1)–(1.6) for arbitrary (nonnegative) initial data in a suitable
functional space. This result of existence holds for arbitrary ε > 0 and c ≥ 0.
When the dimension is n = 1, we assume that 0 < k < 7/3. When the dimension
is n = 2, we assume that 0 < k < 2. When the dimension is n = 3, we assume
that 0 < k < 4/3. Note that for any dimension n ∈ {1, 2, 3}, the considered range
of k includes real numbers which are strictly larger than 1, corresponding thus
to the regime in which a steady state solution is not always stable. Therefore,
an aggregation phenomenon may happen for small ε or for large total population
as shown in Theorem 3.1. The ratio of the chemosensitivity over the diffusivity

of the model (1.3), which is k vk−1

c+vk , is unbounded for small v and c = 0. This
unboundedness had been up to now a key difficulty in obtaining the global existence
of a logistic type equations when aggregation may occur.

We provide in Appendix C a discussion on the assumptions used in our work,
and on the link with other works on the same subject, including the important
recent paper [30] by Tao and Winkler.

We will use the following definition of (very) weak solution: for nonnegative
initial data (u0, v0) in (L1(Ω))2, a pair of nonnegative functions (u, v) on R+ × Ω
such that u, v and γc(v)u lie in L1([0, T ]×Ω) for all T > 0, is a (very) weak solution
(global in time) of (1.1)–(1.6) on R+ × Ω if the equations

−
∫
R+

∫
Ω

u(t, x)∂tψ(t, x) dxdt−
∫
Ω

u0(x)ψ(0, x) dx

=

∫
R+

∫
Ω

γc(v(t, x))u(t, x)∆ψ(t, x) dxdt,

−
∫
R+

∫
Ω

v(t, x)∂tψ(t, x) dxdt−
∫
Ω

v0(x)ψ(0, x) dx

=

∫
R+

∫
Ω

ε v(t, x)∆ψ(t, x) dxdt

+

∫
R+

∫
Ω

(u(t, x)− v(t, x)) ψ(t, x) dxdt,

(2.1)

are satisfied for all compactly supported test function ψ ∈ C2
c (R+ × Ω) such that

∂νψ = 0 on R+ × ∂Ω.

More precisely, we show the following theorem:

Theorem 2.1. Let Ω be a bounded smooth (C2) open subset of Rn, for n ∈
{1, 2, 3}. We consider c ≥ 0, ε > 0 and 0 < k < 7/3 if n = 1, 0 < k < 2 if
n = 2, 0 < k < 4/3 if n = 3. Let u0 := u0(x) ≥ 0 lying in L1(Ω) ∩ H−1

m (Ω) and
v0 := v0(x) ≥ c0 > 0 lying in W 1,2(Ω) if n = 1, lying in W 1,2−δ(Ω) (for all δ > 0)

if n = 2, and lying in W 1, 10−5k
5−2k −δ(Ω) (for all δ > 0) if n = 3. Then, there exists
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a (very) weak (global in time) solution (u, v) such that u ≥ 0, v ≥ 0 of the initial-
boundary problem (1.1)–(1.6) on R+ ×Ω (and such that u(0, ·) = u0, v(0, ·) = v0).
Moreover u and v satisfy the following bounds (for any T > 0 and η > 0):

• When n = 1, v, v−1 ∈ L∞([0, T ] × Ω), ∂xv ∈ L4([0, T ] × Ω), ∂tv, ∂xxv ∈
L2([0, T ]×Ω), u ∈ L2([0, T ]×Ω), u ∈ L∞([0, T ];L1(Ω)), ur ∈ L2([0, T ];H1(Ω))
for all 0 < r < 1/2.

• When n = 2, v ∈ L1/η([0, T ]×Ω)∩L∞([0, T ];L1(Ω)), v−1 ∈ L∞([0, T ]×Ω),
∇xv ∈ L4−η([0, T ]× Ω), ∂tv,∇x∇xv ∈ L2−η([0, T ]× Ω), u ∈ L2−η([0, T ]×
Ω) ∩ L∞([0, T ];L1(Ω)), ur ∈ L2([0, T ];H1(Ω)) for all 0 < r < 1/2.

• When n = 3, v ∈ L10−5k−η([0, T ]×Ω)∩L∞([0, T ];L1(Ω)), v−1 ∈ L∞([0, T ]×
Ω), ∇xv ∈ L

10−5k
3−k −η([0, T ] × Ω), ∂tv,∇x∇xv ∈ L

10−5k
5−2k −η([0, T ] × Ω), u ∈

L
10−5k
5−2k −η([0, T ] × Ω) ∩ L∞([0, T ];L1(Ω)), ur ∈ L2([0, T ];H1(Ω)) for all

0 < r < 1
2
4−3k
5−2k .

We list in the remarks below some direct extensions of this theorem.

Remark 2.2 (Weak solutions). When (n = 1 or n = 2) and when (n = 3 and k < 1),
the solutions obtained are weak solutions, in the sense that ∇v and ∇[γc(v)u]
lie in L1([0, T ] × Ω) for all T > 0, so that we can use an integration by parts
(or Green’s identity) in the third terms of the two equations in the very weak
formulation (2.1), and replace the set of test functions by C1

c (R+ × Ω). Indeed,
writing ∇u = 1

ru
1−r ∇(ur) and using Hölder’s inequality, we see that for all η > 0,

∇u is bounded in L4/3([0, T ] × Ω) when n = 1, in L4/3−η([0, T ] × Ω) when n = 2,

and in L
10−5k
8−3k −η([0, T ] × Ω) when n = 3 and k < 1. Then, writing ∇[γc(v)u] =

u∇γc(v) + γc(v)∇u, we obtain thanks to Hölder’s inequality that for all η > 0,
∇[γc(v)u] is bounded in L4/3([0, T ] × Ω) when n = 1, in L4/3−η([0, T ] × Ω) when

n = 2, and in L
10−5k
8−3k −η([0, T ]× Ω) when n = 3 and k < 1.

Remark 2.3 (Regularity of the initial data). The assumption that the initial datum
v0 lies in W 1,pn(Ω) (with pn = 2 when n = 1, pn = 2 − η when n = 2, and
pn = 10−5k

5−2k − η when n = 3, fore some η > 0) is used in the proof to apply the

maximal regularity of the heat equation in the Lpn space to equation (1.4). However
this assumption is not optimal when pn < 2: indeed, it suffices to assume the initial
datum to be in the fractional Sobolev space W 2−2/pn,pn(Ω) (see for example [15]).
Therefore, it is possible to replace in the theorem the assumption “v0 ∈W 1,2−0(Ω)”
by the assumption “v0 ∈ W 1−ν,2−ν(Ω) for all ν > 0”, and the assumption “v0 ∈
W 1, 10−5k

5−2k −η(Ω)” (for all η > 0) by the assumtion ”v0 ∈W 1− k
10−5k−ν, 10−5k

5−2k −ν(Ω) for
all ν > 0”.

Remark 2.4 (L logL estimate). When n = 1, if we furthermore assume that u0 log u0
lies in L1(Ω), then we have that for all time T > 0, u log u ∈ L∞([0, T ];L1(Ω)) and√
u ∈ L2([0, T ];H1(Ω)). Indeed, it is a consequence of the following computation

(at least at the formal level)

d

dt

∫
Ω

u log u dx =

∫
Ω

(1 + log u)∆

(
u

c+ vk

)
dx = −

∫
Ω

∇u
u

· ∇
(

u

c+ vk

)
dx

= −
∫
Ω

|∇u|2

u

1

c+ vk
dx−

∫
Ω

∇u · ∇
(
c+ vk

)−1
dx

≤ −1

2

∫
Ω

|∇u|2

u

1

c+ vk
dx+

∫
Ω

u (c+ vk)
∣∣∣∇ (c+ vk

)−1
∣∣∣2 dx,
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where, after integration on some time interval (0, T ), the last term is controlled
thanks to the known estimates on u and v.

Proof of Thm. 2.1. We present here the a priori estimates related to the problem
(1.1)–(1.6). Existence will then be obtained thanks to a suitable approximation
process. In all the sequel, T > 0 will denote any strictly positive time, and CT will
denote a strictly positive constant (changing from line to line) depending on T and
on the parameters of the problem (Ω, ε, c, k, n and the initial data).

First step (first estimates): Thanks to an integration w.r.t. x ∈ Ω, we immedi-
ately see that

(2.2) sup
t∈[0,T ]

||u(t, ·)||L1(Ω) + sup
t∈[0,T ]

||v(t, ·)||L1(Ω) ≤ CT .

Then, observing that ∂tv − ε∆v ≥ −v and using the minimum principle, we get
the estimate

(2.3) inf
t∈[0,T ],x∈Ω

v(t, x) ≥ C−1
T ,

where C−1
T := c0 exp(−T ).

Second step (use of the duality lemma): Observing that

∂tu−∆(Au) = 0, ∂ν(Au)|∂Ω = 0,

where A := (c+vk)−1 ≥ 0 lies in L1([0, T ]×Ω) thanks to estimate (2.3), a standard
duality lemma (cf. [27]) implies that

(2.4)

∫ T

0

∫
Ω

u2

c+ vk
dxdt ≤ CT ,

since the initial datum u0 ≥ 0 lies in H−1
m (Ω).

Third step (estimate of the r.h.s of the equation for v): We consider m ∈]1, 2[
(the constants CT will depend upon m in the sequel). We observe that, using
Hölder’s inequality and estimate (2.4):∫ T

0

∫
Ω

|u−v|m dxdt ≤ CT

(∫ T

0

∫
Ω

(
u√
c+ vk

)m

(c+vk)m/2 dxdt+

∫ T

0

∫
Ω

vm dxdt

)

(2.5) ≤ CT

(
1 +

[ ∫ T

0

∫
Ω

v
km
2−m dxdt

]1−m/2

+

∫ T

0

∫
Ω

vm dxdt

)
.

Fourth step (use of the properties of the heat kernel relative to the Lp spaces):

For any m̃ ∈ [1, m (n/2+1)
n/2+1−m [ when m ≤ 1 + n/2 and m̃ = ∞ when m > 1 + n/2, we

know (cf. for example [1]) that

||v||Lm̃([0,T ]×Ω) ≤ CT

(
||∂tv − ε∆v||Lm([0,T ]×Ω) + ||v(0, ·)||W 1,m(Ω)

)
.

Observing (when m̃ > m) that for any δ > 0, there exists Cδ > 0 such that∫ T

0

∫
Ω

vm dxdt ≤ Cδ + δ

∫ T

0

∫
Ω

vm̃ dxdt,
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and using estimate (2.5), we end up with the estimate

(2.6) ||v||Lm̃([0,T ]×Ω) ≤ CT

1 + ||v(0, ·)||W 2,m(Ω) +

(∫ T

0

∫
Ω

v
km
2−m dxdt

) 2−m
2m

 ,

which holds if m ∈]1, 2[ and m̃ ∈]m, m (n/2+1)
n/2+1−m [ when m ≤ 1 + n/2, and if m ∈]1, 2[

and m̃ = ∞ when m > 1 + n/2.
When n = 1, using the bounds (2.2) and (2.6), we see that for m ∈]3/2, 2[,

||v||L∞([0,T ]×Ω) ≤ CT

(
1 + ||v||(k/2−

2−m
2m )+

L∞([0,T ]×Ω)

)
.

Remembering that in that case, we assumed that k < 7/3, we see that by taking
m > 3/2 close enough to 3/2, we obtain the final estimate

(2.7) ||v||L∞([0,T ]×Ω) ≤ CT .

When n = 2, we assumed that k ∈]0, 2[. Then, we can take m ∈]2 − k, 2[ and
m̃ = km

2−m , and use the bound (2.6) in order to get

||v||
L

km
2−m ([0,T ]×Ω)

≤ CT

(
1 + ||v||k/2

L
km
2−m ([0,T ]×Ω)

)
,

so that

||v||
L

km
2−m ([0,T ]×Ω)

≤ CT .

Then, selecting m < 2 close to 2, we see that for all q ∈ [1,∞[,

(2.8) ||v||Lq([0,T ]×Ω) ≤ CT .

When n = 3, using the bound (2.6), an interpolation and the bound (2.2), we
obtain

||v||Lm̃([0,T ]×Ω) ≤ CT

(
1 + ||v||

km
2−m−

( km
2−m

−1)
+

1− 1
m̃

L1([0,T ]×Ω) ||v||
( km

2−m
−1)

+

1− 1
m̃

Lm̃([0,T ]×Ω)

) 2−m
2m

≤ CT

(
1 + ||v||

m̃
m̃−1 (

k
2−

2−m
2m )

+

Lm̃([0,T ]×Ω)

)
,

for all m̃ ∈]max(1, km
2−m ), 5m

5−2m [, which is non empty when we take m ∈]1, 10−5k
5−2k [.

Note that indeed 10−5k
5−2k > 1 since by assumption k < 5/3. Now selecting m̃ < 5m

5−2m

close to 5m
5−2m , we have for some small ν > 0,

||v||Lm̃([0,T ]×Ω) ≤ CT

(
1 + ||v||

( 5m
7m−5+ν)( k

2−
2−m
2m )

+

Lm̃([0,T ]×Ω)

)
.

Recalling that by assumption k < 9/5, we see that when ν > 0 is small enough, the

exponent in the right-hand-side satisfies
(

5m
7m−5 + ν

) (
k
2 − 2−m

2m

)
+
< 1, so that for

m̃ < 5m
5−2m close enough to 5m

5−2m , we have

||v||Lm̃([0,T ]×Ω) ≤ CT .

Finally, selecting m < 10−5k
5−2k close to 10−5k

5−2k (therefore m̃ < 5m
5−2m < 10− 5k is close

to 10− 5k), we end up with, for all q ∈ [1, 10− 5k[,

(2.9) ||v||Lq([0,T ]×Ω) ≤ CT .
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Note that until now we only used the fact that k < 5/3. The assumption that
k < 4/3 will be used in the next step.

Fifth step (use of a multiplicator for u): We first consider the case when n = 1.
Thanks to estimates (2.4) and (2.7), we see that

(2.10) ||u||L2([0,T ]×Ω) ≤ CT .

Then

||∂tv − ε∆v||L2([0,T ]×Ω) ≤ CT (||u||L2([0,T ]×Ω) + ||v||L2([0,T ]×Ω)).

Using estimates (2.7), (2.10), and the maximal regularity of the heat equation, we
obtain the bound

(2.11) ||∂tv||L2([0,T ]×Ω) + ||∂xxv||L2([0,T ]×Ω) ≤ CT .

We interpolate then between the bounds (2.7) and (2.11), and see that

(2.12) ||∂xv||L4([0,T ]×Ω) ≤ CT .

We now use the equation for u, and compute, for any q ∈]0, 1[,
d

dt

∫
Ω

uq

q
dx = (1−q)

∫
Ω

uq−2
∣∣∂xu∣∣2 (c+vk)−1 dx−k(1−q)

∫
Ω

uq−1 ∂xu ∂xv
vk−1

(c+ vk)2
dx.

Using Young’s inequality and estimate (2.3), we see that

k (1− q)

∣∣∣∣ ∫
Ω

uq−1 ∂xu ∂xv
vk−1

(c+ vk)2
dx

∣∣∣∣ ≤ 1

2
(1− q)

∫
Ω

uq−2
∣∣∂xu∣∣2 (c+ vk)−1 dx

+CT

(∫
Ω

|∂xv|4 dx+

∫
Ω

u2q dx

)
.

Then, integrating w.r.t. time on [0, T ], thanks to the bounds (2.2), (2.10) and
(2.12), ∫ T

0

∫
Ω

uq−2
∣∣∂xu∣∣2 (c+ vk)−1 dx ≤ CT ,

so that, using again estimate (2.3), we end up with the bound,

(2.13)

∫ T

0

∫
Ω

∣∣∂x(ur)∣∣2 dxdt ≤ CT ,

for all r ∈]0, 1/2[.
We then turn to the case when n = 2. Thanks to estimates (2.4) and (2.8), we

see that

(2.14) ||u||L2−ν([0,T ]×Ω) ≤ CT ,

for all ν > 0 small enough. Then

||∂tv − ε∆v||L2−ν([0,T ]×Ω) ≤ CT

(
||u||L2−ν([0,T ]×Ω) + ||v||L2−ν([0,T ]×Ω)

)
.

Using estimates (2.8) and (2.14), and the maximal regularity of the heat equation,
we obtain the bound (for i, j = 1, 2)

(2.15) ||∂tv||L2−ν([0,T ]×Ω) + ||∂xixjv||L2−ν([0,T ]×Ω) ≤ CT ,

for all ν > 0 small enough. We interpolate then between the bounds (2.8) and
(2.15), and see that

(2.16) ||∇v||L4−ν([0,T ]×Ω) ≤ CT .
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We now use the equation for u, and compute, for any q ∈]0, 1[,

d

dt

∫
Ω

uq

q
dx = (1−q)

∫
Ω

uq−2 |∇u|2 (c+vk)−1 dx−k (1−q)
∫
Ω

uq−1 ∇u·∇v vk−1

(c+ vk)2
dx.

Using Young’s inequality and estimate (2.3), we see that

k (1− q)

∣∣∣∣ ∫
Ω

uq−1 ∇u · ∇v vk−1

(c+ vk)2
dx

∣∣∣∣ ≤ 1

2
(1− q)

∫
Ω

uq−2 |∇u|2 (c+ vk)−1 dx

+CT

(∫
Ω

|∇v|4−ν1 dx+

∫
Ω

u2−ν2 dx

)
,

for some ν1, ν2 > 0 small enough (and depending on q). Then, integrating w.r.t.
time on [0, T ], and thanks to the bounds (2.14) and (2.16),∫

Ω

uq

q
(0) dx−

∫
Ω

uq

q
(T ) dx+

1

2

∫ T

0

∫
Ω

uq−2 |∇u|2 (c+ vk)−1 dx ≤ CT ,

so that, remembering that q < 1 and using estimates (2.2), (2.3), we end up with
the bound

(2.17)

∫ T

0

∫
Ω

|∇(ur)|2 dxdt ≤ CT ,

for all r ∈]0, 1/2[.
We finally treat the case when n = 3. By estimates (2.4) and (2.9), we have that

(2.18) ||u||
L

10−5k
5−2k

−ν
([0,T ]×Ω)

≤ CT ,

for all ν > 0 small enough. Then

||∂tv−ε∆v||
L

10−5k
5−2k

−ν
([0,T ]×Ω)

≤ CT

(
||u||

L
10−5k
5−2k

−ν
([0,T ]×Ω)

+||v||
L

10−5k
5−2k

−ν
([0,T ]×Ω)

)
,

so that by the maximal regularity of the heat equation, using estimates (2.9) and
(2.18), we have (for i, j ∈ {1, 2, 3})

(2.19) ||∂tv||
L

10−5k
5−2k

−ν
([0,T ]×Ω)

+ ||∂xixj
v||

L
10−5k
5−2k

−ν
([0,T ]×Ω)

≤ CT ,

for all ν > 0 small enough. Interpolating between this bound and (2.9), we obtain

(2.20) || |∇v|2 ||
L

10−5k
6−2k

−ν
([0,T ]×Ω)

≤ CT .

Note that 10−5k
6−2k > 1 thanks to the assumption that k < 4/3. We compute using

the equation for u and the lower bound (2.3), for any q ∈]0, 1[,

− d

dt

∫
Ω

uq

q
dx+ (1− q)

∫
Ω

uq−2 |∇u|2 (c+ vk)−1 dx ≤ CT

∫
Ω

|∇v|2uq dx,

so that by Young’s inequality, assuming furthermore that q < 4−3k
5−2k ,

− d

dt

∫
Ω

uq

q
dx + (1− q)

∫
Ω

uq−2 |∇u|2 (c+ vk)−1 dx

≤ CT

(∫
Ω

|∇v|2
10−5k
6−2k −ν1 dx+

∫
Ω

u
10−5k
5−2k −ν2 dx

)
,
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for some small ν1, ν2 > 0 depending on q. We now integrate on [0, T ], using the
bounds (2.18), (2.20), (2.2), to obtain∫ T

0

∫
Ω

uq−2 |∇u|2 (c+ vk)−1 dxdt ≤ CT .

Since q < 4−3k
5−2k , using furthermore the bound (2.3), we have

(2.21)

∫ T

0

∫
Ω

|∇(ur)|2 dxdt ≤ CT ,

for all r ∈]0, 12
4−3k
5−2k [.

The above a priori estimates are applied uniformy w.r.t. δ ∈]0, 1[, to the ap-
proximated system

∂tuδ = ∆

(
uδ

c+ (δ + vδ)k

)
,(2.22)

∂tvδ = ε∆vδ +
uδ

1 + δ uδ
− vδ,(2.23)

together with Neumann boundary conditions and smoothed initial data uin,δ ≥ δ,
vin,δ ≥ δ compatible with the Neumann boundary conditions.

The existence of a strong (classical) solution uδ ≥ 0, vδ ≥ 0 to the system
above can be obtained thanks to Schauder fixed-point procedure. More precisely,
we denote by L2

+([0, T ] × Ω) the set of nonnegative functions u in L2([0, T ] × Ω),
and we consider the application T1 defined on L2

+([0, T ]× Ω) by

T1 : u 7→ v = T1(u) = (∂t − ε∆+ Id)
−1

(
u

1 + δu

)
,

(to be understood with initial condition v(0, ·) = vin,δ and homogeneous Neumann

boundary conditions), and we denote by C0t,1x,1−0
+ ([0, T ]×Ω̄) the set of nonnegative

functions on [0, T ] × Ω̄ which are, and whose first space derivatives are, β-Hölder
continuous for any 0 < β < 1, and we consider the application T2 defined on
C0t,1x,1−0

+ ([0, T ]× Ω̄) by

T2 : v 7→ ũ = T2(v) =

(
∂t −∇ ·

[
1

c+ (δ + v)k
∇− k(δ + v)k−1∇v

(c+ (δ + v)k)2
Id

])−1

(0) ,

(to be understood with initial condition ũ(0, ·) = uin,δ and homogeneous Neu-
mann boundary conditions). For any u ∈ L2

+([0, T ] × Ω), by the minimum prin-
ciple v ≥ 0, and by the maximal regularity of the heat equation, v = T1(u) is

in C0t,1x,1−0
+ ([0, T ] × Ω̄) with bounds which do not depend upon u (and also in

L1/η([0, T ];W 2,1/η(Ω)) ∩W 1,1/η([0, T ] × Ω) for all η > 0). In particular the com-
position T2 ◦ T1 is defined, and, using the minimum principle, ũ is nonnegative.
Furthermore, by the maximal regularity of linear parabolic equations (see [15]),
we see that ũ = T2 ◦ T1(u) is in L1/η([0, T ];W 2,1/η(Ω)) ∩W 1,1/η([0, T ]× Ω) for all

η > 0, with bounds which do not depend upon u (and also in C0t,1x,1−0
+ ([0, T ]×Ω̄)).

Thanks to a Sobolev embedding, we conclude that the image of L2
+([0, T ]× Ω) by

T2 ◦ T1 is relatively compact in L2
+([0, T ]× Ω). To check the continuity of T2 ◦ T1,
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we compute for any u1, u2 ∈ L2
+([0, T ]× Ω), noting vi := T1(ui) and ũi := T2(vi),

i = 1, 2,

d

dt

∫
Ω

(ũ1 − ũ2)
2

2
dx

= −
∫
Ω

∇(ũ1 − ũ2) ·
(

1

c+ (δ + v1)k
∇ũ1 −

1

c+ (δ + v2)k
∇ũ2

)
dx

−
∫
Ω

∇(ũ1 − ũ2) ·
(
k(δ + v2)

k−1∇v2
(c+ (δ + v2)k)2

ũ2 −
k(δ + v1)

k−1∇v1
(c+ (δ + v1)k)2

ũ1

)
dx,

so that integrating w.r.t. time on (0, T ) and using the initial condition,∫
Ω

(ũ1 − ũ2)
2

2
(T ) dx+

∫ T

0

∫
Ω

|∇(ũ1 − ũ2)|2
1

c+ (δ + v1)k
dxdt

= −
∫ T

0

∫
Ω

∇(ũ1 − ũ2) · ∇ũ2
(

1

c+ (δ + v1)k
− 1

c+ (δ + v2)k

)
dxdt

−
∫ T

0

∫
Ω

∇(ũ1 − ũ2) · ∇ (v2 − v1)
k(δ + v1)

k−1

(c+ (δ + v1)k)2
ũ1 dxdt

−
∫ T

0

∫
Ω

∇(ũ1 − ũ2) · ∇v2
(

k(δ + v2)
k−1

(c+ (δ + v2)k)2
− k(δ + v1)

k−1

(c+ (δ + v1)k)2

)
ũ1 dx

−
∫ T

0

∫
Ω

∇ (ũ1 − ũ2) · ∇v2
k(δ + v2)

k−1

(c+ (δ + v2)k)2
(ũ2 − ũ1) dxdt.

Using Young’s inequality, the smoothness of ũ1, ũ2, v1 and v2, and the Lipschitz

continuity of the functions w 7→ 1
c+(δ+w)k

and w 7→ k(δ+w)k−1

(c+(δ+w)k)2
, we end up with∫

Ω

(ũ1 − ũ2)
2

2
(T ) dx+

1

2

∫ T

0

∫
Ω

|∇(ũ1 − ũ2)|2 dx

≤ 4CT

{∫ T

0

∫
Ω

(v1 − v2)
2
dx+

∫ T

0

∫
Ω

|∇ (v2 − v1) |2 dx+

∫ T

0

∫
Ω

(ũ2 − ũ1)
2
dxdt

}
.

Applying the maximal regularity for linear parabolic equations to the equation
∂t(v1 − v2)− ε∆(v1 − v2) + (v1 − v2) =

u1

1+δu1
− u2

1+δu2
, we see that

||v1 − v2||L2([0,T ]×Ω) + ||∇(v1 − v2)||L2([0,T ]×Ω) ≤ CT ||u1 − u2||L2([0,T ]×Ω),

so that we can conclude thanks to a Gronwall lemma that∫
Ω

(ũ1 − ũ2)
2(T ) dx ≤ CT

∫ T

0

∫
Ω

(u1 − u2)
2
dxdt,

which implies the continuity of T2 ◦T1 on L2
+([0, T ]×Ω). Considering T2 ◦T1 on the

closure of the convex hull of T2 ◦ T1(L2
+([0, T ]×Ω)), we can now apply Schauder’s

theorem, which gives the existence of a strong nonnegative solution (uδ, vδ) in
(L1/η([0, T ];W 2,1/η(Ω)) ∩W 1,1/η([0, T ] × Ω))2 for all η > 0, to the approximated
system (2.22).

We now show how to pass to the limit in the system (2.22) when δ → 0. Let
pn, qn > 1 be defined by

(pn, qn) = (2,∞) if n ∈ {1, 2}, (pn, qn) = ((10− 5k)/(5− 2k), 10− 5k) if n = 3.



A chemotaxis model with Fokker-Planck type diffusion 11

According to the a priori estimates shown above, we know that we can extract
from (uδ, vδ)δ>0 a subsequence still denoted by (uδ, vδ)δ>0 converging towards (u, v)
weakly in Lpn−η([0, T ] × Ω) × Lqn−η([0, T ] × Ω) for all η > 0, with u, v ≥ 0. In
particular, the second and third terms appearing in the second equation of the weak
formulation (2.1) pass to the limit weakly.

Since we know moreover that (vδ)δ>0 is bounded in W 1,pn−η([0, T ] × Ω) for
all η > 0, we see that (vδ)δ>0 also converges a.e. towards v. As a consequence,
(δ+c+vkδ )

−1 converges a.e. towards (c+vk)−1 (and is bounded in L∞([0, T ]×Ω)).
Then we can pass to the weak limit in the product (δ + c + vkδ )

−1 uδ and get its
convergence towards (c+ vk)−1 u in Lpn−η([0, T ]× Ω), for all η > 0.

The two remaining terms appearing in the weak formulation (2.1) also clearly
pass to the limit weakly thanks to the regularity of the initial data. Therefore,
(u, v) is a (very) weak solution of (1.1)–(1.6) on [0, T ] × Ω. A standard Cantor’s
diagonal argument allows to extend it into a global in time (very) weak solution on
R+ × Ω.

Finally, the estimates on the solution (u, v) are obtained by passing to the limit
in the uniform estimates on (uδ, vδ) using Fatou’s lemma. �

3. Instability of constant steady states

In this section we find the instability condition of a constant steady state solution
to the Neumann boundary value problem, (1.1)–(1.6). The condition depends on
the size of cell population, the size of chemical diffusivity, and the sensitivity of
motility. However, the condition does not depend upon the size of cell diffusion.
To see it more clearly, we introduce an extra parameter εu > 0 and set the motility
function as

γc(v) =
εu

c+ vk
.

The new parameter εu controls the diffusion size of cell population. Notice that
this parameter is not involved in the instability condition of the following theorem.

Theorem 3.1 (Instability of a constant steady state). Let c ≥ 0, k > 1, ū = v̄ > 0,
Ω be smooth and bounded, and µ1 > 0 be the principal eigenvalue of the Laplace

operator −∆ on Ω. Suppose that ū > u1 := ( c
k−1 )

1
k . Then, ε1(ū) :=

(k−1)v̄k−c
µ1(c+v̄k)

> 0

and, if 0 < ε < ε1(ū), the constant state (u, v) = (ū, v̄) is a linearly unstable steady
state solution of (1.1)–(1.6). If ε > ε1(ū), then (ū, v̄) is linearly asymptotically
stable.

Proof. The case when c = 0 has been shown in [34] and we consider the other case
(c > 0). The positivity of ε1 is clear. Denote u = ū+ u1, v = v̄ + v1 and consider
a linearized problem,

(3.1)
∂

∂t

(
u1
v1

)
= A(ū, v̄)

(
u1
v1

)
,

where

A(ū, v̄) =

(
γc(v̄)∆ γ′c(v̄)ū∆

1 ε∆− 1

)
.

Let {µ, ϕ} be an eigenpair of −∆ in Ω with the homogeneous Neumann boundary
condition. If {λ, c} is an eigenpair of a related matrix

B(ū, v̄) =

(
−γc(v̄)µ −γ′c(v̄)ūµ

1 −εµ− 1

)
,
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then (u1, v1) = cϕeλt is a non-trivial solution of (3.1). Therefore, the local stability
of the constant steady state is determined by the sign of the eigenvalues of B(ū, v̄).
The characteristic equation for an eigenvalue of B(ū, v̄) is

λ2 + (µ(γc(v̄) + ε) + 1)λ+ µγc(v̄)(εµ+ 1) + γ′c(v̄)ūµ = 0.

The (complex) eigenvalues are

λ =
−P ±

√
P 2 − 4Q

2
,

where

P := µ(γc(v̄) + ε) + 1,

Q := µγc(v̄)(εµ+ 1) + γ′c(v̄)ūµ.

Since P is positive, the steady state solution is unstable if there exists an eigenvalue
µ such that Q = Q(µ) < 0. Notice that µ 7→ Q(µ)/µ = γcεµ+γc+γ

′
cū is monotone

increasing. Hence, µ 7→ Q(µ)/µ has its minimum value when µ = µ1. The minimum
value is computed by

Q(µ1)

µ1
= γcεµ1 + γc −

εukv̄
k−1

(c+ v̄k)2
ū = γc(v̄)

(
εµ1 + 1− kv̄k

c+ v̄k

)
.

We therefore find the instability condition,

Q(µ1)

µ1γc(v̄)
= εµ1 + 1− kv̄k

c+ v̄k
< 0 ⇐⇒ ε <

(k − 1)ūk − c

µ1(c+ ūk)
= ε1(ū).

Since v̄ = ū > u1, we have ε1(ū) > 0. In conclusion, the constant state (u, v) =
(ū, v̄) is a linearly unstable steady state solution of (1.1)–(1.6) if ε < ε1(ū), and a
linearly asymptotically stable one if ε > ε1(ū). �

We expect an aggregation phenomenon when constant steady states are unstable.
Since the total cell population of our problem is preserved, the constant steady state
solution (ū, v̄) related to the initial value problem is

ū =
1

|Ω|

∫
Ω

u0(x)dx, v̄ = ū,

where |Ω| is the size of the bounded domain Ω. Therefore, the first instability

condition, ū > u1 := ( c
k−1 )

1
k , requires that the initial population size should be

bigger than a critical size,

(3.2)

∫
Ω

u0(x)dx > |Ω|
( c

k − 1

) 1
k

.

This condition indicates that, if c = 0, then the aggregation phenomenon may
happen for any size of population. However, if c > 0, there is a minimum size of
population to guarantee population aggregation. This population size is indepen-
dent of the diffusivity size εu. It depends on the sensitivity of γc which is decided
by c > 0 and k > 1. If k → 1 or c → ∞, this critical population size increases to
infinity.

The second instability condition ε < ε1 requires small chemical diffusivity size.

The critical diffusivity ε1 := (k−1)ūk−c
µ1(c+ūk)

depends on k, c, µ1, and ū. If c approaches

zero, the critical diffusivity ε1 tends to k−1
µ1

. In this case the population size is

not involved. If k → 1, ε1 tends to a negative value (or zero). Hence, it is not
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possible to have an aggregation phenomenon for any population size and chemical
diffusivity. The domain size and shape is involved through the principal eigenvalue
µ1 = µ1(Ω).

4. Numerical simulation

In this section, we test the instability of constant steady states and the con-
vergence to a nonconstant steady state using numerical simulations. As we shall
see, the results of the numerical computations agree with the theoretical analysis
performed in the paper. Our numerical simulations are coherent with the result
stating that the solutions globally exist and do not blow up.

We consider first in this study the following problem:

(4.1)



ut = ∆(γc(v)u),

vt = ε∆v − v + u,

∂νu = ∂νv = 0, on ∂Ω,

u(x, 0) = ū,

v(x, 0) = v̄(1 + χ{|x|<0.01}),

where ū = v̄ > 0 are constants. The initial cell population distribution is thus
homogeneous. The chemical concentration is a perturbation centered at the origin
of an homogeneous steady state. These data correspond to cells close to point 0
which start to secrete the chemoattractant, so that the aggregation phenomenon is
initiated. The motility function γc is chosen in such a way that k = 2 and c = 1,
i.e.,

γc(v) =
1

1 + v2
.

In this case (cf. Thm. 3.1), the critical population density is

u1 =
( c

k − 1

) 1
k

= 1.

Therefore (still cf. Thm. 3.1), if ū > 1 and ε > 0 is small enough, we expect an
aggregation phenomenon to develop. For numerical computations we have taken an
explicit finite difference scheme centered in space and forward in time (see Appendix
for a matlab code used in the paper).

4.1. Aggregation in a small domain. In this subsection, we take the unit ball
as the computation domain, i.e.,

Ω = {x ∈ Rn : |x| < 1}.

We recall that according to the formulas in Thm. 3.1), ε1(ū) =
1
µ1

ū2−1
ū2+1 . Selecting

ε = 3
5µ1

(which corresponds to the critical diffusivity ε1(ū) when ū = 2) and

observing that ū 7→ ū2−1
ū2+1 is an increasing function, we expect that the initial

(slighty perturbed) homogeneous steady state will give rise to an evolution towards
an inhomogeneous state when ū > 2. Since ε is of the same order as 1/µ1, we also
expect that this inhomogeneous state presents typically one single hump, at least
for t close to 0. Note that the principal eigenvalue µ1 of the Laplace operator −∆
on the unit ball depends on the space dimension. We present in the two following
subsections the cases when the dimension are n = 1, and then n = 2.
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4.1.1. One space dimension. We first consider one space dimension n = 1. The
principal eigenvalue of −∆ in the domain of the unit ball is then µ1 = π2 ∼= 9.8696.
The critical chemical diffusivity is then

ε =
3

5µ1

∼= 0.0608.

We performed numerical simulation in four different cases, corresponding to

ū = 4, 3, 2.2, and 1.8.

We recall that the first three cases (with ū = 4, 3, and 2.2) are expected to lead
to the development of nonconstant steady states. We numerically computed the
solution at time t = 200 and displayed the obtained profile for u in Figure 4.1(a).
Since the solution is even, only the part with x > 0 is presented. We indeed observe
that the solution converges to a nonconstant steady state in the first three cases
and to a constant one in the last case (when ū = 1.8).

0 0.5 1
0

2

4

6

8

10

12

u=4
u=3
u=2.2
u=1.8

(a) Cell density profile u at t = 200.
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u=2.2
u=1.8

(b) Maximum value of u w.r.t. time.

Figure 4.1. Cell density distribution at time 200 and sigmoidal-
like saturation profile for the maximum of the cell density (one
space dimension).

The observed maximum of u(t, ·) is at the origin for all t > 0. It is shown in
Figure 4.1(b) how this maximum value increases and saturates in the four cases.
We can observe that the growth is sigmoidal-like.

4.1.2. Two space dimensions. We next consider as a domain the two dimensional
unit disk. The eigenvalues are given by the relation J ′

0(
√
µ) = 0, where J0 is the

Bessel function of the first kind of order zero. The first zero is
√
µ1. Approximately,

µ1
∼= 14.6819 (see [35, Remark 4.1]). The critical chemical diffusivity is then

ε =
3

5µ1

∼= 0.0409.

We performed numerical simulations for the same four cases as in dimension 1, that
is cases corresponding to ū = 4, 3, 2.2, and 1.8. We also numerically computed
the solution at time t = 200 and displayed the profile in Figure 4.2(a). Since the
solution is radially symmetric, the profile is presented only along any half straight
line starting at point 0. We once again observe the convergence to a nonconstant
steady state except in the last case (when ū = 1.8). We can also observe a sigmoidal-
like growth of the maximum value of the solution in Figure 4.2(b).
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(a) Cell density profile u at t = 200.
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(b) Maximum value of u w.r.t. time.

Figure 4.2. Cell density distribution at time 200 and sigmoidal-
like saturation profile for the maximum of the cell density (two
space dimension).

Nonconstant steady states are not unique and can have a nontrivial basin of
attraction. Consider an alternative initial value

v(x, 0) = v̄(1 + χ{0.09<|x|≤1}),

in the problem (4.1), corresponding to a case in which the cells along the perimeter
of the domain start to produce chemicals. We can observe (cf. Figure 4.3) a profile
(and a sigmoidal growth of the maximal value of u(t, ·)) quite different from the
one observed in in Figure 4.2.
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(a) Cell density profile u at t = 200.
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(b) Maximum value of u w.r.t. time.

Figure 4.3. Cell density distribution at time 200 and sigmoidal-
like saturation profile for the maximum of the cell density (one
space dimension). The aggregation signal started from the perime-
ter of the domain x2 + y2 = 1.

4.2. Aggregation in a large domain. In this subsection, we take the same values
of the diffusivity as in subsection 4.1 (that is, ε ∼= 0.608 in dimension 1 and ε ∼=
0.0409 in dimension 2), but we compute on a much larger domain. We hope in this
way to observe solutions in which several humps develop (when the time is close to
0), representing multiple points of aggregation of the cells.

As in the previous subsection, we provide computations in dimension 1 as well
as in dimension 2.
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4.2.1. One space dimension. We now take

Ω = {x ∈ R : |x| < 10}.
The domain of computation is thus ten times larger than the domain considered in
subsection 4.1, and the principal eigenvalue µ1 of the Laplace operator −∆ becomes

100 time smaller, i.e., µ1 = π2

100 . We take the same diffusivity in Subsubsection 4.1.1,
that is ε ∼= 0.0608. This diffusivity is the critical one when ū ∼= 1.006. Therefore,
we may expect an aggregation phenomenon when ū > 1.007.
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Figure 4.4. Cell density distribution at times t = 50, 300, 103 and
104. Initial values corresponding to (4.2) are used.

We performed the numerical computation with initial values corresponding to

(4.2) ū = v̄ = 4, u(x, 0) = ū, v(x, 0) = v̄(0.5 +X), −10 < x < 10,

where 0 < X < 1 is a random variable with uniform distribution. In Figure 4.4,
solution profiles are given for t = 50, 300, 103, and 104. Since the constant steady
state u = 4 is (linearly) unstable (the critical ū is ū ∼= 1.006), an aggregation
phenomenon develops. At time t = 50, eight cell aggregation points have appeared.
Later, the eight humps progressively merge and bigger humps appear. At time
t = 300, four such humps have survived. Later, for t > 104, only one single hump
is left. The merging process happens on a larger time scale than the process of the
initial formation of the humps.

4.2.2. Two space dimensions. We take in this subsubsection a square domain

Ω = {(x, y) ∈ R2 : 0 < x, y < 10}.
We take the same diffusivity as in Subsubsection 4.1.2, that is ε ∼= 0.0409. This
diffusivity is the critical one when ū ∼= 1.006.

We perform numerical computations with initial values corresponding to

(4.3) ū = v̄ = 4, u(x, y, 0) = ū, v(x, y, 0) = v̄(0.5 +X), 0 < x, y < 10,

where 0 < X < 1 is a random variable with uniform distribution, since the constant
state u = 4 is unstable (the critical ū is ū ∼= 1.006), and an aggregation phenomenon
develops. In Figure 4.5, the values of u (represented by colours) are given at various
times (t = 25, 50, 75, 100, 200, 300, 500, 1000, 2000).

We can observe that the uniformly distributed cells start to get aggregated, and
a pattern consisting of a few spots already has appeared at time t = 50. The
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Figure 4.5. Cell density distribution at nine different times. Ini-
tial values corresponding to (4.3) are used. White regions are as-
sociated with zones where u < 0.5.

maximum of u reaches to 50 at t = 75, which is about the same value as what
was observed on radially symmetric solutions in Figure 4.2. The support size of
these spots is also similar to the one of those radial solutions. We can also observe
later that the aggregation spot patterns merged together and form bigger spots.
However, this merging process becomes slower and slower.

Appendix A. Computation code

An explicit finite difference scheme centered in space and forward in time has
been used for computation. The numerical simulations are performed using matlab.
The matlab code used for the computation of Fig. 4.5 is given in the following:

%% model parameters

ubar=4;

eps=3/5/14.6819;

c=1;

k=2;

%% computation parameters

L=10; % computation domain is [0,L]^2

dx=0.1; % space mesh size

T=2000; % time domain is [0,T].

dt=dx*dx/4; % time step size

NX=floor(L/dx)+1; % number of space grids

NT=floor(T/dt)+1; % number of time grids
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%% variables and initial value

x=0:dx:L;

u=ubar*ones(NX,NX); % homogeneous initial value

v=u.*(0.8+0.4*rand(NX,NX)); % random initial value

%% computation

for i=1:NT

p=u./(c+v.^k); % this is gamma times u

tmp=u+dt*(4*del2(p,dx)); % equation for cell density

v=v+dt*(eps*4*del2(v,dx)-v+u); % equation for chemical concentration

u=tmp; % update cell density

% Neumann boundary condition

u(1,:)=u(2,:);u(:,1)=u(:,2);u(NX,:)=u(NX-1,:);u(:,NX)=u(:,NX-1);

v(1,:)=v(2,:);v(:,1)=v(:,2);v(NX,:)=v(NX-1,:);v(:,NX)=v(:,NX-1);

end

%% solution display

M=max(max(u));

mesh(x,x,u);axis([0 L 0 L 0.5 M]);view([0 0 1]);

Appendix B. Comparison to Keller-Segel equations

This paper is a part of an effort to show that the chemotaxis phenomenon can be
explained without the traditional chemotaxis assumption that a microscopic scale
individual cell measures a macroscopic scale chemical gradient (see [2,3,34,35]). The
motility (or departing probability) γc(v) of the diffusion in (1.1) depends only on
the chemical concentration. In other words, each cell changes its motility according
to the concentration of chemoattractant, but not according to its gradient. Never-
theless, such a migration strategy produces a chemotactic migration phenomenon
and can be modeled by a logarithmic type advection term, as written in (1.3).

Models like (1.1), (1.4) have been used recently in the Physics litterature [4].
In [4], the authors use this model to study the formation of periodic stripes in
(engineered) bacteria’s colonies observed in [19]. For the sake of simplicity, they
use for the cell motility a (smoothed version of) a step function, taking only two
values. Beyond simplicity, their choice is motivated by biological measurements
showing that the motily almost vanishes beyond a critical value of the chemical
concentration [19].

From the point of view of analysis, the fact that the diffusion term can be written
as a Laplacian of some quantity allows us to apply duality arguments and to obtain
global existence. We also obtain the instability of constant steady states for both
bounded (c ̸= 0) and unbounded (c = 0) motility cases. The purpose of this
section is to show the connection between the model that we study and classical
Keller-Segel equations.

The mathematical study of chemotactic migration has been started by the publi-
cation of three papers of Keller and Segel. In the first paper, based on macroscopic
arguments they proposed an abstract form for the diffusion-advection equation,

(B.1) ut = ∇ ·
(
µ(u, v)∇u− χ(u, v)∇v

)
= ∇ ·

[
µ(u, v)

(
∇u− χ(u, v)

µ(u, v)
∇v
)]
,
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where u and v are cell and chemical densities respectively (see [13, (3.5)]). This
equation contains two terms: the Fickian diffusion (related to µ) and the chemo-
tactic advection (related to χ). Two typical formulas for µ, χ are

µ(u, v) = µ0, χ(u, v) = χ0u, (minimal model)

µ(u, v) = µ0, χ(u, v) = χ0
u

v
, (logarithmic model)

where µ0 and χ0 are constants. The corresponding chemotaxis equations are respec-
tively called minimal and logarithmic models. Keller and Segel took the logarithmic
model [13, (2.3)] and showed that the constant steady state is unstable if χ0

µ0
> 1

(see [13, (4.16)] for the original statement). However, in dimension n = 3, until
now the global existence of weak or strong solutions for the logarithmic model has
been shown in general only for cases without aggregation, i.e., for χ0

µ0
< 1 (see [8]

and the discussion in next section).
Keller and Segel derived their new model in their second paper [14] entitled

“Model for Chemotaxis”. Starting from a microscopic model featuring a random
walk, they derived the specified chemotaxis equation for the cell density,

(B.2) ut = ∇ · (µ(v)∇u− χ(v)u∇v),

where µ is a function of v only and χ(u, v) in (B.1) is now χ(v)u. A new con-
tribution of the model is the explicit relation between the diffusivity µ and the
chemosensitivity χ, given by

(B.3) χ(v) = (α− 1)µ′(v),

where α represents the ratio of effective body length (i.e., distance between re-
ceptors) over the walk length. If an organism cannot measure the gradient of the
chemoattractant, which is the case we are interested in, we may set α = 0, so that
χ(v) = −µ′(v). This is the case of special interest mentioned by S. Corrsin as
commented in [14, p. 228]. Then, (B.2) writes

(B.4) ut = ∆(µ(v)u),

which is identical to (1.1), when one identifies γc with µ. The difference is that µ is
assumed to be an increasing function of v in the works of Keller and Segel, whereas
we assume in this work that γc is a decreasing function of v.

Appendix C. Discussion on global existence

The purpose of Keller and Segel in introducing their first chemotaxis model was
to explain the aggregation phenomenon. Its initiation was viewed as the instability
of a constant steady state [13]. For the completeness of the study, it is also im-
portant to analyze the well-posedness, global existence, asymptotic convergence to
a nonconstant steady state, etc. However, there are many obstacles in obtaining
those. For example, the asymptotic convergence to a nonconstant steady state is
difficult to obtain, and the main difficulty is in the non-uniqueness of steady states.
Instead, the existence of nonconstant steady states has been one of key issues in
the elliptic problem viewpoint (see [18,22–24,31]).

The global existence of the evolutionary problem has been one of the key issues.
One of the challenges consists in obtaining the aggregation and the global existence
together. Solutions of the minimal model are global and bounded in one space
dimension (see [25]). However, in two space dimensions, the solution of the minimal
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model can blow up in a finite-time if the initial population’s mass is bigger than a
critical size whereas, in three (or more) space dimensions, the solution can blow up
with any population size ( [7, 10,12,20,21,26,28,33], see [11,26] for a review).

On the other hand the blow up of the logarithmic model is not reported for
dimensions n ≤ 2. In one space dimension, solutions to the logarithmic model
are bounded and exist globally in time. In dimension n ≥ 2, classical bounded

solutions have been obtained when χ0

µ0
<
√

2
n (see [5, 32]), a condition which is

not compatible with the necessary condition of aggregation χ0

µ0
> 1. Note that the

value
√

2
n is not optimal as shown in [16] (see also [6] for a result in a perturbative

framework close to the elliptic-parabolic case). When it comes to weak solutions,

global existence has been obtained in [32] under the condition that χ0

µ0
<
√

n+2
3n−4 ,

which now includes an aggregation regime in dimension n = 2. The case of radial
solutions also admits weak solution for some aggregation regimes, see [29]. In
dimension n = 3, to consider regimes of aggregation with global solutions, one
possible direction is to resort to a generalized form of solution, as studied in the
recent work [17]. Note that in dimension n = 3, the solution may blow up in finite
time if χ0

µ0
> 6 (see [9, Section 6.1.1]). Coming back to our system (1.1)–(1.4), the

condition 0 < k < 4/3 for the global existence in three dimensions does not appear
to be simply a technical issue. We do not know the optimal value of the parameter
k for the global existence.

Finally, we mention the recent work [30], in which the authors study a related
model: they consider the system (1.1), (1.4) in dimension n ≥ 2, with the cell
motility γc(v) replaced by a smooth function γ(v) satisfying 0 < γ̄−1 ≤ γ(v) ≤ γ̄
for some positive constant γ̄. They obtain the existence of weak solutions (but do
not consider the patterns related to the system), and, under the supplementary
assumption that the domain is convex, they obtain strong solutions in dimension 2
(and in dimension n ≥ 3 under some smallness assumption on the initial data). In
their proof, the starting point for showing the existence is to obtain an L2 estimate
for u (Lemma 3.1 in [30]), thanks to a duality technique. Our own use of duality
lemmas is reminiscent of the one used in [30]. Note that in dimension n = 2 or
3, our result gives the existence of weak solutions for which no L∞ bound for the
concentration v is known. The cell motility γc(v) in our model is therefore a priori
not lower bounded (away from zero), so that existence does not directly follow
from the estimates of [30] in that case. In dimension 1, our estimates show that
v is bounded between two strictly positive constants, so that the estimates of [30]
can be used (more precisely, the extension of these estimates in dimension 1).
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