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Abstract. Biological organisms leave their habitat when the environment be-
comes harsh. The essence of a biological dispersal is not in the rate, but in

the capability to adjust to the environmental changes. In nature, conditional

asymmetric dispersal strategies appear due to the spatial and temporal het-
erogeneity in the environment. Authors show that such a dispersal strategy

is evolutionary selected in the context two-patch problem of Lotka-Volterra

competition model. They conclude that, if a conditional asymmetric dispersal
strategy is taken, the dispersal is not necessarily disadvantageous even for the

case that there is no temporal fluctuation of environment at all.

1. Introduction. Migration is the key survival strategy of many biological species
when the habitat turns into a harsh place. If resource dwindles, temperature drops
or rises, and living condition deteriorates, then biological species, from mammals
and birds to single cell organisms such as amoeba, often abandon their habitat and
move to another place. The essence of biological dispersal is in such a conditional
variation, but not simply in the dispersal rate. The purpose of this paper is, by con-
sidering a competition system of two phenotypes, to show how such an adaptation
ability can be achieved by a biological species.

If starvation starts, biological organisms know that they have to move. However,
in many cases, they do not know the direction and often start to migrate by simply
choosing a direction randomly. The starvation driven dispersal models such cases.
Indeed, a dispersal strategy adjusting to the environmental changes can be based on
such a simple mechanism as increasing dispersal rate when starvation starts. There
is huge literature for spatially-distributed population dynamics with dispersal. The
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simplest way to include spatial heterogeneity and dispersal is the two-patch system.
A standard model commonly used in the literature is written as

u̇1 = r1u1

(
1− u1

K1

)
+ c12u2 − c21u1,

u̇2 = r2u2

(
1− u2

K2

)
+ c21u1 − c12u2,

(1)

where ui = ui(t) is the population in the i-th patch at time t > 0 and u̇i is
its time derivative. In this model, the logistic population growth is taken with the
carrying capacityKi and intrinsic growth rate ri in the i-th patch. Other parameters
cij > 0 are dispersal rate per population, where cijuj is the emigration flow from
patch j. The dispersal is called symmetric if cij = cji, and is called asymmetric
otherwise. This two-patch system serves as a basic model and provides key insights
on population dynamics and dispersal (see [2, 9, 10, 15]). In spite of the simplicity
of the model system, there are still unresolved aspects (see [1, 26]).

We first consider the two-patch system with a starvation-dependent dispersal,

v̇1 = v1(1− s1) + γ(s2)v2 − γ(s1)v1,

v̇2 = v2(1− s2) + γ(s1)v1 − γ(s2)v2,

(v1(0), v2(0)) = (v0
1 , v

0
2) > 0,

(2)

where si is the starvation measure at the i-th patch defined by

si :=
vi
Ki
. (3)

The population dynamics is still described by the logistic model. We restrict the
general system to a case that the two intrinsic growth rates in (1) are identical, i.e.,
r1 = r2 = 1, which is the case we will obtain later from a mega-patch derivation. If
the population size exceeds the carrying capacity, then starvation starts. The ratio
si denotes such harshness at the i-th patch. Notice that the migration rates are not
fixed, but dynamically given by cij = γ(sj), where γ can be any function as long
as it is an increasing function. The monotonicity of γ implies that the dispersal is
enhanced by starvation. Here, we assume that γ is smooth for simplicity and hence
γ′(s) ≥ 0. If s1 6= s2, the dispersal is asymmetric. If s1 = s2, it is an ideal free
distribution.

If Ki is the area of patch i, then si is the population density at patch i and the
dispersal in the model is a positively density-dependent one (see [14, 27, 28] and
references therein). The evolution of density-dependent dispersal has been well-
studied. Both positive and negative density-dependent dispersal are considered and
either one can be selected depending on the distribution of high quality and low
quality patches. However, in the context of logistic equations, the patch size and
quality are indistinguishable. The two are mixed in terms of carrying capacity and
asymmetric migration rates (see Section 2). On the other hand, the starvation
measure si is a meaningful quantity in the context which combines both effects of
size and quality.

The first key result of the paper is the uniqueness of the steady state solution.

Theorem 1.1. Let K1 < K2 and γ be an increasing smooth function. If K2

K1
≤ 3 or

γ(0.5) ≤ 0.5, the nontrivial steady state of (2) exists and is unique. Furthermore,
the steady state (v̄1, v̄2) satisfies

K1 < v1 < v2 < K2, v2 > max
(K2

2
,

2K1K2

K1 +K2

)
. (4)
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The uniqueness of the steady state plays a key role in the rest of the paper.
The condition K2 ≤ 3K1 implies that the spatial variation is relatively small. In
the case, the monotonicity of γ guarantees the uniqueness. The other condition,
γ(0.5) ≤ 0.5, implies that the emigration rate is less than the half of the intrinsic
growth rate when the population is less than the half of the carrying capacity. This
condition is needed when K2 > 3K1. We can even construct a counter example
that the uniqueness fails without such extra assumptions (see Remark 1).

The main system of the paper is the competition system,

u̇1 = u1(1− s1) + d(u2 − u1),

u̇2 = u2(1− s2) + d(u1 − u2),

v̇1 = v1(1− s1) + γ(s2)v2 − γ(s1)v1,

v̇2 = v2(1− s2) + γ(s1)v1 − γ(s2)v2,

(u1(0), u2(0), v1(0), v2(0)) = (u0
1, u

0
2, v

0
1 , v

0
2) > 0,

(5)

where ui and vi denote the population of two phenotypes and si is the starvation
measure given by

si :=
ui + vi
Ki

. (6)

One may consider si in (3) as a special case of the same si in (6) when ui = 0. The
population dynamics of the two phenotypes are identical and the difference is in
their migration strategies. The first phenotype u takes a symmetric dispersal with
a constant rate cij = d > 0 and the second phenotype v disperses asymmetrically
with cij = γ(sj).

As mentioned, the purpose of migration is to find a better place for survival, in
particular, when the environment becomes harsh for living. However, if dispersal
strategies are symmetric, only the smaller dispersal rate will survive over the long
term and the faster dispersal rate will be excluded eventually under spatial hetero-
geneity. For example, Hastings [13] showed that a spatially varying environment
selects the slowest dispersal when the environment is temporally invariant (see also
[22]). This observation gives a paradoxical situation that the dispersal reduces the
survival chance of a species and forces us to conclude that symmetric dispersal
strategies do not capture the essence of biological dispersal.

We will see that the situation is different if asymmetric dispersal strategies are
taken. Indeed, we will see in the following theorem that dispersal can be selected
even if there is no temporal fluctuation at all.

Theorem 1.2. Let K1 < K2 and γ be an increasing smooth function. We assume
K2

K1
≤ 3 or γ(0.5) ≤ 0.5. Let E1 = (u1, u2, 0, 0) and E2 = (0, 0, v1, v2) be semi-trivial

steady states. Then, there exists a critical dispersal rate 0 < d∗ < γ( v̄2K2
) such that

(i) there exists a positive (or coexisting) steady state of (5) if and only if d = d∗,
(ii) E1 is linearly stable for d < d∗ and is unstable for d > d∗, and (iii) E2 is
linearly stable for d > d∗ and is unstable for d < d∗.

Note that the existence of a positive state means coexistence of the two species.
If d < d∗, E1 = (u1, u2, 0, 0) is the only stable steady state. Hence, the asymptotic
limit should be E1 if the solution converges.1 This implies that the species u is
selected and v goes extinct. If d > d∗, E2 = (0, 0, v1, v2) is the only stable steady

1We could not show the global asymptotic stability but we believe so. The typical theory for
problems with monotone dynamics is not applicable for the starvation driven dispersal.
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state and hence the species v is selected and u goes extinct (see Figure 5). The
key claim of the theorem is in the relation d∗ < γ(s2). Note that s2 < s1 and
hence γ(s2) < γ(s1) (see Theorem 1.1). Therefore, the theorem shows that, if an
asymmetric dispersal is taken, a larger dispersal rate can be selected even if there
is no temporal fluctuation of environment at all. However, if d < d∗, the slower
dispersal is still selected.

The evolution of dispersal strategies has been studied theoretically for a long
time. The experimental approach for the evolution of dispersal strategy is limited
since such an evolutionary process takes very long time and is not repeatable. In-
stead, analytical and computational approaches of mathematical models provided
useful insights on biological dispersals (see [11]). One of key conclusions is that
spatial heterogeneity reduces the size of symmetric dispersal and the temporal fluc-
tuation increases it (also see [7, 29]).

The theories for discrete patch models developed into continuum PDE models in
the context of reaction-diffusion equation. For more study, readers are referred to
[4, 23, 24, 25]). For example, the patch system (2) is written as

vt = v
(

1− v

m

)
+ ∆(γ(s)v), x ∈ Ω, (7)

where a given function m = m(x) corresponds to spatially heterogeneous carrying
capacities and s = v

m . Note that Fick’s law is in a form of ∇ · (γ(s)∇v), but we
assume a Fokker-Plank type diffusion. See Appendix A for their connection.

However, the reaction-diffusion equation (7) has hardly been studied even for the
constant motility case, γ = constant. A much more studied case is

vt = v(m− v) + ∆(γ(s)v)
(
≡ mv

(
1− v

m

)
+ ∆(γ(s)v)

)
, x ∈ Ω, (8)

where m(x) is now the intrinsic growth rate at position x at the same time of
being the carrying capacity. Eq (8) has been studied by many authors for the
constant diffusivity case, γ = constant, and then applied to competition systems
(see [12, 21]). The case with increasing motility γ has been introduced in [5] to
describe a biological dispersal enhanced by starvation. The global behavior of its
solution is given in [18]. The evolutional behavior of the dispersal strategy has been
studied in the context of competition and prey-predator relation (see [6, 16, 17]).

The contents of this paper are as follows.
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2. Two-patch system for single species. It is often believed that a random
dispersal is symmetric. However, we will see in this section that symmetry and
randomness are not related. Assume that the dispersal coefficients in the two-patch
system (2) are not symmetric. If the environment condition of the two patches are
different, the emigration rates can be different. Even if conditions of the two patches
are identical, the rates could be different if their sizes are different. We start with
a derivation of two-patch system which produces asymmetric dispersal coefficients
from symmetric ones.

2.1. Derivation of mega-patches. Consider the logistic population dynamics of
a single species in N identical patches,

U̇ i = U i(1− U i)−
N∑
j=1

CjiU i +

N∑
j=1

CijU j , i = 1, · · · , N,

where U i is the population of the species in the i-th patch and Cij is the migration
rate from the j-th patch to the i-th one. We start with a patch system with identical
sizes (or carrying capacities), which is set to be one. The symmetry of the migration
(or Laplace) matrix C is assumed to be symmetric, i.e., Cij = Cji. For simplicity,
we consider a special case that patches are connected in a homogeneous way so that
Cij = d > 0 for i 6= j and Cii = 0 (see Figure 1).

mega patch 1 mega patch 2

Figure 1. A mega patch is a collection of many smaller patches.
Dispersal across mega patches are counted in a two-patch system.

We first derive a two-patch problem from these N -patches. The idea is to split
the N patches into two groups and consider each group as a single mega-patch. One
can easily extend this idea into general number of mega-patches. Let K1 +K2 = N
and K1,K2 > 0. The first mega-patch consists of the first K1 regular patches and
the second one of the rest. Let

u1 :=

K1∑
i=1

U i, u2 :=

N∑
i=K1+1

U i.
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Then, after adding the first K1 equations and then the rest, we obtain

u̇1 =

K1∑
i=1

U i(1− U i)− dNu1 + dK1(u1 + u2),

u̇2 =

N∑
i=K1+1

U i(1− U i)− dNu2 + dK2(u1 + u2).

(9)

Since the first K1 patches are considered as a single environment, the population
distribution in the first K1 patches will be forgotten. Similarly, the next K2 patches
are considered as a single environment. Therefore, we cannot handle the hetero-
geneity inside these K1 patches and hence we handle the problem in an averaged
sense, i.e., we are forced to take

U i =
u1

K1
, i = 1, · · · ,K1, and U i =

u2

K2
, i = K1 + 1, · · · , N.

After substituting these into (9), we obtain

u̇1 = u1

(
1− u1

K1

)
− c21u1 + c12u2,

u̇2 = u2

(
1− u2

K2

)
+ c21u1 − c12u2,

(10)

where

c12 = dK1, c21 = dK2. (11)

This derivation gives us a few insights about the two-patch model (see [20] for
other cases). First, the intrinsic growth rate is independent of the patch size or
carrying capacity. Hence, we set r1 = r2 = 1. Second, the sizes of obtained patches
appear in the coefficients of the quadratic term. Third, the migration coefficients
are not symmetric anymore. Note that the migration inside a mega-patch is not
counted in the mega-patch problem and only the migration across them are counted.
There are more migrations within a bigger mega-patch and, as a result, we obtain
asymmetric dispersal. Fourth, the obtained dispersal rates in (11) satisfy the special
ratio,

c21

c12
=
K2

K1
, (12)

which is known as the balanced dispersal (see [22, 26]) or the evolutionarily stable
strategy (see [3, 8]), and gives ideal free distribution. Therefore, the balanced dis-
persal with given dispersal rates cij is not distinguishable from symmetric dispersal
in a homogeneous environment.

The relation (12) is the criterion for the balanced dispersal and, at the same time,
for the homogeneity of environment. We are interested in a spatially heterogeneous
case and hence consider a case c21

c12
6= K2

K1
by taking K1 6= K2 and c12 = c21. Instead,

by replacing cij by γ(sj) in (2), we assume that individuals increase their migration
rate if the living condition becomes harsh. The main view point of the model is
in understanding how biological organisms can approach to the ultimate dispersal
strategy, balanced dispersal, in a spatially heterogeneous and temporally fluctuating
environment.

2.2. Steady states. The environment is not homogeneous and the migration strat-
egy is not always optimal in general. Hence, the migration coefficients cij do not
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necessarily satisfy (12). First we consider the steady state solution (θ1, θ2) which
satisfies

0 = θ1

(
1− θ1

K1

)
− c21θ1 + c12θ2,

0 = θ2

(
1− θ2

K2

)
+ c21θ1 − c12θ2.

(13)

The property of steady states of (1) can be found in [2] for the general case when
r1 and r2 are not identical. By focusing the case with r1 = r2, we can construct
detailed structure needed in the stability analysis in following sections.

Lemma 2.1. Let Ki > 0 and cij > 0. There exists a unique nontrivial solution of
(13).

Proof. First we show the existence of steady state. If c21
c12

= K2

K1
, then (θ1, θ2) =

(K1,K2) is a positive steady state. Suppose that c21
c12

< K2

K1
. We define

f(u1) := 1
c12

(
u2
1

K1
− u1 + c21u1),

F (u1) := f(u1)(1− f(u1)
K2

) + c21u1 − c12f(u1).

Then, F (K1) = c21
c12

(1− c21K1

c12K2
)K1 > 0 and F (u1)→ −∞ as and u1 →∞. Therefore,

there exists θ1 > K1 such that F (θ1) = 0. Let θ2 = f(θ1). Then, by the definition
of f , θ2 = f(θ1) turns into the first equation of (13). Furthermore, F (θ1) = 0
becomes the second equation of (13). Finally, suppose that c21

c12
> K2

K1
. Then, define

g(u2) := 1
c21

(
u2
2

K2
− u2 + c12u2),

G(u2) := g(u2)(1− g(u2)
K1

)− c21g(u2) + c12u2.

Then, G(K2) = c12
c21

(1 − c12K2

c21K1
)K2 > 0 and G(u2) → −∞ as u2 → ∞. Therefore,

there exists θ2 > K2 such that G(θ2) = 0. Let θ1 = g(θ2). Then, by the definition of
g, θ1 = g(θ2) turns into the first equation of (13). Furthermore, G(θ2) = 0 becomes
the second equation of (13).

Suppose that there are two nontrivial steady states (θ1, θ2) and (θ′1, θ
′
2) of the

system (10). From the steady state system, we can see that if θ1 = θ′1, then
automatically θ2 = θ′2. Therefore, it is an appropriate assumption that θ1 6= θ′1 and
θ2 6= θ′2 simultaneously. From the steady state system (13), we can get

c21(θ1 − θ′1) = (θ2 − θ′2)(c21
θ1
θ2

+
θ′2
K2

),

c12(θ2 − θ′2) = (θ1 − θ′1)(c12
θ2
θ1

+
θ′1
K1

).

After multiplying the two equations, we obtain

c21c12 = (c21
θ1

θ2
+

θ′2
K2

)(c12
θ2

θ1
+

θ′1
K1

),

which is a contradiction since the right side is bigger. Therefore, the nontrivial
steady state is unique.

Next, we consider the steady state solution for an asymmetric case. The property
depends on the ratio c21

c12
.

Lemma 2.2. Let K1 ≤ K2 and (θ1, θ2) be the nontrivial steady states of (10).

1. If c21
c12

> K2

K1
, then θ1 < K1 ≤ K2 < θ2, K2

K1
< θ2

θ1
< c21

c12
, and K2 < θ1 + θ2 <

K1 +K2.
2. If c21

c12
= K2

K1
, then θ1 = K1 and θ2 = K2.
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3. If c21
c12

< K2

K1
, then K1 < θ1, θ2 < K2, c21

c12
< θ2

θ1
< K2

K1
, and K1 < θ1 + θ2 <

K1 +K2. Furthermore, if 1 < c21
c12

, then θ1 < θ2.

Proof. (2) One can easily see that θ1 = K1 and θ2 = K2 if c21
c12

= K2

K1
.

(1) Suppose that K1 ≤ θ1. Then θ2 ≤ K2 and c21θ1−c12θ2 ≤ 0. This implies that
c21
c12
≤ θ2

θ1
≤ K2

K1
. However, this contradicts the assumption K2

K1
< c21

c12
. Therefore,

θ1 < K1 ≤ K2 < θ2 and hence K2

K1
< θ2

θ1
< c21

c12
. Next, use the relations in (14) and

observe

(K1 +K2)− (θ1 + θ2) = (K1 − θ1) + (K2 − θ2)

=
K1

θ1
(c21θ1 − c12θ2) +

K2

θ2
(−c21θ1 + c12θ2)

= (c12θ2 − c21θ1)(
K2

θ2
− K1

θ1
) > 0.

(3) Suppose that c21
c12

< K2

K1
. We first show the parts related to the steady state

solution (θ1, θ2) of (10). The steady states satisfy

0 = θ1(1− θ1
K1

)− c21θ1 + c12θ2,

0 = θ2(1− θ2
K2

) + c21θ1 − c12θ2.
(14)

After adding the two equations, we obtain

θ1(1− θ1

K1
) + θ2(1− θ2

K2
) = 0. (15)

Suppose that K2 ≤ θ2. Then, from the above equation, we have θ1 ≤ K1. Thus,
we have θ1 ≤ K1 < K2 ≤ θ2 and hence θ2

θ1
> K2

K1
. However, from the first equation

of (14), we obtain

0 ≤ θ1(1− θ1

K1
) = c21θ1 − c12θ2,

which gives θ2
θ1

< K2

K1
and is a contradiction. Therefore, K1 < θ1, θ2 < K2, and

θ2
θ1
< K2

K1
. Furthermore,

θ1(1− θ1

K1
) = c21θ1 − c12θ2 < 0, (16)

which gives c21
c12

< θ2
θ1

. Furthermore, we still have

(K1 +K2)− (θ1 + θ2) = (c12θ2 − c21θ1)(
K2

θ2
− K1

θ1
) > 0.

Therefore, we have θ1 + θ2 < K1 +K2. For the comparison between θ1 and θ2, we
need an extra condition 1 < c21

c12
. Then, (16) gives θ1 < θ2.

The properties in Lemma 2.2 are independent of the dispersal rate. They depend
only on the ratio Q := c21

c12
. It is clear that, if c12, c21 → 0 with a fixed ratio Q > 0,

then θi → Ki. Lemma 2.2(2) implies that θi → Ki if Q→ K2

K1
. Lemmas 2.2(1) and

(3) show that the sum of steady states are less than the sum of carrying capacities
(θ1 + θ2 < K1 + K2) for all Q 6= K2

K1
. If we forget the condition K1 ≤ K2, then

Lemmas 2.2(1) and (3) are equivalent.
Lastly, we consider steady state solution for a symmetric dispersal case.

Lemma 2.3. Let c12 = c21 = d > 0, K1 ≤ K2, and (θ1, θ2) be the nontrivial steady
states of (10). Then,
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1. θi → Ki as d→ 0.
2. θi → 2K1K2

K1+K2
as d→∞.

3. θ2 decreases as d→∞.
4. If K2

K1
≤ 3, θ1 increases as d → ∞. If K2

K1
> 3, θ1 increases for d < d0 :=

(1−R−
√
R2+R)−1

2 with R = K1

K2
and decrease for d > d0. The maximum is

K1+
√
K2

1+K1K2

2 .

5. θ1 + θ2 decreases to 4K1K2

K1+K2
as d → ∞ and hence 4K1K2

K1+K2
< θ1 + θ2 for all

d > 0.

Proof. It is clear that θi → Ki as d→ 0. We consider the steady states as functions
of dispersal rate d given implicitly by (14), i.e., θi = θi(d). Then, by taking singular
limits as d→∞, we have θ1 − θ2 → 0. Indeed, by solving (15), we have

θi →
2K1K2

K1 +K2
as d→∞.

By differentiating the first equation of (14) with respect to d, we obtain

θ′1(d)− 2θ1θ
′
1(d)

K1
− θ1 − dθ′1(d) + θ2 + dθ′2(d) = 0,

θ′2(d)− 2θ2θ
′
2(d)

K2
− θ2 − dθ′2(d) + θ1 + dθ′1(d) = 0.

Since θ1(0) = K1 and θ2(0) = K2, we have

θ′1(0) = K2 −K1 and θ′2(0) = K1 −K2.

Calculations lead to

θ′2(d) =
(θ2 − θ1)(1− 2θ1

K1
)

(1− 2θ1
K1
− d)(1− 2θ2

K1
− d)− d2

.

Since θ1 ≤ θ2 and K1 ≤ θ1, the numerator is zero or negative. The denominator is

(1− 2θ1

K1
− d)(1− 2θ2

K1
− d)− d2 = (d

θ2

θ1
+

θ1

K1
)(d

θ1

θ2
+

θ2

K1
)− d2 > 0.

Therefore, θ′2(d) ≤ 0, i.e., θ2(d) is a decreasing function of d.
After differentiating (15) with respect to d, we obtain

θ′1 =
θ′2(1− 2θ2

K2
)

2θ1
K1
− 1

.

Since K1 ≤ θ1 and θ′2 ≤ 0, 1 − θ2
K2

determines the sign of θ′1. If K2

K1
≤ 3, then

θ2 ≥ 2K1K2

K1+K2
≥ K2

2 . Therefore, θ′1 ≥ 0. That is, θ1 is monotone increasing as

d → ∞. On the other hand, if K2

K1
> 3, then θ2 → 2K1K2

K1+K2
< K2

2 . Since θ2 is
monotone in d, there is exactly one critical point and θ1 changes its monotonicity
once. In addition, we can see that θ′1 = 0 at θ2 = K2

2 . After some calculations, we

can see that θ1 has its maximum
K1+
√
K2

1+K1K2

2 when 2d = (1−R−
√
R2 +R)−1

for R = K1

K2
< 1

3 .
The derivative of θ1 + θ2 is given by

θ′1(d) + θ′2(d) =
2( θ1K1

− θ2
K2

)(θ2 − θ1)(1− 2θ1
K1

)

( 2θ1
K1
− 1){(1− 2θ1

K1
− d)(1− 2θ2

K2
− d)− d2}

.
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From Lemma 2.2, one can find that the denominator is positive and the numerator
is negative. This implies that θ1 + θ2 decreases as d → ∞ and hence the limit
4K1K2

K1+K2
is the infimum of θ1 + θ2.

In Figure 2, the graphs of steady states are given for dispersal rate d between 0
and 10. The carrying capacities of the two figures are chosen as examples of the
two cases with K2

K1
< 3 and K2

K1
> 3. Find the conclusions of Lemma 2.3 from the

examples. First, the steady states converge to the harmonic mean as d→∞ and to
Ki’s as d→ 0. We can see that θ2 is monotone decreasing in both cases. However,
θ1 is not monotone for the second case when K2

K1
> 3. It changes its monotonicity

at d = (1−R−
√
R2 +R)−1/2 = 0.6613.

0 5 10

d

0

1

2

3

4

5

S
te

a
d
y
 S

ta
te

0 5 10

d

0

1

2

3

4

5

S
te

a
d
y
 S

ta
te

Figure 2. Steady state solutions of (14). In the left figure,
(K1,K2) = (2, 5) and θi’s are monotone. In the right one,
(K1,K2) = (0.2, 5) and θ1 has maximum at d = 0.6613.

3. Uniqueness of steady states (Proof of Theorem 1.1). We first consider
semi-trivial steady state solutions with a single phenotypes. If v = 0, the steady
state for the phenotype u satisfies

u1(1− u1

K1
) + d(u2 − u1) = 0,

u2(1− u2

K2
) + d(u1 − u2) = 0,

(17)

which is a special case of (13) with c12 = c21 = d. Hence the steady state exists
uniquely by Lemma 2.1. The other semi-trivial steady state for the phenotype v
satisfies 

v1(1− v1

K1
) + γ(

v2

K2
)v2 − γ(

v1

K1
)v1 = 0,

v2(1− v2

K2
) + γ(

v1

K1
)v1 − γ(

v2

K2
)v2 = 0,

(18)

which contains asymmetric dispersal. However, since γ( v1K1
) and γ( v2K2

) are not
constant, the uniqueness is not covered by Lemma 2.1. Indeed, we need an extra
assumption to obtain the uniqueness. We first show the uniqueness and the existence
of the steady state which are stated in Theorem 1.1.
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(a) K2 < 3K1 (b) K2 > 3K1

Figure 3. Diagrams for y = −x(1 − x
K1

) and y = x(1 − x
K2

).

Steady states are intersection points with y = R. See (19).

Proof of Theorem 1.1. Add the two equations of (18) and obtain

− v1(1− v1

K1
) = v2(1− v2

K2
) =: R, (19)

where v1, v2 > 0. The graphs of the algebraic curves y = −x(1 − x
K1

) and y =

x(1− x
K2

) are given in Figure 3 for two cases of K2 < 3K1 and K2 > 3K1.
Suppose that R ≤ 0. Then, we have v1 ≤ K1 and v2 ≥ K2. Since γ is an

increasing function, we have

v2(1− v2

K2
) + γ(

v1

K1
)v1 − γ(

v2

K2
)v2 < v2(1− v2

K2
) + γ(

v1

K1
) (v1 − v2) < 0,

which contradicts (18). Therefore, R > 0 and v1 > K1 and v2 < K2 by (19). Find
that

v2(1− v2

K2
) + γ(

v1

K1
)v1 − γ(

v2

K2
)v2 > v2(1− v2

K2
) + γ(

v1

K1
)(v1 − v2).

Therefore, if v1 ≥ v2, it contradicts (18). Therefore, v1 < v2 and R should be
placed 0 < R < R0 (see Figures 3(a) and (b) ).

Now we proceed with the case with R > 0 and v1 < v2. Then, v2 exists on
an interval [ 2K1K2

K1+K2
,K2] where 2K1K2

K1+K2
is the harmonic mean of K1 and K2. And

v1 ≥ K1 is uniquely determined by v2. Hence, we may consider v1 as a function of
v2. From (18), we define a continuous function h(v2) as follows:

h(v2) := v2(1− v2

K2
) + γ(

v1

K1
)v1 − γ(

v2

K2
)v2.

By invoking (19), we find that v1( 2K1K2

K1+K2
) = 2K1K2

K1+K2
and v1(K2) = K1. Thus, we

compute

h(
2K1K2

K1 +K2
) =

2K1K2

K1 +K2

K2 −K1

K1 +K2
+

(
γ(

2K2

K1 +K2
)− γ(

2K1

K1 +K2
)

)
2K1K2

K1 +K2
> 0,

h(K2) = γ(1)K1 − γ(1)K2 < 0.

By the continuity of h and intermediate value theorem, there exists at least one
v2 ∈ ( 2K1K2

K1+K2
,K2) which satisfies h(v2) = 0 and thereby we can find a corresponding

unique v1.
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The proof of the uniqueness requires one of two extra assumptions such that
K2

K1
≤ 3 or γ(0.5) < 0.5. First, consider the case with K2

K1
≤ 3. Then, we observe

from the relation (19) that

∂v1

∂v2
=

1− 2v2
K2

2v1
K1
− 1

< 0 for v2 ∈ [
2K1K2

K1 +K2
,K2],

which results in

∂h

∂v2
= 1− 2v2

K2
+ γ′(

v1

K1
)
v1

K1

∂v1

∂v2
+ γ(

v1

K1
)
∂v1

∂v2
− γ′( v2

K2
)
v2

K2
− γ(

v1

K1
) < 0,

where we used the monotonicity of γ. Therefore, h is strictly monotone and there
exists unique zero point v2 ∈ ( 2K1K2

K1+K2
,K2) satisfying h(v2) = 0.

If K2

K1
> 3 and γ(0.5) < 0.5, then we find that

v1(
K2

2
) =

K1 +
√
K2

1 +K1K2

2
,

h(
K2

2
) =

K2

4
+ γ(

1 +
√

1 +K2/K1

2
)
K1 +

√
K2

1 +K1K2

2
− γ(

1

2
)
K2

2
> 0.

Moreover, we have for v2 ∈ [K2

2 ,K2]

∂v1

∂v2
< 0,

∂h

∂v2
< 0.

Therefore, there exists unique v2 ∈ (K2

2 ,K2) satisfying h(v2) = 0. (4) is a direct
consequence. This completes the proof.

Remark 1 (Example with multiple steady states). In Theorem 1.1, the uniqueness
of the steady state of (2) has been obtained under an extra assumption K2 ≤ 3K1

or γ(0.5) ≤ 0.5. Indeed, the monotonicity of γ alone is not enough to provide
the uniqueness. We can construct a counter example. First, we take K1 = 2 and
K2 = 50. Now we are going to find an increasing function γ that takes

(θ1, θ2) = (6, 20) and (θ̃1, θ̃2) = (6.00783, 20.4)

as steady states. The steady state of (2) satisfies (15) and the above steady states
are chosen to satisfy it. The corresponding starvation measures are

(s1, s2) = (3, 0.4), (s̃1, s̃2) = (3.003915, 0.408).

These starvation measures are ordered by

s2(= 0.4) < s̃2(= 0.408) < s1(= 3) < s̃1(= 3.003915).

If we assign γ with

γ(s2) = 1.2, γ(s̃2) = 1.3098, γ(s1) = 2, γ(s̃1) = 2.4, (20)

then both (θ1, θ2) and (θ̃1, θ̃2) are steady states. If we construct an increasing
function γ with the previous values fixed, it completes a counter example with
multiple steady states.

Note a few things. First, K2

K1
= 25 and γ(0.5) ≥ γ(0.4) = 1.2 in the example.

Hence, both conditions in the theorem fail. Second, the graph of γ is very steep
at s1 and s2 (see Figure 4). Third, the two steady states are close to each other.
These imply that, even if the monotonicity of γ alone does not give the uniqueness,
one can only make the second steady state as a small perturbation of the first one
by choosing γ with two steeply increasing parts.
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s

γ(s)

s2 s̃2 s1 s̃1

Figure 4. The graph of motility function γ(s) without uniqueness.
We have chosen a piecewise linear motility γ which takes the values
in (20). Since si and s̃i are close to each other, γ increases steeply
for s ∈ (si, s̃i).

4. Linear stability analysis (Proof of Theorem 1.2). In this section we prove
the main result of the paper, Theorem 1.2. The main part of the proof is the
linear stability analysis of the two semi-trivial steady states E1 = (u1, u2, 0, 0) and
E2 = (0, 0, v1, v2). We observe that the stability of E1 is reduced by d > 0 and
the stability of E2 is induced by d > 0. We have rephrased Theorem 1.2 in the
following theorem, which is equivalent to Theorem 1.2. The proof follows the logic
of Theorem 4.1.

Theorem 4.1. Let K1 < K2 and γ be an increasing smooth function. We assume
K2

K1
≤ 3 or γ(0.5) ≤ 0.5. (i) There exists a d1 > 0 such that E1 = (u1, u2, 0, 0)

is linearly stable for d < d1 and is unstable for d > d1. (ii) There exists a d2 so
that E2 = (0, 0, v1, v2) is linearly stable for d > d2 and is unstable for d < d2. (iii)
There exists d3 > 0 such that (5) has a positive steady state. (iv) Furthermore,
d1 = d2 = d3 < γ( v̄2K2

).

Proof. (i) The Jacobian matrix for the semitrivial steady state E1 = (u1, u2, 0, 0) is

J1 =


1− 2u1

K1
− d d − u1

K1
0

d 1− 2u2

K2
− d 0 − u2

K2

0 0 1− u1

K1
− γ1 γ2

0 0 γ1 1− u2

K2
− γ2

 =:

[
A B
C D

]
,

where γi = γ( ui

Ki
), i = 1, 2 and A,B,C,D are 2 × 2 matrices. Since C = 0, the

eigenvalues of A and D determine the stability of E1. Since (u1, u2) satisfies (14)
with c12 = c21 = d, we have from Lemma 2.3 that

K1 < u1 < u2 < K2, u1 + u2 < K1 +K2.

Then, we see that for any d > 0

tr(A) = 1− 2u1

K1
− d+ 1− 2u2

K2
− d < 0,

det(A) =

(
1− 2u1

K1
− d
)(

1− 2u2

K2
− d
)
− d2

=

(
−du2

u1
− u1

K1

)(
−du1

u2
− u2

K2

)
− d2 > 0.
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Therefore, the eigenvalues of the symmetric matrix A are negative.
Now consider the asymmetric matrix D. Its trace is

tr(D) = 1− u1

K1
− γ1 + 1− u2

K2
− γ2

=

(
1− u1

K1
− d
)

+

(
1− u2

K2
− d
)

+ 2d− γ1 − γ2

= −d
(
u2

u1
+
u1

u2

)
+ 2d− γ1 − γ2 < −γ1 − γ2 < 0.

Its determinant is

det(D) =

(
1− u1

K1
− γ1

)(
1− u2

K2
− γ2

)
− γ1γ2

=

(
−du2

u1
+ d− γ1

)(
−du1

u2
+ d− γ2

)
− γ1γ2

= d

(
1− u1

u2

)(
d(1− u2

u1
)− γ1 + γ2

u2

u1

)
= d

(
1− u1

u2

)(
1− u1

K1
− γ1 + γ2

u2

u1

)
.

Since u1 < u2, the sign of det(D) is same as the sign of

p(d) := 1− u1

K1
− γ1 + γ2

u2

u1
. (21)

If K2

K1
≤ 3, Lemma 2.3 implies that u1 increases and u2 decreases as d → ∞.

Therefore, p(d) decreases as d→∞. Then, by the intermediate value theorem and
the asymptotic behaviors of p(d) for d large and small, i.e.,

lim
d→0

p(d) = −γ(1) + γ(1)
K2

K1
> 0,

lim
d→∞

p(d) = 1− 2K2

K1 +K2
− γ(

2K2

K1 +K2
) + γ(

2K1

K1 +K2
) < 0,

there exists a unique constant d1 > 0 such that p(d) > 0 for d < d1 and p(d) < 0
for d > d1. Therefore, E1 is linearly stable for d < d1 and unstable for d > d1.

If K2

K1
> 3 and γ(0.5) < 0.5, by Lemma 2.3, there exists d0 = 1/2(1 − R −√

R2 +R) > 0 for R = K1

K2
< 1

3 such that u1 increases for d < d0 and decreases for

d > d0. Thus, p(d) decreases for d ∈ (0, d0). Since u2(d0) = K2

2 , we observe

p(d) = d(1− u2

u1
)− γ1 + γ2

u2

u1

=
u2

u1

(
d(
u1

u2
− 1)− γ1

u1

u2
+ γ2

)
=

u2

u1

(
u2

K2
− 1− γ1

u1

u2
+ γ2

)
,

which implies

p(d) ≤ u2

u1

(
1

2
− 1− γ1

u1

u2
+ γ(0.5)

)
< 0 for d ∈ [d0,∞).

Therefore, we also conclude that there exists

d1 ∈ (0, d0) (22)
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such that E1 is linearly stable for d < d1 and unstable for d > d1.
(ii) The Jacobian matrix for the semitrivial steady state E2 = (0, 0, v1, v2) is

J2 =


1− v1

K1
− d d 0 0

d 1− v2
K2

− d 0 0

−γ̃1′ v1
K1

− v1
K1

γ̃2
′ v2
K2

1− 2v1
K1

− γ̃1 − γ̃1
′ v1
K1

γ̃2 + γ̃2
′ v2
K2

γ̃1
′ v1
K1

−γ̃2′ v2
K2

− v2
K2

γ̃1 + γ̃1
′ v1
K1

1− 2v2
K2

− γ̃2 − γ̃2
′ v2
K2


=:

[
A B
C D

]
,

where γ̃i = γi(
vi
Ki

), γ̃i
′ = γ′( viKi

), i = 1, 2 and A,B,C,D are 2 × 2 matrices. Since

B = 0, the eigenvalues of A and D determine the stability of E2. From (18), the
trace of D is given by

tr(D) = 1− 2v1

K1
− γ̃1 − γ̃1

′ v1

K1
+ 1− 2v2

K2
− γ̃2 − γ̃2

′ v2

K2

= −γ̃2
v2

v1
− v1

K1
− γ̃1

′ v1

K1
− γ̃1

v1

v2
− v2

K2
− γ̃2

′ v2

K2
< 0.

Under the assumption, K1

K2
< 3 or γ(0.5) < 0.5, Theorem 1.1 gives

1− 2v1

K1
< 0 and 1− 2v2

K2
< 0,

which leads to

det(D)

=

(
1− 2v1

K1
− γ̃1 − γ̃1

′ v1

K1

)(
1− 2v2

K2
− γ̃2 − γ̃2

′ v2

K2

)
−
(
γ̃1 + γ̃1

′ v1

K1

)(
γ̃2 + γ̃2

′ v2

K2

)
=

(
1− 2v1

K1

)(
1− 2v2

K2

)
−
(

1− 2v1

K1

)(
γ̃2 + γ̃2

′ v2

K2

)
−
(

1− 2v2

K2

)(
γ̃1 + γ̃1

′ v1

K1

)
> 0.

Therefore, the real parts of the eigenvalues of D are negative.
The trace of the symmetric matrix A is given by

tr(A) = 1− v1

K1
− d+ 1− v2

K2
− d.

Note that

2− v1

K1
− v2

K2
= γ̃1

(
1− v2

v1

)
+ γ̃2

(
1− v1

v2

)
< γ̃1

(
2− v2

v1
− v1

v2

)
< 0.

Therefore, the trace of A is negative and hence A has two negative eigenvalues if
and only if its determinant is negative. The determinant of A is

det(A) =

(
1− v1

K1
− d
)(

1− v2

K2
− d
)
− d2

=

(
1− v1

K1

)(
1− v2

K2

)
− d

(
2− v1

K1
− v2

K2

)
, (23)



16 YONG-JUNG KIM, HYOWON SEO AND CHANGWOOK YOON

where the relation (18) is used. By Lemma 2.2(3), we have(
1− v1

K1

)(
1− v2

K2

)
< 0.

In conclusion, det(A) is a linear function of d > 0 with a positive slope and a
negative y-intercept. Therefore, there exists a unique constant d2 > 0 such that E2

is linearly stable for d > d2 and unstable for d < d2.
(iii) A positive state E3 = (u∗1, u

∗
2, v
∗
1 , v
∗
2) is a steady state solution of system (5)

if and only if it satisfies

K1 − (u∗1 + v∗1) +K1d(
1

a
− 1) = 0,

K2 − (u∗2 + v∗2) +K2d(a− 1) = 0,

K1 − (u∗1 + v∗1) +K1

(
γ(
u∗2 + v∗2
K2

)
1

b
− γ(

u∗1 + v∗1
K1

)

)
= 0,

K2 − (u∗2 + v∗2) +K2

(
γ(
u∗1 + v∗1
K1

)b− γ(
u∗2 + v∗2
K2

)

)
= 0,

(24)

where a :=
u∗1
u∗2

> 0 and b :=
v∗1
v∗2
> 0. Adding the first and third equations, and the

second and fourth equations of (24), we obtain

d(
1

a
− 1) = γ(

u∗2 + v∗2
K2

)
1

b
− γ(

u∗1 + v∗1
K1

),

d(a− 1) = γ(
u∗1 + v∗1
K1

)b− γ(
u∗2 + v∗2
K2

).

Add the two after a multiplication of b to the first equation and obtain

d(a− b)(1− 1

a
) = 0.

First, suppose that a = 1. Then, the first two equations in (24) imply

u∗1 + v∗1 = K1 and u∗2 + v∗2 = K2,

and hence

γ(
u∗1 + v∗1
K1

) = γ(
u∗2 + v∗2
K2

).

The last two equations in (24) imply that b = 1 and hence

K1 = u∗1 + v∗1 = u∗2 + v∗2 = K2,

which contradicts the assumption K1 < K2. Therefore, a = b 6= 1.
Plug u∗1 = au∗2 and v∗1 = av∗2 into the second equation of (24), combine it with

the first equation, and obtain

f(a) := dK2a
3 + (1− d)K2a

2 + (d− 1)K1a− dK1 = 0. (25)

We claim that there exists a unique zero a0 ∈ (0, 1) of f(a) for each d > 0. Since
f(0) = −dK1 < 0 and f(1) = K2 − K1 > 0, there exists a0 ∈ (0, 1) such that
f(a0) = 0 for each d > 0.

Now we show the uniqueness for a given d > 0. Observe that

f ′(a) = 3dK2a
2 + 2(1− d)K2a+ (d− 1)K1
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has the axis of symmetry a = d−1
3d . Thus, if d ∈ (0, 1], then f ′ has two distinct zeros

with different signs. Otherwise, we compute the discriminant of cubic polynomial
f such that

D3 = (d− 1)4K2
1K

2
2 − 4d(d− 1)3K3

1K2 − 4d(d− 1)3K1K
3
2

−27d4K2
1K

2
2 + 18d2(d− 1)2K2

1K
2
2 < 0 for d > 1,

which means that the equation (25) has one real zero and two complex conjugate
zeros. Therefore, a0(d) uniquely exists for d > 0 and is less than 1.

Now, from (24), we introduce two functions g(d) and h(d) as the following:

g(d) := K2 (1 + d(a0(d)− 1)) ,

h(d) := K2

(
1 + γ(

a0(d)g(d)

K1
)a0(d)− γ(

g(d)

K2
)

)
.

Then, the existence of d3 > 0 satisfying g(d3) = h(d3) guarantees the existence of
coexistence steady states. The cubic equation (25) gives the asymptotic behavior
of a0 where d approaches 0 or ∞ such that

lim
d→0

a0(d) =
K1

K2
, lim
d→∞

a0(d) = 1.

Moreover, the relation d(a0(d)− 1) =
−K2a

2
0+K1a0

K2a20+K1
implies

lim
d→0

d(a0(d)− 1) = 0, lim
d→∞

d(a0(d)− 1) =
K1 −K2

K1 +K2
.

Sequentially, we see that

lim
d→0

g(d) = K2, lim
d→∞

g(d) =
2K1K2

K1 +K2
,

lim
d→0

h(d) = K2

(
1 + γ(1)(

K1

K2
− 1)

)
< K2,

lim
d→∞

h(d) = K2

(
1 + γ(

2K2

K1 +K2
)− γ(

2K1

K1 +K2
)

)
> K2 >

2K1K2

K1 +K2
.

Therefore, there exists d3 ∈ (0,∞) such that g(d3) = h(d3).
We can construct a positive solution by taking any u∗2, v

∗
2 > 0 such that u∗2 +v∗2 =

g(d3). Then, take u∗1 = a0u
∗
2 and v∗1 = a0v

∗
2 . Then, one can easily find that

(u∗1, u
∗
2, v
∗
1 , v
∗
2) is a positive steady state. The positive steady state is not unique if

it exists.
(iv) Suppose that (u∗1, u

∗
2, v
∗
1 , v
∗
2) is a coexistence steady state with d = d3. Then

u∗1 + v∗1 , u∗2 + v∗2 and a0 =
u∗1
u∗2

=
v∗1
v∗2
∈ (0, 1) are uniquely determined by a given d3.

Now, we fix the ratio a0 and let v∗1 and v∗2 go to 0, then (24) converges to

u∗1(1− u∗1
K1

) + d3(u∗2 − u∗1) = 0,

u∗2(1− u∗2
K2

) + d3(u∗1 − u∗2) = 0,

u∗1(1− u∗1
K1

) +

(
γ(
u∗2
K2

)u∗2 − γ(
u∗1
K1

)u∗1

)
= 0,

u∗2(1− u∗2
K2

) +

(
γ(
u∗1
K1

)u∗1 − γ(
u∗2
K2

)u∗2

)
= 0.

(26)
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The first and second equations of (26) coincide with (17). Furthermore, if the second
and fourth equations of (26) are added, we obtain

d3(
u∗1
u∗2
− 1)− γ(

u∗1
K1

)
u∗1
u∗2

+ γ(
u∗2
K2

) = 0. (27)

On the other hand, we rewrite (21) as

p(d) = 1− u1

K1
− γ1 + γ2

u2

u1
= d

(
1− u2

u1

)
− γ1 + γ2

u2

u1

=
u2

u1

(
d(
u1

u2
− 1)− γ1

u1

u2
+ γ2

)
.

Therefore, (27) implies that p(d3) = 0 and we conclude that d3 = d1.
Similarly, we may take u∗1 and u∗2 go to 0 with fixed rate a0. Then, (24) turns

into

1− v∗1
K1

= d3

(
1− v∗2

v∗1

)
,

1− v∗2
K2

= d3

(
1− v∗1

v∗2

)
,

v∗1

(
1− v∗1

K1

)
+

(
γ(
v∗2
K2

)v∗2 − γ(
v∗1
K1

)v∗1

)
= 0,

v∗2

(
1− v∗2

K2

)
+

(
γ(
v∗1
K1

)v∗1 − γ(
v∗2
K2

)v∗2

)
= 0.

(28)

The third and fourth equations of (28) are same as (18). Next, the first and the
second equations of (28) yield

d3 =
(1− v∗1

K1
)(1− v∗2

K2
)

2− v∗1
K1
− v∗2

K2

.

Therefore, (23) leads to

d3 = d2.

Collecting the above results, we finally conclude that d3 = d1 = d2.
From (23), it suffices to show that

det(E)|
d=γ(

v2
K2

)
> 0. (29)

A direct calculation from (18) implies that

0 =

(
1− v1

K1

)(
1− v2

K2

)
− γ(

v1

K1
)

(
1− v2

K2

)
− γ(

v2

K2
)

(
1− v1

K1

)

<

(
1− v1

K1

)(
1− v2

K2

)
− γ(

v2

K2
)

(
2− v1

K1
− v2

K2

)
,

which is equivalent to (29). This completes the proof of (iv).

The three critical dispersal rates are identical and it was set d∗ in Theorem 1.2 by
d∗ := d1 = d2 = d3. If d 6= d∗, then there is only one of the two semi-trivial steady
state is stable and the other is unstable. The unstable semi-trivial steady state is a
saddle point. The coexistence appears only for the critical dispersal case d = d∗. In
this case the positive steady state is not unique, but there is one parameter family.



EVOLUTION OF CONDITIONAL ASYMMETRIC DISPERSAL 19

0 1000 2000 3000
0

1

2

3 u2

u1

v2

v1

(a) d = 0.005.

0 1000 2000 3000
0

1

2

3 v2

u2

u1

v1

(b) d = 0.01(∼= d∗).

0 1000 2000 3000
0

1

2

3 v2

v1

u2

u1

(c) d = 0.02.

Figure 5. Asymptotic behavior of numerical computation of
(31)-(32) with ε = 0.02. The legends are ordered by the size of
asymptotic limits.

5. Numerical simulations. In this section, we test the behavior of the solution
numerically and compare the simulation to the theoretical results. The motility
function γ(s) has been chosen as an approximation of a step function,

γε(s) =


` for 0 ≤ s < 1− ε,
h for s ≥ 1 + ε,

h− `
2ε

(s− (1 + ε)) + h for 1− ε ≤ s < 1 + ε.

(30)

We solve
u̇1 = u1 (1− s1) + d(u2 − u1),

u̇2 = u2 (1− s2) + d(u1 − u2),

v̇1 = v1 (1− s1) + γε(s2)v2 − γε(s1)v1,

v̇2 = v2 (1− s2) + γε(s1)v1 − γε(s2)v2,

(31)

where si is the starvation measure at i-th patch given by

si =
ui + vi
Ki

, i = 1, 2.

For numerical simulations, we fix the carrying capacities, initial values, and the
parameters of the motility function by

u1(0) = u2(0) = v1(0) = v2(0) = 1, K1 = 1, K2 = 3, h = 0.1, and ` = 0.01. (32)

In Figure 5, numerical solutions are given with ε = 0.02. We can observe in
Figure 5(b) that, if d = 0.01, the two species coexist. This is the dispersal rate
that corresponds to the critical one d∗ in Theorem 1.2. The theorem says that,
if d < d∗, E1 = (u1, u2, 0, 0) is stable and E2 = (0, 0, v1, v2) is unstable. In the
numerical simulation, we can see that the solution converges to the stable steady
state in Figure 5(a). If d > d∗, the stability is reversed and the solution converges
to E2 = (0, 0, v1, v2) in Figure 5(c).

Remember that the motility function γ is assumed to be smooth. In the stability
analysis, the existence of its derivative has been used. This assumption has more
than a technical reason. For example, we have tested the dependency on ε in Figure
6. We can see that there is a critical size of ε = ε0 between ε = 0.1 and ε = 0.01
that flips the stability of semi-trivial steady states (see Figures 6(a) and 6(b) ). In
conclusion, if ε is smaller than the critical size, the species v is selected.

However, when ε = 0, the dynamics is changed one more time and both species
coexist as observed in Figure 6(c). The coexistence of this case holds for all d > 0.
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Figure 6. Asymptotic behavior (h = 0.1, ` = 0.01, d = 0.02).
The legends are ordered by the size of asymptotic limits.

Notice that the coexistence of Theorem 1.2 is only for the specific dispersal rate
d = d∗ (see Figure 5(b) ) and the mechanisms of coexistence for the two cases are
different. The theory with discontinuous motility function requires more than the
analysis of this paper.

6. Discussion. Migration is the key strategy for survival of a biological species
when its habitat deteriorates. The effect of symmetric dispersal, i.e., the case with
cij = cji, has been studied well. If K1 and K2 are different and the dispersal is
symmetric, the smallest dispersal rate is selected (see [12, 22]). In other words,
symmetric dispersal reduces survival chance. However, the essence of biological
dispersal is in its adaptability to environmental changes and hence asymmetric
dispersal is a natural choice. We have chosen an asymmetric dispersal as in (2)
which is enhanced by starvation. From the stability analysis of a linearized problem
of the competition system (5), we obtained a critical dispersal rate d∗ < γ( v̄2k2 ) in
Theorem 1.2 such that the asymmetric dispersal can be selected if d∗ < d. If d < d∗,
the smaller dispersal is still selected since the environment is not changed at all.

We did not attempt to estimate the critical diffusivity d∗. It depends on the
motility function γ and the spatial heterogeneity K2

K1
. An estimate is from (22) where

d0 is the one in Lemma (2.3)(4) with R = K1

K2
. We can see that d0 decreases to 0.5

as the spatial heterogeneity increases, i.e., as R = K1

K2
→ 0. This provides an upper

bound of d∗ for all monotone increasing motility function γ such that γ(0.5) ≤ 0.5.
In the competition system (5), the two species have the same population dynamics.
Since the two species are identical except their dispersal strategies, there is no
parameter regime of coexistence. The two critical dispersal rates in Theorem 4.1
are identical, i.e., d1 = d2. If the two species have different population dynamics
and different dispersal strategies, the two critical dispersal rates can be different
and coexistence may obtained (see [19]). In this paper, the carrying capacities, K1

and K2, are fixed. However, the strength of the asymmetric dispersal enhanced by
starvation will appear when the environment fluctuates temporally. In the case, the
critical diffusivity d∗ may decrease to zero.

Appendix A. Corresponding PDE. Consider a reaction-diffusion equation,

vt = v
(

1− v

m

)
+ ∆(γ(s)v), x ∈ Ω, (33)

where v is the population density, m = m(x) is the spatially heterogeneous carrying
capacity, and s = v

m is the starvation measure. In this PDE model, the effects of
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domain size and habitat quality are distinguishable. If the domain Ω has boundary,
the zero-flux boundary condition fits the patch problem since the population stays
in the system. We can see that (33) is a PDE version of (2). For example, we may
compare a finite difference scheme for (33) in one space dimension and (2). Let
xi = i∆x be the space mesh. Then, a centered space finite difference scheme is
written by

v̇i = vi

(
1− vi

mi

)
+

1

∆x2

(
γ(si+1)vi+1 + γ(si−1)vni−1 − 2γ(si)vi

)
,

where we take mi = m(xi), vi(t) ∼= v(xi, t), and si ∼= vi
mi

. In other words, if grid

point xi is considered as the i-th patch, the PDE model (33) corresponds to a
special patch model that individuals migrate to one of two adjacent patches and

the migration matrix is given by cij =
γ(sj)
∆x2 for i = j ± 1 and cij = 0 otherwise.

The uniqueness of steady state solution of the PDE model (33) is not known. It
is clear that the monotonicity of γ alone is not enough to obtain the uniqueness due
to the counter example for the patch problem (see Remark 1). One may consider
the uniqueness under similar assumptions such as maxx∈Ωm(x) ≤ 3 minx∈Ωm(x)
or γ(0.5) ≤ 0.5.

Appendix B. Patch problem with uniqueness. Consider a two-patch problem
with a modified population dynamics,

u̇1 = u1(K1 − u1)− γ(
u1

K1
)u1 + γ(

u2

K2
)u2,

u̇2 = u2(K2 − u2) + γ(
u1

K1
)u1 − γ(

u2

K2
)u2.

(34)

Notice that Ki is now the growth rate and the carrying capacity at the i-th patch at
the same time. For example, the population dynamics can be written by Kiui(1−
ui

Ki
). The model is partly similar as and different from (2). An important differ-

ence is the uniqueness of a steady state solution, which can be obtained by the
monotonicity of γ only.

Theorem B.1. Let K1 ≤ K2, γ be monotone increasing, and (θ1, θ2) be a steady
state solution of (34). (i) K1 ≤ θ1 ≤ θ2 ≤ K2 and K1 + K2 ≤ θ1 + θ2. (ii) The
steady state solution of (34) is unique.

Proof. The first part is similarly proved as Lemma 2.2 and is omitted. We prove
the second part. Let (θ1, θ2) be a steady state. Then, it satisfies

0 = θ1(K1 − θ1)− γ( θ1K1
)θ1 + γ( θ2K2

)θ2,

0 = θ2(K2 − θ2) + γ( θ1K1
)θ1 − γ( θ2K2

)θ2.

Add the two equations and obtain

(θ1 −
K1

2
)2 + (θ2 −

K2

2
)2 =

K2
1 +K2

2

4
.

Since θ1 and θ2 are related to by part (i), we may consider θ2 as a decreasing

function of θ1. Suppose there are two distinct steady state (θ1, θ2) and (θ̃1, θ̃2) with

θ1 < θ̃1. Due to the monotonicity, θ̃2 < θ2. Then we have

0 < θ2 − θ̃2 = (K2 − θ̃2)− (K2 − θ2) = γ(
θ̃2

K2
)− γ(

θ̃1

K1
)
θ̃1

θ̃2

− γ(
θ2

K2
) + γ(

θ1

K1
)
θ1

θ2
.

However, the last term is negative because of θ1 < θ̃1, θ̃2 < θ2 and monotonicity of
γ. Therefore, we can conclude that the steady state of (34) is unique.
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A PDE version of (34) can be written by

vt = v(m(x)− v) + ∆(γ(s)v), s =
v

m
.

From the uniqueness of steady state of the patch problem, one might expect that
the steady state solution θ(x) of the PDE model is unique under a single assumption
that γ is monotone increasing. However, the uniqueness of a steady state solution
has been proved in [18] under an extra assumption maxm(x) ≤ 2 minm(x) or

~n · ∇m ≤ 0 on ∂Ω and ∆m+ m2

2γ(2) ≥ 0 in Ω. It is not clear if such extra conditions

can be removed or not.
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[8] R. Cressman, V. Křivan and J. Garay, Ideal free distributions, evolutionary games, and
population dynamics in multiple-species environments, The American Naturalist , 164 (2004),
473–489.

[9] D. L. DeAngelis, W.-M. Ni and B. Zhang, Effects of diffusion on total biomass in heterogeneous

continuous and discrete-patch systems, Theoretical Ecology, 9 (2016), 443–453.
[10] D. L. DeAngelis, C. C. Travis and W. M. Post, Persistence and stability of seeddispersed

species in a patchy environment, J. Theoret. Biol., 16 (1979), 107–125.
[11] U. Dieckman, B. O’Hara and W. Weisser, The evolutionary ecology of dispersal, Trends Ecol.

Evol., 14 (1999), 88–90.

[12] J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal
rates: A reaction diffusion model, J. Math. Biol., 37 (1998), 61–83.

[13] A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theoret. Popul. Biol.,

24 (1983), 244–251.
[14] P. H. Joachim and H. Thomas, Evolution of density-and patch-size-dependent dispersal rates,

Proc. R. Soc. Lond. B , 269 (2002).

[15] M. L. Johnson and M. S. Gaines, Evolution of dispersal: Theoretical models and empirical
tests using birds and mammels, Ann. Rev. Ecol. Syst., 21 (1990), 449–480.

[16] Y.-J. Kim and O. Kwon, Evolution of dispersal with starvation measure and coexistence,

Bull. Math. Biol., 78 (2016), 254–279.
[17] Y.-J. Kim, O. Kwon and F. Li, Evolution of dispersal toward fitness, Bull. Math. Biol., 75

(2013), 2474–2498.

http://dx.doi.org/10.1002/ecs2.1599
http://dx.doi.org/10.1002/ecs2.1599
http://dx.doi.org/10.1016/j.tpb.2017.12.006
http://www.ams.org/mathscinet-getitem?mr=MR2350951&return=pdf
http://dx.doi.org/10.1080/17513750701450227
http://dx.doi.org/10.1080/17513750701450227
http://www.ams.org/mathscinet-getitem?mr=MR2191264&return=pdf
http://dx.doi.org/10.1002/0470871296
http://www.ams.org/mathscinet-getitem?mr=MR3050058&return=pdf
http://dx.doi.org/10.1007/s11538-013-9838-1
http://dx.doi.org/10.1007/s11538-013-9838-1
http://www.ams.org/mathscinet-getitem?mr=MR3954376&return=pdf
http://dx.doi.org/10.1007/s00285-019-01336-5
http://dx.doi.org/10.1007/s00285-019-01336-5
http://www.ams.org/mathscinet-getitem?mr=MR1094108&return=pdf
http://dx.doi.org/10.1016/0040-5809(91)90041-D
http://dx.doi.org/10.1016/0040-5809(91)90041-D
http://dx.doi.org/10.1086/423827
http://dx.doi.org/10.1086/423827
http://dx.doi.org/10.1007/s12080-016-0302-3
http://dx.doi.org/10.1007/s12080-016-0302-3
http://dx.doi.org/10.1016/0040-5809(79)90008-x
http://dx.doi.org/10.1016/0040-5809(79)90008-x
http://dx.doi.org/10.1016/S0169-5347(98)01571-7
http://www.ams.org/mathscinet-getitem?mr=MR1636644&return=pdf
http://dx.doi.org/10.1007/s002850050120
http://dx.doi.org/10.1007/s002850050120
http://dx.doi.org/10.1016/0040-5809(83)90027-8
http://dx.doi.org/10.1098/rspb.2001.1936
http://dx.doi.org/10.1146/annurev.es.21.110190.002313
http://dx.doi.org/10.1146/annurev.es.21.110190.002313
http://www.ams.org/mathscinet-getitem?mr=MR3464290&return=pdf
http://dx.doi.org/10.1007/s11538-016-0142-8
http://www.ams.org/mathscinet-getitem?mr=MR3128024&return=pdf
http://dx.doi.org/10.1007/s11538-013-9904-8


EVOLUTION OF CONDITIONAL ASYMMETRIC DISPERSAL 23

[18] Y.-J. Kim, O. Kwon and F. Li, Global asymptotic stability and the ideal free distribution in
a starvation driven diffusion, J. Math. Biol., 68 (2014), 1341–1370.

[19] Y.-J. Kim, S. Seo and C. Yoon, Asymmetric dispersal and ecological coexistence in two-patch

system, preprint.
[20] Y.-J. Kim, S. Seo and C. Yoon, Two-patch system revisited: New perspectives, Bull. Math.

Biol., submitted.
[21] Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species,

J. Differential Equations, 223 (2006), 400–426.

[22] M. A. McPeek and R. D. Holt, The evolution of dispersal in spatially and temporally varying
environments, The American Naturalist , 140 (1992), 1000–1009.

[23] T. Nagylaki, Introduction to Theoretical Population Genetics, Biomathematics, 21. Springer-

Verlag, Berlin, 1992.
[24] W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied

Mathematics, 82. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,

2011.
[25] A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, 2nd

edition, Interdisciplinary Applied Mathematics, 14. Springer-Verlag, New York, 2001.

[26] R. Ramos-Jiliberto and P. M. de Espans, The perfect mixing paradox and the logistic equation:
Verhulst vs. Lotka: Comment, Ecosphere, 8 (2017), e01895.

[27] A. M. M. Rodrigues and R. A. Johnstone, Evolution of positive and negative density-
dependent dispersal, Proc. R. Soc. B , 281 (2014).

[28] L. L. Sullivan, B. Li, T. E. Miller, M. G. Neubert and A. K. Shaw, Density dependence in

demography and dispersal generates fluctuating invasion speeds, Proceedings of the National
Academy of Sciences, 114 (2017), 5053–5058.

[29] J. M. J. Travis and C. Dytham, Habitat persistence, habitat availability and the evolution

of dispersal, Proceedings of the Royal Society of London. Series B: Biological Sciences, 266
(1999), 723–728.

Received March 2019; revised May 2019.

E-mail address: yongkim@kaist.edu

E-mail address: hyowseo@gmail.com

E-mail address: chwyoon@gmail.com

http://www.ams.org/mathscinet-getitem?mr=MR3189110&return=pdf
http://dx.doi.org/10.1007/s00285-013-0674-6
http://dx.doi.org/10.1007/s00285-013-0674-6
http://www.ams.org/mathscinet-getitem?mr=MR2214941&return=pdf
http://dx.doi.org/10.1016/j.jde.2005.05.010
http://dx.doi.org/10.1086/285453
http://dx.doi.org/10.1086/285453
http://www.ams.org/mathscinet-getitem?mr=MR1224677&return=pdf
http://dx.doi.org/10.1007/978-3-642-76214-7
http://www.ams.org/mathscinet-getitem?mr=MR2866937&return=pdf
http://dx.doi.org/10.1137/1.9781611971972
http://www.ams.org/mathscinet-getitem?mr=MR1895041&return=pdf
http://dx.doi.org/10.1007/978-1-4757-4978-6
http://dx.doi.org/10.1002/ecs2.1895
http://dx.doi.org/10.1002/ecs2.1895
http://dx.doi.org/10.1098/rspb.2014.1226
http://dx.doi.org/10.1098/rspb.2014.1226
http://dx.doi.org/10.1073/pnas.1618744114
http://dx.doi.org/10.1073/pnas.1618744114
http://dx.doi.org/10.1098/rspb.1999.0696
http://dx.doi.org/10.1098/rspb.1999.0696
mailto:yongkim@kaist.edu
mailto:hyowseo@gmail.com
mailto:chwyoon@gmail.com

	1. Introduction
	2. Two-patch system for single species
	2.1. Derivation of mega-patches
	2.2. Steady states

	3. Uniqueness of steady states (Proof of Theorem 1.1)
	4. Linear stability analysis (Proof of Theorem 1.2)
	5. Numerical simulations
	6. Discussion
	Appendix A. Corresponding PDE
	Appendix B. Patch problem with uniqueness
	Acknowledgments
	REFERENCES

