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Abstract. Shigesada et al. [8, 10] proposed a reaction-diffusion equa-
tion in a periodic environment to model the invasion of biological or-
ganisms in heterogeneous environments. However, the model shows a
counter intuitive conclusion that a species should decrease its diffusivity
in undesirable patches to increase the chance of invasion. Authors show
that Fick’s diffusion law is the reason for the contradictory phenomenon
and that Wereide’s diffusion law can fix it. Stability analysis for an in-
vasion condition and the minimum wave speed for a traveling periodic
wave are obtained under Wereide’s diffusion law. Theoretical results are
tested numerically.

1. Introduction

Invasion of a new biological species causes many ecological changes and
problems. In a context of population genetics, Fisher [6] proposed a reaction-
diffusion equation,

(1) ut = D∆u+ u(1− u),

as a theoretical model to describe spatial invasion of a mutant phenotype.
The diffusivity D is constant and the diffusion models a random dispersal
in a homogeneous environment. The purpose of the paper is to introduce
a heterogeneous diffusion operator to such a biological invasion model in a
heterogeneous environment.

Diffusion is a mass transport phenomenon driven by microscopic scale
random and chaotic movements which is commonly found in both natural
and social phenomena. However, there is no agreement on the correct dif-
fusion equation in a heterogeneous environment when the diffusivity D is
nonconstant, i,e., D = D(x). One of most commonly used ones is Fick’s
law [1],

(2) ut = ∇ · (D(x)∇u),

where u is the mass density. Remember that a constant state is a steady
state solution of (2). Wereide’s law [11],

(3) ut = ∇ · (
√
D(x)∇(

√
D(x)u)),

is also often used. In this case, a constant state is not a steady state anymore.
An underlying assumption behind these diffusion laws is that the diffusivity
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alone can decide the diffusion phenomenon even in a heterogeneous environ-
ments. On the other hand, a different kind of diffusion law,

(4) ut = ∇ · (
√
µ−1D∇(

√
µD u)),

has been derived from a revertible velocity jump process, which requires the
turning frequency µ(x) as an extra information. Numerical simulation of
the model agrees with a thought experiment and Monte-Carlo simulations
(see [7]).

The purpose of the paper is to show that the diffusion law (4) is appro-
priate in the study of biological invasion in a heterogeneous environment.
Having a correct diffusion model is particularly important in the study of
biological invasion when the environment is heterogeneous. We will see that
inappropriate diffusion models may lead us to wrong conclusions.

Shigesada et al. [8, 10] proposed a heterogeneous version of the Fisher-
KPP equation (1),

(5) ut = ∇ · (D(x)∇u) + (r(x)− u)u,

to explain biological invasion phenomenon in a periodically heterogeneous
environment. The growth rate r is assumed to be periodic and piecewise
constant,

(6) r(x) =

{
1, mL < x ≤ mL+ La,

−rb, mL+ La < x ≤ mL+ L,

where rb > 0, m ∈ Z integer, and Lb := L − La > 0. The period is L > 0
and the space is divided into favorable patches, mL < x ≤ mL + La, with
positive growth rate r = 1 and unfavorable ones, mL − Lb < x ≤ mL,
with negative growth rate r = −rb. The nonconstant diffusivity is piecewise
constant and given by

(7) D(x) =

{
1, mL < x ≤ mL+ La,

Db, mL+ La < x ≤ mL+ L,

where the diffusivity in the favorable patch is fixed as D = 1. An interesting
question in this scenario is whether increasing the diffusivity Db in undesir-
able patches increases or decreases the chance of invasion. The answer by
Shigesada et al. from the analysis of (5) is that the survival chance increases
if Db decreases. In other words, a species should decrease its migration in
an unfavorable place to increase its survival chance, which is against our
common sense (compare the graphs in Figure 1) and a physically wrong
conclusion.

The reason for the paradox is in the use of Fick’s diffusion law in the SKT
model (5). In this paper we take the diffusion law (4). However, since there
is no information about the turning frequency in the model of Shigesada et
al., we take µ = µ0 constant for a neutral comparison. In the case, it actually
turns into Wereide’s law (3) and gives

(8) ut = ∇ · (
√
D(x)∇(

√
D(x)u)) + (r(x)− u)u,
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where r and D are from (6) and (7). This is the model we investigate in the
paper. We simply call (5) a “SKT model” and (8) “Our model” in figure
legends for brevity. We will see that the invasion chance increases as Db

increases if we take the invasion model (8).
In conclusion, Fick’s law (2) is inappropriate in heterogeneous environ-

ments and leads to wrong conclusions. On the other hand, the diffusion law
(4), or Wereide’s law (3) for the case of constant µ, gives physically correct
results. Note that there are other components of biological diffusion which
are not included in (4). For example, Brownian particles never stop their
chaotic movements and the diffusion law in (4) is for such a case. However,
biological organisms often have a mechanisms to stay in a favorable place
or to leave from an unfavorable one. Such a mechanism should be mod-
eled differently from the diffusivity. The starvation driven diffusion is such
a diffusion model which increases the departing probability when starvation
started (see [2, 3, 5]).

2. Weak solution

The existence and the regularity of the solution to the reaction-diffusion
equation (5) with Fick’s law are understood well when D is bounded. How-
ever, the discontinuity in D requires a different care when the solution of
(8) is studied.

Definition 2.1. Let u : R × R+ → R+ and
√
D(x)u(x, t) be W 1,1

loc (R) for
all fixed t > 0. We call u a weak solution of (8) if

(9) 0 =
x (

− uφt +
√
D∇(

√
Du) · ∇φ− (r − u)uφ

)
dxdt

for all test functions φ ∈ C1
c (R× (0,∞)).

The diffusivity D is piecewise constant and discontinuous at

(10) xn =

{
mL, n = 2m,

mL+ La, n = 2m+ 1,

for all m ∈ Z. The reaction term in (8), f(x, u) = (r(x) − u)u, is a smooth
function except the discontinuity points xn in (10). Therefore, the weak
solution should satisfy the equation in the classical sense away from the
discontinuity points, i.e.,

(11) ut =

{
uxx + (1− u)u, mL < x < mL+ La,

Dbuxx − (rb + u)u, mL+ La < x < mL+ L.

Since the space dimension is one, functions in W 1,1
loc (R) are continuous. This

gives us the first interface condition at xn:

(12) lim
x→x+n

√
D(x)u = lim

x→x−n

√
D(x)u.

The second interface condition comes from the continuity of the flux:

(13) lim
x→x+n

√
D(x)(

√
D(x)u)x = lim

x→x−n

√
D(x)(

√
D(x)u)x.
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Theorem 2.2. Let u : R × R+ → R+ and
√
D(x)u(x, t) be W 1,1

loc (R) for
all fixed t > 0. Suppose that u satisfies (11) in the classical sense. Then,
u satisfies the interface conditions (12) and (13) if and only if u is a weak
solution of (8).

Proof. Since the space domain is one dimensional,
√
D(x)u(x, t) is contin-

uous if
√
D(x)u(x, t) ∈ W 1,1

loc (R) for all fixed t > 0. Therefore, we only
consider the second interface condition (13).

(⇐) Suppose that u is a weak solution. Take a test function φ ∈ C1
c (R×

(0,∞)) such that spt(φ) ⊂ (xn−1, xn+1)× (0, T ). Let A = {(x, t) ∈ spt(φ) :
x ≤ xn} and B = {(x, t) ∈ spt(φ) : x ≥ xn}. Then, Eq. (9) gives
x

A∪B

(
−uφt+

√
D(x)∇(

√
D(x)u) ·∇φ− (r(x)−u)uφ

)
dxdt =

x

A

+
x

B

= 0.

Since u is a classical solution except the interface x = xn and the support
spt(φ) does not touch t = 0, after integrating the two by parts, we obtain

x

A

=

∫ √
D(x−n )∇(

√
D(x−n )u(x−n , t)φdt,

x

B

= −
∫ √

D(x+n )∇(

√
D(x+n )u(x+n , t)φdt.

Therefore,∫ (√
D(x−n )∇(

√
D(x−n )u(x−n , t)−

√
D(x+n )∇(

√
D(x+n )u(x+n , t)

)
φdt = 0

for all test functions φ ∈ C1
c (R × (0,∞)) and hence the interface condition

(13) is satisfied.
Suppose that the interface condition (13) is satisfied at each interface x =

xn. Let φ ∈ C1
c (R×(0,∞)) be a test function and spt(φ) ⊂ (−N,N)×(0, T ).

Since u satisfies (11) in the classical sense away from the interfaces, we have
x (

− uφt +
√
D(x)∇(

√
D(x)u) · ∇φ− (r(x)− u)uφ

)
dxdt

=
N∑

n=−N

∫ T

0

(√
D(x−n )∇(

√
D(x−n )u(x−n , t)

−
√
D(x+n )∇(

√
D(x+n )u(x+n , t)

)
φdt = 0.

Therefore, u is a weak solution. �

3. Stability analysis and invasion condition

The model equation (8) has a trivial steady state solution u = 0. The
stability condition of the trivial solution provides a criterion to decide the
ability to invade a new environment. If the trivial solution is stable, a small
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population size will fail to invade and get extinct eventually. For the analysis,
we first linearize the equation (8) at u = 0 and obtain

(14) vt = (
√
D(x)(

√
D(x)v)x)x + r(x)v,

where v is considered as a small perturbation of the trivial solution u = 0.
The corresponding eigenvalue problem is

(15) (
√
D(x)(

√
D(x)V )x)x + (r(x)− λ)V = 0,

where V ≥ 0 is a nonnegative eigenfunction corresponding to an eigenvalue
λ. Since D(x) and r(x) are piecewise constant, we can explicitly solve (15)
piecewise and obtain

V (x) =

{
A1 cos

√
1− λ (mL+ La

2 − x) +A2 sin
√

1− λ (mL+ La
2 − x),

B1 cosh
√
−1+λ
Db

(mL− Lb
2 − x) +B2 sinh

√
−1+λ
Db

(mL− Lb
2 − x),

where mL < x < mL + La for the first line and mL − Lb < x < mL
for the second one. The environment is symmetric with respect to the mid
point of each patch, i.e., with respect to x = mL + La

2 and x = mL − Lb
2 .

Therefore, the solution V is symmetric with respect to these points. Since
V ′(mL + La

2 ) = V ′(mL − Lb
2 ) = 0, we have A2 = B2 = 0. If we apply the

two interface conditions, (12) and (13), then

A1 cos
√

1− λLa
2

=
√
DbB1 cosh

√
rb + λ

Db

Lb
2
,

and

A1

√
1− λ sin

√
1− λLa

2
= Db

√
rb + λ

Db
B1 sinh

√
rb + λ

Db

Lb
2
.

After dividing the second equation by the first one, we obtain

(16)
√

1− λ tan
√

1− λLa
2

=
√
rb + λ tanh

√
rb + λ

Db

Lb
2
.

The λ that satisfies the relation (16) is the principle eigenvalue of the prob-
lem (15) since the corresponding eigenfunction V is a singed function. The
trivial steady sate u = 0 is stable if the principle eigenvalue is negative
(λ < 0) and unstable otherwise (see Nagylaki [9] or Shigesada et al. [10]).
For a border case λ = 0, La and Lb satisfies,

tan
(La

2

)
=
√
rb tanh

(√ rb
Db

Lb
2

)
.

This relation gives the critical patch size Lb of the unfavorable patches when
other parameters are fixed. If the patch size Lb greater than the critical size,
i.e.,. if

Lb > 2

√
Db

rb
tanh−1

(
1
√
rb

tan
(La

2

))
,
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the trivial steady state u = 0 becomes stable and invasion of the species fails.
Similarly, if the patch size Lb smaller than the critical size, the trivial steady
state u = 0 becomes unstable and the new species may invade successfully.

Theorem 3.1 (Critical patch size). For given L, r,D > 0, let

(17) F (L, r,D) := 2

√
D

r
tanh−1

(
1√
r

tan
(L

2

))
.

(1) If Lb > F (La, rb, Db), u = 0 is a stable steady state solution of (8)
and the invasion fails.

(2) If Lb < F (La, rb, Db), u = 0 is an unstable steady state solution of
(8) and the invasion is successful.

The corresponding stability analysis for the SKT model (5) is given in [10].
For comparison, we state it in our context;

Remark 3.2 (Shigesada et al. [10]). Let

(18) F (L, r,D) := 2

√
D

r
tanh−1

(
1√
rD

tan
(L

2

))
.

(1) If Lb > F (La, rb, Db), u = 0 is a stable steady state solution of (5)
and the invasion fails.

(2) If Lb < F (La, rb, Db), u = 0 is an unstable steady state solution of
(5) and the invasion is successful.

Find a difference and a similarity in the formulas for the critical patch
sizes given by (17) and (18). The difference is the coefficient 1√

rD
inside

tanh−1 in the formula for F . The graphs for the critical interval sizes are
given in Figure 1 for the two cases. In the figures, the size of a favorable
patches is fixed by La = 1. Two cases of diffusivity values Db are considered
in the figures. The x-axis in the graph is the negative growth rate rb in
the unfavorable patches. The two models, (5) and (8), are actually identical
each other when Db = 1. The parameter regime of SKT model for successful
invasion is larger than the one of our model when Db < 1 as given in Figure
1(a). The relation is reversed when Db > 1 as given in Figure 1(b).

The difference of the two models is more clear from Figure 2. The graphs
of the critical interval size of the SKT model are given for four cases of
diffusivity Db = 0.5, 1, 5, and ∞ in Figure 2(a), where Db = ∞ simply
means the asymptotics. We can see that the parameter regime for success-
ful invasion shrinks as Db increases. This gives a conclusion that a species
should reduce its dispersal rate in a unfavorable place to survive. This is a
contradictory conclusion and against our common sense. If the environment
becomes hostile, a species should move to another place for its survival and
hence increasing diffusivity in an unfavorable patch should help its survival.
The reason for this contradiction is in Fick’s diffusion law which is not a
correct diffusion model in a heterogeneous environment.
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(a) Db = 0.5, La = 1 (b) Db = 5, La = 1

Figure 1. Graphs for critical patch sizes: x-axis: rb, y-axis: Lb.
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(a) SKT model with Fick’s law
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(b) Our model with Wereide’s law

Figure 2. Invasion and extinction regimes with La = 1.

In Figure 2(b), the graphs for critical patch size are given for solutions of
our model (8). We can see that the parameter regime for successful invasion
expands as Db increases, which is the opposite result of the SKT model case.
This gives an intuitively correct conclusion that a species should increase its
dispersal rate in a unfavorable place to increase its chance to invade. Find
that the invasion regime is the smallest when Db = 0, i.e., when the species
does not move at all in unfavorable patches. In the case, the invasion regime
has a vertical boundary. This implies that the size of undesirable patch Lb
does not matter if Db = 0. The boundary value rb is decided by the size of
desirable patch La.

4. Minimum wave speed

Theorem 3.1 says that, if Lb < F (La, rb, Db), u = 0 is unstable and
hence we may expect a traveling periodic wave. In this section, we find
the minimum wave speed. To find the wave speed of the reaction-diffusion
equation (8), it is enough to consider only the first order term in the reaction
function. Hence, we focus in the linearized problem (14) and its solution that
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satisfies

V (x, t) = V (x+ L, t+ T ), x ∈ R, t > 0,

where L > 0 is the period and T > 0. In other words, the solution is a
traveling wave type and its speed is given by

c = L/T.

We will find the minimum traveling wave speed in this section. We are
looking for a solution V (x, t) having an asymptotic behavior such that

(19) V (x, t)→ 0 as x→∞ and V (x, t)→ V ∗(x) as t→∞

for a wave profile V ∗(x). We separate the variables by setting V = f(z)g(x),
where z = x−ct is the moving frame variable and g(x) is a periodic function
with periodicity L. Substituting V = fg into (14) yields

−cf ′g =
1

2
D′′fg +

3

2
D′(f ′g + fg′) +D(f ′′g + 2f ′g′ + fg′′) + rfg,

where the derivatives of D are considered in a distribution sense at the
interfaces x = xn. Divide the equation by f and obtain

(20)
f ′′

f
Dg +

f ′

f
(cg +

3

2
D′g + 2Dg′) = −1

2
D′′g − 3

2
D′g′ −Dg′′ − rg.

Since the right side of (20) is a function of x only, both f ′′

f and f ′

f are

constants. We are looking for the asymptotic condition in (19) and set f ′

f =

−s for some s > 0. Then, for a constant A > 0, we obtain

f = A exp(−sz).

Substituting f into (20) gives

1

2
D′′g +Dg′′ + (

3

2
D′ − 2Ds)g′ + (r(x) +Ds2 − cs− 3

2
D′s)g = 0.

Since D is a piecewise constant, g satisfies

(21) Dg′′ − 2Dsg′ + (r(x) +Ds2 − cs)g = 0

in each patch away from the interface, where r(x) = 1 in the favorable zone
and r(x) = −rb in the unfavorable one. Solve (21) in (−Lb, 0) and (0, La),
separately, and obtain

g =

{
esx(A1 cosh(q1x) +A2 sinh(q1x)), 0 < x < La,
esx(B1 cosh(q2x) +B2 sinh(q2x)), −Lb < x < 0,

where

q1 =
√
cs− 1, and q2 =

√
csrb/Db.

Remember that q1 and q2 depend on c and s.



BIOLOGICAL INVASION IN A PERIODIC ENVIRONMENT 9

Next, we apply the interface conditions between two patches, (12)-(13),
which are written by

(22)

lim
x→x+n

√
D(x)g = lim

x→x−n

√
D(x)g,

lim
x→x+n

D(x)(g′ − sg) = lim
x→x−n

D(x)(g′ − sg).

Since

g′(x) =

{
sg(x) + q1e

sx(A1 sinh(q1x) +A2 cosh(q1x)), 0 < x < La,
sg(x) + q2e

sx(B1 sinh(q2x) +B2 cosh(q2x)), −Lb < x < 0,

the conditions in (22) give

(23) A1 =
√
DbB1 and q1A2 = Dbq2B2.

Furthermore, since g(x) = g(x+ L), we obtain two more conditions,

esLa(A1 cosh(q1La) +A2 sinh(q1La)) =
√
Dbe

−sLb(B1 cosh(q2Lb)−B2 sinh(q2Lb))

q1e
sLa(A1 sinh(q1La) +A2 cosh(q1La)) = Dbq2e

−sLb(−B1 sinh(q2Lb) +B2 cosh(q2Lb)).

Substitute (23) and rewrite the system in terms of A1 and A2. Then, we
obtain

MX = 0,

where X = [A1, A2] is a column vector and M = (Mij) is a 2 × 2 matrix
given by

M11 = esL cosh(q1La)− cosh(q2Lb),

M12 = esL sinh(q1La) +
q1√
Dbq2

sinh(q2Lb),

M21 = q1e
sL sinh(q1La) + q2

√
Db sinh(q2Lb),

M22 = q1e
sL cosh(q1La)− q1 cosh(q2Lb).

Since X = [A1, A2] is a nontrivial solution, the coefficient matrix M is
singular and hence its determinant is zero,
(24)

0 = cosh(q1La) cosh(q2Lb) +
q21 +Dbq

2
2

2
√
Dbq1q2

sinh(q1La) sinh(q2Lb)− cosh(sL).

This equality is called the dispersion relation. In this relation, we consider
the traveling wave speed c > 0 and the parameter s (= f ′/f) as two variables
and others fixed. In other words, we consider c as a function of s, c = c(s),
given implicitly by the dispersion relation.

Remark 4.1. The corresponding dispersion relation for the SKT model (5)
is given in [10]:

0 = cosh(q1La) cosh(q2Lb) +
q21 + (Dbq2)

2

2Dbq1q2
sinh(q1La) sinh(q2Lb)− cosh(sL).
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The difference is in the quotient part
q21+(Dbq2)

2

2Dbq1q2
and others are identical. If

Db = 1, the two are identical.

The graphs of the wave speed c given by the dispersion relation for the
SKT model (5) and the model of this paper (8) are given in Figure 3 for
two cases. The two curves are supposed to be identical when Db = 1. In the
figure, two cases are given with Db = 0.5 and Db = 5. The global minimum
points for the four cases are the minimum speeds of the models with the
given parameters, which are the observed wave speed.

0.5 1 1.5 2
0

1

2

3

4

SKT model
Our model

rb = 0.2, Db = 0.5

0.5 1 1.5 2
0

1

2

3

4

SKT model
Our model

rb = 0.2, Db = 5

Figure 3. Wave speed c = c(s) (x-axis: s := f ′/f , La = Lb = 1).

The two model equations of (5) and (8) have the same diffusivity and
reaction function. The traveling wave speed is decided by the diffusivity and
first order term in Fisher-KPP type reaction diffusion equations in a homo-
geneous environment. However, the two equations have different minimum
speed in heterogeneous environment as observed in Figure 3. Of course, it is
already expected when the stability conditions of the trivial solution u = 0
are different.

5. Time evolution of solution

In this section, we carry out some numerical simulations to investigate the
time evolution of solution to the both models, (5) and (8). We take space
domain

x ∈ Ω := (0.5, 100),

with patch sizes,

La = 1, Lb = 5, and L = La + Lb = 6.

The growth rate r and the diffusivity D are given by (6) and (7), respectively.
The initial distribution is a Gaussian function given by

u0 = e
−(x−0.5)2

8 on x ≥ 0.5,
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and the boundary condition is by the Neumann boundary condition, i.e.,

ux(0.5, t) = ux(100, t) = 0.

Find that the spatial heterogeneity in the growth rate r is given by (6).
However, the domain boundary is given at x = 0.5, not x = 0. This is due
to the Neumann boundary condition. The space heterogeneity is symmetric
with respect to the mid point of each patch and hence the its solution is
expected to be symmetric with respect to x = 0.5. If one give the Neumann
boundary condition at x = 0, it will be a case that the size of the first
favorable patch is 2 times larger than others.

5.1. Case 1. In the first numerical example, we take

Db = 0.5, rb = 0.5,

which belongs to the case that the solution of the SKT model (5) may invade
and the solution of the model of this paper (8) get extinct (see Figure 1(a) ).
For Lb = 5, the negative growth rate rb = 0.5 is between the two curves
of the figure. Remember that the diffusivity in favorable patch is Da = 1.
Hence, it is a case that the species reduces its migration rate in undesirable
patches. Intuitively, staying in a harsh place is a wrong behavior.

(a) Time evolution for (5) (b) Time evolution for (8)

20 40 60 80 100

0

0.05

0.1

0.15

0.2

SKT model
Our model

(c) Solution at T = 400

Figure 4. Solutions for both models when Db = 0.5 and rb = 0.5

The simulation results are given in Figure 4. We can see that the solution
of the SKT model produces oscillating traveling periodic wave and wave
speed is approximately c = 0.19. However, the solution of the model equation
(8) goes extinct. Remember the result of this example and compare the result
to the case when species increase migration rate in harsh patches.

5.2. Case 2. In the second numerical example, we take

Db = 5, rb = 0.5,

which belongs to the case that the solution of the SKT model (5) goes extinct
and the solution of the model of this paper (8) may invade (see Figure 1(b) ).
For Lb = 5, the negative growth rate rb = 0.5 is between the two curves of
the figure. In this case, the diffusivity in undesirable patches is Db = 5 which
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is five times larger than the one in desirable patches. Increasing diffusivity in
bad environment is a good strategy to move away from unfavorable places.

(a) Evolution of (5) (b) Evolution of (8)

20 40 60 80 100

0

0.2

0.4

0.6

0.8

SKT model
Our model

(c) Solution at T = 40

Figure 5. Solutions for both models when Db = 5 and rb = 0.5

The simulation results are given in Figure 5. We can see that the solu-
tion of the SKT model goes extinct and the solution of the model equation
(8) produces oscillating traveling periodic wave and wave speed is approxi-
mately c = 2. Increasing diffusivity under undesirable environment is a good
strategy. However, the solution of SKT model gives opposite result that the
species goes extinct and the invasion fails. We should conclude that SKT
model (5) does not the model that explains the situation. On the other hand,
the solution of the model of the paper (8) gives the correct result that the
species starts to survive and the invasion succeeds.

5.3. Case 3. Both invade. In the last numerical example, we take

Db = 5, rb = 0.1,

which belongs to the case that the both solutions may invade (see Figure
1(b) ). For Lb = 5, the negative growth rate rb = 0.1 is placed in the invasion
regimes of the two models.

(a) Time evolution of (5) (b) Time evolution of (8)

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
SKT model
Our model

(c) Solution at T = 40

Figure 6. Solutions for both models when Db = 5 and rb = 0.1
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The simulation results are given in Figure 6. We can see that the both
solutions produce oscillating traveling periodic wave. The wave speed of SKT
model is approximately c = 1.5 and the one of our model is approximately
c = 2.5.

6. Conclusions

In the study of biological invasion in a heterogeneous environment, Fick’s
diffusion law (2) leads to a physically incorrect conclusion. For example,
Shigesada et al. [8,10] proposed an invasion model (5) in a periodic environ-
ment using Fick’s diffusion law. However, the model gives a contradicting
result that species should reduce its diffusivity in undesired patches to suc-
ceed invasion. The way for a species to avoid undesired patches is to increase
the diffusivity and, however, such a behavior harms the species according
to the model. It is because Fick’s diffusion law does not model dispersal
phenomenon correctly in such a heterogeneous environment. The authors
derived a diffusion model (4) in a heterogeneous environment using a re-
vertible velocity jump process in [7]. The suggested model (8) in this paper
is an application of the diffusion law which fixes the contradictory phenome-
non of the SKT model (5). Now, we can say that if the diffusivity is increased
in undesired patches, the solution of the new model (8) increases its invasion
chance.
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