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Abstract

The goal of this article is to develop a new technique to obtain better asymptotic estimates
for scalar conservation laws. General convex flux, f”(u) >0, is considered with an assumption
lim, o uf’(u)/f (1) = y>1. We show that, under suitable conditions on the initial value, its
solution converges to an N-wave in L' norm with the optimal convergence order of O(1/1).
The technique we use in this article is to enclose the solution with two rarefaction waves. We
also show a uniform convergence order in the sense of graphs. A numerical example of this
phenomenon is included.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

In this article we obtain the optimal convergence order of sign-changing solutions
to the Cauchy problem of a scalar conservation law in one-space dimension

u+f(u), =0, u(x,0) =up(x), xeR, t>0, (1)
where the initial value u is integrable and has a compact support,

upe L'(R), supp(up)<[-L,L], LeR. (2)
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We assume that the flux f(u) is convex,
J0)=7"(0)=0, f"(u)>0, (3)
and has an algebraic growth of order y> 1 near the zero state u = 0 in the sense that

lim wf"(u)/f () =7, 7>1. (4)

Note that we may assume f(0) = f/(0) = 0 without loss of generality.

It is well known that the nonlinearity in the flux f(x) may generate a singularity
and, hence, a smooth solution does not exist globally in time. In this article we
consider weak solutions satisfying the entropy condition

u(x—,t)=zu(x+,1), xeR, t=0. (5)

Since the convexity of the flux f(u) is not strict, the flux can be linear in an interval
and the Cauchy problem may accept a discontinuity which violates the entropy
condition. This kind of discontinuities can be avoided by simply assuming that the
initial value does not include any of them, i.e., by assuming uo(x—) >uo(x+), xeR.

Under the convexity hypothesis (3), /(1) is an increasing function and the
similarity profile u = g(x) is uniquely defined by the relation

9(0)=0,  f(g9(x))=x, xeR. (6)

We can easily check that g(x) is also an increasing function and rarefaction waves
have this profile, i.e., u(x, 1) = g((x — xo)/(z + to)) for some constants xoe R, #,=0.

It is well known that the asymptotic structure of the solution u(x, ¢) is a member of
two parameters family of N-waves,

1), —a,(t)<x<by(1),

prq(x, t) _ g('x/ ) aP( ) . X q( ) (7)

0 otherwise,

where p, g are the invariants of the Cauchy problem (1), i.e.,
RY o0
p=—inf / up(y)dy, ¢q= sup/ uo () dy,

— 0 x Jx

¢-p=M= [wb)d ®)

and a,(t),b,(t) >0 satisfy

0 by(1)
p=—[ g(y/t) dy, q=/0 g(y/1) dy. 9)

ay (1)
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The convergence of the solution u(x, ¢) to the N-wave has been studied in various
contexts. Liu and Pierre [12] show

lim £V fu(-, 1) = Ny 1)l = 0 (10)

t— 0

for the general L' initial value u, under the power law,

oy (11)

It is clear that the long-time behavior of the solution mostly depends on the structure
of the flux f'(u) near the zero state u = 0 since u(x, ) >0 as t— co. So assumption (4)
is a natural generalization of the power law (11). If L' norm is considered (r = 1 in
(10)), the estimate gives the convergence to the N-wave, but it does not give any
convergence order.

Lax [10] shows the asymptotic structure for the strictly convex case f”(u)>0,
which is the N-wave, and the technique is employed to show O(1//7) convergence
rate in L' norm by DiPerna [4] (also see [15, Chapter 16]). A different approach
based on generalized characteristics has been used in [3, Chapter XI] obtaining
similar results. Basically, the strictly convex flux represents the Burgers equation
y =2 and these techniques have been extended to genuinely nonlinear hyperbolic
systems (see [4,10,11,14]).

It is well known that the ;1 — 0 limit of solutions u#(x, 7) to a regularized problem,

i +f (W) = s, w(x,0) = uo(x), (12)

is the entropy solution of the inviscid problem. The asymptotic behavior of this type
of equation has been studied in [1,5,6] under the power laws. For the viscous Burgers
equation, diffusive N-waves are suggested for its asymptotics in [8,9,16]. The
convergence order to a diffusive N-wave in L' norm is given in [8], which is O(1/1).
Since lim, o lim,, o, #*(x, t) #lim,_, o, lim, o u*(x, ) in general, we cannot expect
the same convergence order for the inviscid problem.

The main goal of this article is to develop a new technique to obtain better
asymptotic L' estimates for general scalar conservation laws with the convexity. For
the case without the convexity, we refer to [2,13,17,18]. In our method we monitor
the evolution of the solution more closely. The main idea is to enclose the solution
u(x,t) with two rarefaction waves g(x/t) and g(x/(t+a)), or g((x+ L)/t) and
g((x — L)/t), where constants o, L are decided from the initial value. In [7] a
piecewise self-similar solution has been employed to approximate a general solution.
That study shows the effectiveness of estimates based on rarefaction waves. The
main result in this article is:

Theorem 1. Let the flux f(u) be convex (3) and have an algebraic growth rate y>1
near the zero state (4). Let the bounded initial value uy have a compact support
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c[—L, L] and invariant constants p,q (8). Then, the solution u(x,t) to problem (1)
satisfies

[lu(x,t) — Npq4(x,1)|], <const. max |N,,(x,)] as t— co. (13)

Furthermore, if a point x = [ satisfying

X B 0 0
—pEin_f/_ uo(y)dyz/ uo(y) dy, qzsgp/ uo(y)dyz/ up(y) dy (14)

x ) o 5
is unique and there exist constants o, 0 >0 satisfying
luo(x + B)|=g(x/a)l,  [x[<9, (15)
then
|[u(x + B, 1) — Npy(x,1)||; <const. ™' as t— 0. (16)

The asymptotic estimate in (13) shows that the solution converges to an N-wave in

L' norm with the same order of the height of the N-wave. If the flux is given by the
1
power law, f(u) = |u"/y, y>1, we can easily check that the order is O(z 7). The

coefficients in the asymptotic estimates (13) and (16) can be estimated by the limits in
Lemmas 2 and 3 (see Remark 10). For the strictly convex case, /" >0, we can easily

verify that max, [N, 4(x, )| is of order 0(1_%) (see Remark 11).

The convergence order in (16) is optimal in the sense that we may construct a
solution which has the convergence order of O(¢7!), but not o(z~!). We can also
easily check that the uniqueness of the point x = f§ in (14) is necessary and that
assumption (15) which restrict the profile of the initial value near the point x = f is
also needed. Without these assumptions the convergence order in (13) is optimal
which is already mentioned in [4] for the strictly convex case.

Our approach is as follows. In Section 2, we consider the evolution of N-waves
under the power law (11). In this case we can explicitly evaluate the areas enclosed by
the N-wave N, ,(x, t) and rarefaction waves g(x/(¢ + a)) or g((x+ L)/¢) (see Figs. 1
and 2). In Section 3, we obtain convergence orders of these areas for a general flux
satisfying (4). In Section 4, we show that the solution u(x, ) stays inside of the area
for sufficiently large >0 (Proposition 9) and prove Theorem 1. These estimates
also provide uniform convergence orders (Theorem 13) in the sense of graphs in
Section 5. Finally, in Section 6, we provide a numerical simulation which shows how
the solution evolves and be placed inside of the area.

2. Evolution of N-waves under the power law

In this section, roughly speaking, we consider the convergence order of the thin
areas enclosed by two N-waves, Fig. 1 or 2. These areas converge to zero as t— o,



206 Y. J. Kim | J. Differential Equations 192 (2003) 202-224

1
0.8
0.6
0.4
0.2

0

-0.2
-0.4
-0.6
-0.8

-10 -5 0 5 10 15

Fig. 1. The area of the thin layer enclosed with an N-wave N, ,(x, ) (solid lines) and a rarefaction wave
g(x/(t + o)) (dashed line) is of order O(1/7) as t— oo. In the figure, p = 87/9, ¢ =2x, t = 15and o« = 0.5.
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Fig. 2. The area of the thin layer enclosed with an N-wave N, ,(x, ) (solid lines) and a rarefaction wave
g((x+L)/1) (dashed lines) is of order O(1/y/7) as t— co. In this figure, p = 9n/8, ¢ =2r, t =15 and
L=1.

and the solution u(x, f) converges to the N-wave N, ,(x, 7) with the same order in L!
norm. Consider N-waves under the power law

ul’y, y>1. (11)

Then, the similarity profile g(x) is given by

g(x) = sign(x) "V/]x],
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and N-waves are by

g(x/t), —ay(t)<x<by(1),
0 otherwise,

vali(xv t) = {

where

y—1 y—1

a0 = (27) " v b= ()i

a0 = -o(~0) - (2Y o

o =o(2) - (w)i—% _ o

t y—1
measure the height of the N-wave.

Lemma 2. For any a>0,
bqy(1)
lim Z/
— o0 7(1[’([)
1

Proof. Since g(*5) = g(¥)(z5)7~1, we have

x )\dx a(p +q)

{+ o B

Np,q(x,t)—g< e

1 1

Mo (X Y CNTT_ (L a T
/0 Nova) " Nove) ~90 "1va)

Clearly, g(x/t)>g(x/(t + a)) for x>0, and the Taylor expansion gives

bq(1)

X
Npg(x, 1) — g<t n oc) dx

1
o \1  ag 1 (2—9)qe> 1
= — 1— =

1 q( t—f—a)

where 1 — £ <y<1. So we have

. by(1) x
Jlim Z/o Npg(x, 1) — g( )

oq
=1

dx =
4o

=Lt 25— 1) (4w

207

(18)
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Similarly we may show that lim,_, ., tf?apm |Npg(x,0) — g(z5) dx = Ll’ and obtain
(19. O

For example, consider the flux of the Burgers equation f'(u) = %uz. In the case the
similarity profile is simply g(x) =x. In Fig. 1, N-wave Ng;92.(x,t) has been
displayed together with a rarefaction wave g(x/(¢ + a)). Lemma 2 implies that the
thin area enclosed by these two waves converges to zero with order O(¢™!) as t— 0.
Furthermore, we have the coefficient part of the convergence rate, which is

ap+q)/(y—1).

Lemma 3. For any given L>0,

1
ba(0) x—L g \7
tl—lvnolo \/~ Npﬁq(x, t) — g( : ) dx = (m) L (20)
and
0 L %
lim /¢ g(x + ) —Nyq(x,t)dx = (Vp) L. (21)
t— 0 7%([) t ' Y — 1

Proof. After a simple translation, we can easily check that

\"/E/Obq(t>g(); _g(x— >dx—\/—/ dx+\/—/ dx.

The first term is bounded by

o< [ o(2) iveia(E) = vi(2) "o

as t— oo since y>1. The second term is bounded by

N

1
Since both of the lower and the upper bounds converge to (%)VL as t— oo, the

asymptotic estimate in (20) holds. The other estimate (21) is obtained in the same
way. O
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In Fig. 2, N-wave Nog/3:(x, t) has been displayed together with g((x+L)/t) for
L =1,t=15. Lemma 3 implies that the area enclosed with these waves has order

1 1
O(r 7) as t— oo with a coefficient (y/p + v/q)(-17)7L

In the proof of Theorem 1 we show that these rarefaction waves form thin layers
and the solution u(x,?) of (1) lies inside of them over the interval [—a,(?), b,(?)].
These observations immediately give the convergence orders in Theorem 1.

3. Evolution of general N-waves

In this section we obtain estimates corresponding to Lemmas 2 and 3 with a
general flux under the condition

lim wf'(u)/f (u) =7, 7>1. (4)

First, we observe that the similarity profile g(x) also has the similar property near
x=0.

Lemma 4. Let g(x) be the similarity profile, i.e., f'(g(x)) = x. Then

lim xg'(x)/g(x) = (v = n™. (22)

Proof. Differentiating the basic relation f”(g(x)) = x with respect to x, we obtain
Sf(g(x)d'(x) =1, ie., f"(g(x)) = 1/4'(x). Apply the 'Hopital’s rule to the limit in
(4) and get

y=1+ lin% uf" (u)/f" (u). (23)
Setting u = g(x) in (23), we obtain

lim g(x)/"(9(x))/f"(9(x)) = lim g(x)/xg'(x) =y 1. D

It is natural to expect that the relation f’(g(x)) = x between the similarity profile
g(x) and the wave speed f"(u) will give basic estimates in the evolution of solutions.
We start with a trivial lemma.

Lemma 5. Let a function G(x) be increasing on [0,x¢] and have values G(0) =0,
G(x0) = uy. Then

/( G(x)dx + / F(u) du = xouo, (24)
0 0

where F(u) is the unique function satisfying F(G(x)) = x for xe(0, xy).
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Proof. The integration by parts and the change of variable u = G(x) give

Up X0 X0
/ F(u) du = / xG'(x) dx = [xG(x)]y’ — / G(x) dx,
0 0 0
that implies (24). O
In the following lemma we observe how the height and the width of an N-wave

evolve asymptotically. Remember that the support [—a,(?), b,(?)] measures the width
of the N-wave N, ,(x,t) and the values at the end points,

Ayt = o =47). m0=("") 23)

t

measure the height.

Lemma 6. Let [—a,(t),b,(t)] be the support of an N-wave N, ,(x,t) and A,(t) =
—9(=ap(1)/1), B4(1) = g(by(1)/1). Then

im tf P - »
tlinolo Y (=4p(0) = y— 1 tlirg ap(1)Ap(1) = =1 (26)
lim of (By(£) = —1—, lim by(t)By(t) = — - @)
i 1 V*l’ >0 4 q —yfl'

Proof. Setting G(x) = g(x/

t) and F(u) = tf"(u), we have F(G(x)) =x for x>0,
G(0) = 0 and G(b,(1)) = By(t

). So Lemma 5 implies that
by(1) By (1)
/ g(x/t) dx + / tf"(u) du = by(1)B,(1).
0 0

Since fé’qm g(x/t)dx = q, f(0) = 0 and b,(t)/t = f"(B,(t)), we have
q+1f (By(1)) = lf/(Bq(t))Bq(l)~
Take t— oo limit after dividing the both side by #f(B,()) and obtain

q

i, o By(0)

which implies the first part of (27). Since b,(?)B,(t) = q + tf (B,(?)), the second part
of (27) is clear from the first part. Estimate (26) is obtained similarly. O

Now we consider the property corresponding to Lemma 2.
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Lemma 7. For any a>0,
by(t)

lim t/
t— o0 7%)([)

Proof. Let h=x/t —x/(t+a) =ax/(t+a)t. Since g(x/t)>g(x/(t+a)) on the
interval (0, b,4(¢)), we have

P x x o [Pxg(F) —g(—h)
/0 g(?)_g(H—a)‘dx_H—oc/o t h dx.

Since b,(t)/t—0 as t— oo, estimate (22) implies that

, b0 x X .ot [0 X g
fim ¢ [ o) = 5 () =375

t->o 4+ o Y= 1 g 7
Similarly, we may show that lim,_, . Zf—oa,,(t) l9(3) — 9(5) ldx = y”;—”l and complete
(28). O

Nyg(x,1) — g< al ) ‘ gy =P F9D), (28)

t+a y—1

Now we consider the last lemma which corresponds to Lemma 3.

Lemma 8. For any L>0,

LW o (55 [ b6 -5 ()

— O(4,(1) + B,(1)). (29)

Proof. We can easily check that

[0 -a( )= [y [ o)

q

The first term is bounded by

0< — /ig()—;) dx< —y(_TL>L = 0(4,(1))

as t— oo. The second term is bounded by

0< /bi;lg(’;) dx<g<bql(l)>L = O(B,(1)).
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So we have obtained the half of (29), i.e., b" l9(%) — g(35)| dx = O(A,(t) + By(1)).
The other half is obtained similarly. [

4. Optimal convergence order in L' norm

In the followings we briefly review the theory of characteristics (see [3, Chapter XI]
for a detailed introduction). A minimal backward characteristic x = £_(¢) associated
to the solution u(x, 7) that emanates from a given point (xo, ) is a straight line in the
half-plane R x R* such that &_(¢) = xo + (¢ — to)/" (u(xo—, %)), 0<t<1o. A maximal
one x = ¢, (1) is defined similarly by &, (7) = xo+ (£ — to)f" (u(xo+,2)). If the
solution u(x, 7) is continuous at the given point (xg, #), then they are identical, and
we write (1) = £_(t) = £,(¢). The solution u(x, t) is constant along a characteristic
line, i.e., u(&4 (1), 1) = u(xot,1t), 0<t<ty. Setting X4 = xo — tof" (u(xo+,%)), we
may write it as &, (1) = X + 1f (up(%4)).

A characteristic line x = X + #f"(uo(X)) is called a divide if there exists a sequence
(Xm, ty) such that t,,— 00 as m— o0 and x,,;, + (¢ — t)f (U(Xp, 1)) = X + tf (1p(X))
uniformly on any closed interval [0, 7] as m— co. In the case we may show that

[ ) — (o] dr<0. —oo<z<ee. (30)

(See Theorem 11.4.1 in [3].) It is well known that, if qffﬂ ug(y) dy =
sup, [ ug(y) dy, then, for all 7>0, u(B,7) =0 and

B -
/ u(y,t)dy = —p, / u(y,t)dy = q. (31)
- B

o0

(See Theorem 11.4.2 in [3].)

An N-wave N, 4(x, t) is a special solution of the conservation law (1). Let v(x, ?) =
N,4(x —L,t) and &(t) be a characteristic line that emanates from a point (xo, f
L — ay(ty) <xo <L+ by(ty). Then the slope of the characteristic line is 1/f"(g(
L)/t)) = to/(xo — L) and it always passes through the point (L, 0).

Suppose two solutions uy,u, are given. Since the flux is convex, f” >0, we may
compare the solutions using the wave speed, i.e.,

05 )
(xo0

S (ur(x0,20)) <f'(ua(x0,10)) = wi(x0,t0) <ua(x0,10). (32)

The following proposition comes from these observations on characteristics and
their speed of propagation.

Proposition 9. Let the flux f(u) be convex and have an algebraic growth rate near the
zero state as in (4). Let the bounded initial value uy have a compact support <[—L, L]
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and invariant constants p,q in (8). Then, for any point € R that satisfies

X p 0 o0
—pEigf/ uo(y)dy:/ uo () dy, qESl{p/ uo(y)a’y—/[i uo(y) dy, (14)

o0
the solution u(x,t) to problem (1) satisfies

u(x + B, 0)[<lg(x/1)], —o0<x<oo, (33)

g((x—=L)/t)<u(x,t)<g((x+ L)/t), —a(t)<x<b(t), t=0, (34)

where b(t) = max{xesupp(u(-,t))} and —a(t) = min{xesupp(u(-,))} are estimated
by

lay(t) —a(t)| <L, |by(t) = b(1)| < L. (35)
Furthermore, if such a point 5 in (14) is unique and
lg(x/o)[<uo(x + )|, [x]<9, (15)

for some constants o, 0>0, then there exists T >0 such that

lg(x/(t+ o)) <[ulx + B, 0], a(t)<x<b(1), =T, (36)
where the support supp(u(x, 1)) = [—a(t), b(2)] is estimated by
ap(t)<a(t) — p<ap(t+a), by(t)<b(t) — f<by(t+a) (37)

forall t>T.

Proof. Let v(x, ) = g(x/t). Then we can easily check that f’(v), = 1/f and v(0,¢) =
0 for all #>0. The Oleinik estimate, f”(u), <1/, gives f’(u) <f"(v),. Since u(f,t) =
v(0,7) = 0 for all >0, we obtain f'(u(x+ f,1)) <f"(v(x,?)) for x>0 and f’(u(x +
B,1))=f"(v(x,1)) for x<0. The convexity of the flux implies (33).

Fix #>0 and —a(f)<xo<b(ty). Let £,(r) be the extremal backward
characteristics associated to the solution u(x,#) that emanates from the point
(x0,%). Since y = —a(t), b(t) are (generalized) characteristics, the uniqueness of the
forward characteristics implies that —a(7) <. (f) <b(z) for all 0<r<1, and, hence,
—L<&é,(0)<L. Since backward characteristics associated to special solutions
vy (x, 1) =g((xx£L)/t) always pass through the points (+L,0) respectively, the
speed of characteristics are ordered as

1 (g(x — L)) <f'(u(x£,0)<f (g(ﬂ» —a(t)<x<b(1t), t=0.

t t
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So we may conclude (34) using (32). Furthermore, since

0 b(t)
q= sup/ u(x,t)dx>= / u(x,t) dx
X X L

b(t) x— L b(t)—L X
> - X
/L g( ; ) dx /0 g(t> dx,

we have b(t) — L<b,(¢). On the other hand, since there exists f> — L such that
fﬁoc u(x, 1) dx = q (31),

b(1) b(t) L
q:/ u(x, 1) dx < / g<x+ )a’x
B B t

b(1) x+ L b(t)+L X
< dx = Z) dx.
/7]‘ g( t ) Y /0 g(l) *

So b(t) + L=b,(t) and we may conclude that |b,(¢) — b(¢)| <L. The other half of (35)
can be shown similarly.

Now we show (36) and (37) assuming (15) and the uniqueness of the point x = f§
that satisfies (14). Note that we may assume that § = 0 without loss of generality.
The uniqueness of such a point implies that

X
/ up(y) dy>0 for all x#£0. (38)
0

Let y = &' (s), 0<s<t be the minimal backward characteristic that emanates from
the point (b(¢), t) (see Fig. 3). Then, since & (0) is decreasing as ¢ — oo, there exists a
point X such that & (0)—x as r— oo. Since |u(x,7)|—0 as t— oo and u(x,?) is

s y=D(9)
) (x,1)
t>T

80 - £70) & b(Q L y
0

Fig. 3. Characteristics in the proof of Proposition 9.
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constant along a characteristic line, u(x,7)—>0 as r—0+ and the constant
characteristic line y = (= X + ¢f'(0)) is a divide. Putting z = 0 in (30) we obtain

/’ uo(3) dy <0.
0

Hence, (38) implies that ¥ = 0. So there exists 7>0 such that 0<¢&’ (0)<J for all
t>T. To complete estimate (36) it is enough to consider continuity points of the
solution since there is no isolated discontinuity (the Oleinik estimate). Clearly, for
any 0<x<b(z),t>T, the backward characteristic & (-) that emanates from the point
(x,1) satisfy 0< ¢’ (0) <6 and, hence,

u(x, 1) = up(£4,(0)) > ¢((£1(0)) /).

Let ug((0)) = g(&.(0)/ag for some og>0). Then, clearly, a9 <o and the forward
characteristic associated to v(x,t) = g(x/(ao +¢)) that emanates from the point
(£:.(0),0) is identical to & (s) for 0<s<t. Hence,

X X
= — T.
u(x, 1) g<a0+l)>g<a+z>’ 0<x<b(t), t>

Similarly, we may show that u(x,?)<g(x/(t+ a)) for any —a(t)<x<0, t>T and
obtain (36).
Furthermore, since

b(t b(1)
/ u(x,t) dx</ g(f) dx,

0 0 t

b(t b(t) x
/ u(x, 1) dx>/ g( )dx
0 0 4o

for t>T, we have b,(t) <b(t)<b,(t + ). Similarly, a,(¢) <a(t) <a,(t + o) and (37) is
obtained. [

The existence of f that satisfies (14) is obvious. First, since ffoo up(y) dy is
continuous and supp(ug) =[—L, L], there exists a point fe[—L, L] such that

/ﬂ o () dy:inf[ up(y) dy.

o0 X o0

Furthermore, since

/I:Ouo(y)dy—/xoO uo(y)dy—/ﬁxuo(y)dy—/x uo(y)dy—/ﬁ uo(y) dy =0,
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the point fe[—L, L] also satisfies

/ ) ug(y) dy = sup / : uo(y) dy.

p X

In the proposition we have seen that the solution essentially stays inside of an
envelope enclosed with similarity profiles. This property gives the optimal order of
convergence to the N-wave. In the following, we show our main result of this article:

Proof. (Theorem 1). First, we check that u(x, r) >0 for all x> L. If not, there exists a
continuity point (xg, #y) such that u(xg, #)<0, xo>L, t,>0. Let &(s), 0<s<fty,
be the genuine backward characteristic that emanates from the point (xo, f9). Then,
since the characteristic speed f”(u(xo, %)) is negative, we have £(0)> x> L, which
contradicts to the assumption supp(ug) =[—L, L]. Similarly, we may show u(x, ) <0
for all x< — L.

Let ¢>0. Then, we may take 7'>0 such that b,(7") > L. Estimates (33) and (34)
imply

g((y = (L= p))/D)<ulx + B, 0)<g(x/1), 0<x<by(1).

Since f[[;q(mﬁ g(y—=p)/t)dy = f/fo u(y + B,t) dy = g, we obtain

by(t)

/OC INpg(y — B, t) —u(y, )| dy :2/ (Npg,8) —u(y + B,1)) dy
B 0

by(1)
<2 / (9/0) — g — (L= B)/0) dy.  (39)

So Lemma 8 implies that
[} oaty = 8.0 —utr. 01 dy = OB, (1),

If ¢ =0, we may take f = L and the estimate is trivial. Similarly, we may show
ffx |Npo(v = B,t) —u(y, 1) dy = O(A,(z)). Hence, (13) is obtained from
[[Npg(x, 1) = u(x, 1)
SINpg(x, 1) = Npg(x = B )|} + [ Npg(x — B, 1) — u(x, 1),

= O(A4,(1) + By(1)) = O(maxy|N, 4(x,1)|).
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The convergence order in (16) is obtained from (33) and (36). Let T>0 be the
constant in (36). Then, for > T,

0 by(t)
/ (o4 1) — Npgx, )] dx =2 / Ny g, 1) — u(x + B, )] dx
0 0

by(1)
<2/0 g(;) g(t—):ac)

So Lemma 7 implies that [;* [u(x + B, 1) — Np4(x, )| dx = O(¢+™"). Similarly we may
show that f lu(x + B,t) — Np4(x,1)|dx = O(17") and, therefore, (16) is com-
plete. O

dx. (40)

Remark 10. We can estimate the coefficients in estimates (13) and (16). Under the
power law, f (1) = |u|’/y, Lemma 3 and estimate (39) imply that

1 1
o v N7, (o \
tlin; Villu(x, 1) = Npy(x, l)||1<2<<y _ 1) +(y — 1) )L'

Under conditions (14), (15), Lemma 7 and estimate (40) imply that

lim #|[u(x + B, 1) — Npg(x, )] < Qa@j—lq)

— 0

Remark 11. The convergence order O(max, |N,,(x,?)|) in (13) depends on the flux

S (u). Since estimates in (27) imply that f(B,(f)) = O(¢™"), we can easily see that
1 ” . .
B,(t) = O(t 7) under the power law f(u) = c|u|’. Suppose the flux is strictly convex,

ie., f"(u) >0, with f”(0) = ¢>0. Then

W)
P=lm Ty = g

Substituting u = B, (1) = g(b,(t)/t), we obtain

lim tB,(t)c
= by(1)

=y—1=0(1).

Since b,(1)B,(7) is of order O(1), we may conclude that b,(¢) = O(/7) and B,() =
O(1/+/t). So we have achieved the well-known convergence rate for the strictly
convex case.

Remark 12. Let u(x,t) be a solution given by an N-wave u(x,t) =N, (x —
1

L,t), L#0. Then Lemma 3 implies that ||u(x, ) — N, ,(x,1)||, is of order O(¢ 7), not
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1
o(t 7). So it is clear that the solution or the N-wave should be placed at the correct

place, say B, to get the optimal convergence rate O(¢~!) in (16) and the initial value

should have some growth near the point in the sense of (15). Without these extra
1

conditions on the initial value u(x), convergence order of O(¢ ?) is optimal.

5. Uniform convergence order

Proposition 9 gives a uniform convergence order to the N-wave. In this section we
study the uniform estimate of the solution under the power law f(u) = |u|”/y, 7> 1.
Let the bounded initial value 4, have a compact support <[—L, L]. First consider
the case 1<y<2. From the Taylor series, we have g(¥) — g(*5£) =L g/ (%) for ye
[x — L, x]. Since ¢(x) is an increasing function for x>0, we have a uniform estimate

’g()—;) - g(x —t L>)<%g' (b"—t([)), L<x<by(1).

Using Lemmas 4 and 6, the right-hand side is estimated by

)5 ) ol ) o

A similar estimate for |g(¥) — g(*3%)| holds for xe&(—a,(t), —L), and Proposition 9
implies that

2

[Npq(x,0) —ulx, )] = O 7),  —min(ay(2), a(1)) <x<min(b,(2), b(1)),
[Npg(x,8) —u(x, 1) =0, x< —max(a,(t),a(t)) or x>max(b,(t),b()).
_2
This estimate shows a uniform convergence order O(f ?) away from the
discontinuity points x = —a(t), x = b(t). The essential difficulty in the uniform

estimate lies in estimating the shock location.
It is convenient to consider similarity variables

¢ =x/</f, w(, 1) = \"/Eu(x, 1), Npg(&1)= %Npﬁq(xa 1. (41)
Then, the supports of solutions are also similarly transformed
y—1 y—1
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and the N-wave N, ,(x, ) is transformed to a time independent function

sign(¢) "'m, —d,<¢ <I5q,

. (42)
0 otherwise.

qu(f) = {

The supports [—a,(t), b,(t)] of the N-wave N, ,(x, t) and [—a(t), b(t)] of the similarity

solution w(¢,¢) are transformed to a fixed interval [—d,,b,] and [—a(¢),b(1)],
respectively. After the transformation we have a uniform estimate for 1 <y<2,

INpo&) = w(E, 1) = O( ), —min(dy,a(1) <& <min(By, 6(1)),

[Npg(&) =w(& 1) =0, &< —max(dy,a(r)) or &>max(by,b(r)).
Furthermore, since |b,(¢) — b(t)|, |a,(t) — a(t)| <L, (35), we have
@y = (0] = 00 /VA), 1By = b0)| = 01/ V).

So we may conclude that the similarity solution w(¢, 7), which is transformed by (41),
converges to N,,(&) with the uniform convergence order O(1/+/7) in the sense of
graphs.

If y>2, ¢'(x) is a decreasing function for x>0 and we have a uniform estimate

+L L _L
‘g(f> —g(x_t >‘<29(7> =0(t 1), —w<x<ow.

t

So, for y>2, the uniform convergence order in similarity variables is

[Npq(E) —w(& )] = O(f""(""l’”)a —min(a, d()) << <min(by, b(1)),

IN, 4 (&) = w(&, )] =0, ¢é< —max(d,,d(r)) or &>max(b,,b(1)).

Now consider the uniform convergence order under assumptions (14) and (15). Let
B = 0 for the convenience. The Taylor expansion implies that

g(?) _(<l—|)foc> :z(tajac)g,(zio)’

where y € (x,x + ax/t). The left-hand side is an increasing function for all y>1 and
x>0. So, for x>0, we have

)g(é) h (’i“N B 0(%%—(29(%—(2» o™
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and, hence,
il )
|Npg(x, 1) —u(x,1)] = Ot 7 ), —dy<x<by, )
0, x< —d(t) or x>b(1).

The support [—a(z),b(t)] of the solution u(x, ?) is estimated by (37), and (17) gives

bi

Ib(t) = by(t)] = O((t+2)' " =87y = O( 7).

If we transform these estimates into similarity variables, we obtain

|NPaf1(é) - W(éa [)‘ = 0(1/1)7 _dp<6<b~qa

INpg(&) —w(&, 1) =0, &< —d(r) or E>b(1),

ale) - a,| = 0(1/1),  |B(1) — by| = 0(1/).

So we may conclude a uniform convergence to N, (&) of order O(1/¢) in the sense of
graphs.
We summarize these uniform estimates in the following theorem:

Theorem 13. Let u(x,t) be the solution of the conservation law (1) with the power law
S () = |u|’"/y, y>1. Let the bounded initial value uy have a compact support =[—L, L]
and invariance variables p,q (8). Then, the similarity solution w(&,t) transformed by
(41) uniformly converges to N, (&) in the sense of graphs and

, o(t "6=D), 922,
sup inf {w(¢,1) ~ Npy(O) + e~ 2 b= 7" | (43)
cek Lt ot ), 1<y<2.
Furthermore, if a point x = f§ such that
B o
p= —/ w(y)dy, q= //; uo(y) dy (14)

is unique, and there exist constants oa>ty, 0 >0 such that
up(x + B)<g(x/a), —o<x<0; wup(x+p)=g(x/a), 0<x<0, (15)

then

sup Lt 1w(é.0) = N,y 0+ ¢ - 1)} = 001/ (44)

teR €
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6. A numerical example
Consider the solution to the Burgers equation
u+ (u?), =0, >0, xeR, (45)
with its initial value

—v—x(3+x), —-3<x<0,
u(x,0) = up(x) = x(4—x), 0<x<4, (46)
0 otherwise.

In this example we can easily check that the center of the initial value is § = 0, the
similarity profile is g(x) = x, and that invariants are

0 oo}
p= —/ uo(y) dy =9 /8, q=/ up(y) dy = 2m.
_ 0

[e0)

So the asymptotic behavior of the solution u(x,f) is given by N,,(x,?) with
p =91/8,q = 2. Near the center, § = 0, the initial value is bounded by

up(x)<g(x/0.5), —0.5<x<0  wup(x)=g(x/0.5), 0<x<0.5.

Let x = &(¢) be the characteristic line associated to the solution u(x, 7) that emanates
from a point (xo,15),—a,(15)<x9<by(15). Then, since |N,,(x,15)|<1 and
|uo(+0.5)] > 1, we have —0.5<&(0) <0.5. Hence, u(x, 15) should be bounded by

g(x/15)<u(x,15)<g(x/(1540.5)), —a,(15)<x<0,
g(x/(15+0.9))<u(x,15)<g(x/15), O0<x<b,y(15). (47)

In Fig. 1, the N-wave N, ,(x,) has been displayed together with g(x/(z+ o)) for
t = 15,0 = 0.5. Estimate (47) implies that the solution u(x, ¢) lies inside of the small
and thin area enclosed with two similarity profiles g(x/15) and g(x/15.5) for
—a,(15) <x<b,(15). This observation together with Lemma 7 is the essence of the
proof of Theorem 1.

Now we present a computational simulation to observe the phenomenon
numerically which has been explained above. We briefly introduce our numerical
scheme. We consider a uniform space x;,i/» = (j + 1/2)Ax and time ¢, = nAt mesh,
where je R, ne R". The cell-average of the solution is approximated by the solution
of finite difference equation,
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where U} is given by an explicit method,

U n Al n
(JjH_l = U] _E(F(Uvjnv (JjJrl) —F((];LI, U]n>)

In our examples we employ the numerical flux of the Godunov method,

n if l];1+ n SO, un <0’

J+1 J+1 J+1
UL UL = G U 020,070,
0 if U;1<0, ;ﬂrl>0.

In Fig. 4, we set Ax = 0.01 and Az = 0.0025. The numerical approximations of the
solution u(x,?) (dots) are displayed together with similarity profiles g(x/¢) and
g(x/(t+a)) (lines), which make thin layers. We can clearly observe that the
numerical solution lies inside of them for #>10.
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