

J. Differential Equations 192 (2003) 202-224

Journal of Differential Equations

http://www.elsevier.com/locate/jde

Asymptotic behavior of solutions to scalar conservation laws and optimal convergence orders to N-waves $\stackrel{\sim}{\sim}$

Yong Jung Kim*

Impedance Imaging Research Center, Kyunghee University, Kyunggi 449-701, South Korea

Received March 9, 2002; revised September 19, 2002

Abstract

The goal of this article is to develop a new technique to obtain better asymptotic estimates for scalar conservation laws. General convex flux, $f''(u) \ge 0$, is considered with an assumption $\lim_{u\to 0} uf'(u)/f(u) = \gamma > 1$. We show that, under suitable conditions on the initial value, its solution converges to an *N*-wave in L^1 norm with the optimal convergence order of O(1/t). The technique we use in this article is to enclose the solution with two rarefaction waves. We also show a uniform convergence order in the sense of graphs. A numerical example of this phenomenon is included.

© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Asymptotics; Characteristics; Convergence order; N-wave; Similarity

1. Introduction

In this article we obtain the optimal convergence order of sign-changing solutions to the Cauchy problem of a scalar conservation law in one-space dimension

$$u_t + f(u)_x = 0,$$
 $u(x, 0) = u_0(x), \quad x \in \mathbf{R}, \quad t > 0,$ (1)

where the initial value u_0 is integrable and has a compact support,

$$u_0 \in L^1(\mathbf{R}), \quad \operatorname{supp}(u_0) \subset [-L, L], \quad L \in \mathbf{R}.$$
 (2)

th This work was supported in part by Korea Science & Engineering Foundation (Grant R11-2002-103). *Corresponding author.

E-mail addresses: yjkim@ima.umn.edu, yongkim@khu.ac.kr.

We assume that the flux f(u) is convex,

$$f(0) = f'(0) = 0, \quad f''(u) \ge 0, \tag{3}$$

and has an algebraic growth of order $\gamma > 1$ near the zero state u = 0 in the sense that

$$\lim_{u \to 0} u f'(u) / f(u) = \gamma, \quad \gamma > 1.$$
(4)

Note that we may assume f(0) = f'(0) = 0 without loss of generality.

It is well known that the nonlinearity in the flux f(u) may generate a singularity and, hence, a smooth solution does not exist globally in time. In this article we consider weak solutions satisfying the entropy condition

$$u(x-,t) \ge u(x+,t), \quad x \in \mathbf{R}, \ t \ge 0.$$
(5)

Since the convexity of the flux f(u) is not strict, the flux can be linear in an interval and the Cauchy problem may accept a discontinuity which violates the entropy condition. This kind of discontinuities can be avoided by simply assuming that the initial value does not include any of them, i.e., by assuming $u_0(x-) \ge u_0(x+), x \in \mathbf{R}$.

Under the convexity hypothesis (3), f'(u) is an increasing function and the similarity profile u = g(x) is uniquely defined by the relation

$$g(0) = 0, \qquad f'(g(x)) = x, \quad x \in \mathbf{R}.$$
 (6)

We can easily check that g(x) is also an increasing function and rarefaction waves have this profile, i.e., $u(x,t) = g((x - x_0)/(t + t_0))$ for some constants $x_0 \in \mathbf{R}$, $t_0 \ge 0$.

It is well known that the asymptotic structure of the solution u(x, t) is a member of two parameters family of N-waves,

$$N_{p,q}(x,t) = \begin{cases} g(x/t), & -a_p(t) < x < b_q(t), \\ 0 & \text{otherwise}, \end{cases}$$
(7)

where p, q are the invariants of the Cauchy problem (1), i.e.,

$$p = -\inf_{x} \int_{-\infty}^{x} u_{0}(y) \, dy, \quad q = \sup_{x} \int_{x}^{\infty} u_{0}(y) \, dy,$$
$$q - p = M = \int u_{0}(y) \, dy, \tag{8}$$

and $a_p(t), b_q(t) \ge 0$ satisfy

$$p = -\int_{-a_p(t)}^0 g(y/t) \, dy, \quad q = \int_0^{b_q(t)} g(y/t) \, dy. \tag{9}$$

The convergence of the solution u(x, t) to the *N*-wave has been studied in various contexts. Liu and Pierre [12] show

$$\lim_{t \to \infty} t^{(r-1)/\gamma r} ||u(\cdot, t) - N_{p,q}(\cdot, t)||_{L^r} = 0$$
(10)

for the general L^1 initial value u_0 under the power law,

$$f(u) = \frac{1}{\gamma} |u|^{\gamma}, \quad \gamma > 1.$$
(11)

It is clear that the long-time behavior of the solution mostly depends on the structure of the flux f(u) near the zero state u = 0 since $u(x, t) \rightarrow 0$ as $t \rightarrow \infty$. So assumption (4) is a natural generalization of the power law (11). If L^1 norm is considered (r = 1 in (10)), the estimate gives the convergence to the *N*-wave, but it does not give any convergence order.

Lax [10] shows the asymptotic structure for the strictly convex case f''(u) > 0, which is the *N*-wave, and the technique is employed to show $O(1/\sqrt{t})$ convergence rate in L^1 norm by DiPerna [4] (also see [15, Chapter 16]). A different approach based on generalized characteristics has been used in [3, Chapter XI] obtaining similar results. Basically, the strictly convex flux represents the Burgers equation $\gamma = 2$ and these techniques have been extended to genuinely nonlinear hyperbolic systems (see [4,10,11,14]).

It is well known that the $\mu \rightarrow 0$ limit of solutions $u^{\mu}(x, t)$ to a regularized problem,

$$u_t^{\mu} + f(u^{\mu})_x = \mu u_{xx}^{\mu}, \quad u^{\mu}(x,0) = u_0(x), \tag{12}$$

is the entropy solution of the inviscid problem. The asymptotic behavior of this type of equation has been studied in [1,5,6] under the power laws. For the viscous Burgers equation, diffusive N-waves are suggested for its asymptotics in [8,9,16]. The convergence order to a diffusive N-wave in L^1 norm is given in [8], which is O(1/t). Since $\lim_{\mu\to 0} \lim_{t\to\infty} u^{\mu}(x,t) \neq \lim_{t\to\infty} \lim_{\mu\to 0} u^{\mu}(x,t)$ in general, we cannot expect the same convergence order for the inviscid problem.

The main goal of this article is to develop a new technique to obtain better asymptotic L^1 estimates for general scalar conservation laws with the convexity. For the case without the convexity, we refer to [2,13,17,18]. In our method we monitor the evolution of the solution more closely. The main idea is to enclose the solution u(x,t) with two rarefaction waves g(x/t) and $g(x/(t+\alpha))$, or g((x+L)/t) and g((x-L)/t), where constants α, L are decided from the initial value. In [7] a piecewise self-similar solution has been employed to approximate a general solution. That study shows the effectiveness of estimates based on rarefaction waves. The main result in this article is:

Theorem 1. Let the flux f(u) be convex (3) and have an algebraic growth rate $\gamma > 1$ near the zero state (4). Let the bounded initial value u_0 have a compact support

 \subset [-L,L] and invariant constants p,q (8). Then, the solution u(x,t) to problem (1) satisfies

$$||u(x,t) - N_{p,q}(x,t)||_1 \leq \text{const.} \max_x |N_{p,q}(x,t)| \quad as \ t \to \infty.$$
(13)

Furthermore, if a point $x = \beta$ *satisfying*

$$-p \equiv \inf_{x} \int_{-\infty}^{x} u_{0}(y) \, dy = \int_{-\infty}^{\beta} u_{0}(y) \, dy, \quad q \equiv \sup_{x} \int_{x}^{\infty} u_{0}(y) \, dy = \int_{\beta}^{\infty} u_{0}(y) \, dy \quad (14)$$

is unique and there exist constants $\alpha, \delta > 0$ satisfying

$$|u_0(x+\beta)| \ge |g(x/\alpha)|, \quad |x| \le \delta, \tag{15}$$

then

$$||u(x+\beta,t) - N_{p,q}(x,t)||_1 \leq \text{const. } t^{-1} \quad as \ t \to \infty.$$
(16)

The asymptotic estimate in (13) shows that the solution converges to an *N*-wave in L^1 norm with the same order of the height of the *N*-wave. If the flux is given by the power law, $f(u) = |u|^{\gamma}/\gamma$, $\gamma > 1$, we can easily check that the order is $O(t^{-\frac{1}{\gamma}})$. The coefficients in the asymptotic estimates (13) and (16) can be estimated by the limits in Lemmas 2 and 3 (see Remark 10). For the strictly convex case, f'' > 0, we can easily

verify that $\max_{x} |N_{p,q}(x,t)|$ is of order $O(t^{-\frac{1}{2}})$ (see Remark 11).

The convergence order in (16) is optimal in the sense that we may construct a solution which has the convergence order of $O(t^{-1})$, but not $o(t^{-1})$. We can also easily check that the uniqueness of the point $x = \beta$ in (14) is necessary and that assumption (15) which restrict the profile of the initial value near the point $x = \beta$ is also needed. Without these assumptions the convergence order in (13) is optimal which is already mentioned in [4] for the strictly convex case.

Our approach is as follows. In Section 2, we consider the evolution of *N*-waves under the power law (11). In this case we can explicitly evaluate the areas enclosed by the *N*-wave $N_{p,q}(x,t)$ and rarefaction waves $g(x/(t+\alpha))$ or $g((x\pm L)/t)$ (see Figs. 1 and 2). In Section 3, we obtain convergence orders of these areas for a general flux satisfying (4). In Section 4, we show that the solution u(x,t) stays inside of the area for sufficiently large t>0 (Proposition 9) and prove Theorem 1. These estimates also provide uniform convergence orders (Theorem 13) in the sense of graphs in Section 5. Finally, in Section 6, we provide a numerical simulation which shows how the solution evolves and be placed inside of the area.

2. Evolution of *N*-waves under the power law

In this section, roughly speaking, we consider the convergence order of the thin areas enclosed by two N-waves, Fig. 1 or 2. These areas converge to zero as $t \to \infty$,

Fig. 1. The area of the thin layer enclosed with an *N*-wave $N_{p,q}(x, t)$ (solid lines) and a rarefaction wave $g(x/(t+\alpha))$ (dashed line) is of order O(1/t) as $t \to \infty$. In the figure, $p = 8\pi/9$, $q = 2\pi$, t = 15 and $\alpha = 0.5$.

Fig. 2. The area of the thin layer enclosed with an *N*-wave $N_{p,q}(x, t)$ (solid lines) and a rarefaction wave $g((x \pm L)/t)$ (dashed lines) is of order $O(1/\sqrt[3]{t})$ as $t \to \infty$. In this figure, $p = 9\pi/8$, $q = 2\pi$, t = 15 and L = 1.

and the solution u(x, t) converges to the *N*-wave $N_{p,q}(x, t)$ with the same order in L^1 norm. Consider *N*-waves under the power law

$$f(u) = \frac{1}{\gamma} |u|^{\gamma}, \quad \gamma > 1.$$
(11)

Then, the similarity profile g(x) is given by

$$g(x) = \operatorname{sign}(x) \sqrt[\gamma-1]{|x|},$$

206

and N-waves are by

$$N_{p,q}(x,t) = \begin{cases} g(x/t), & -a_p(t) < x < b_q(t), \\ 0 & \text{otherwise}, \end{cases}$$

where

$$a_p(t) = \left(\frac{\gamma p}{\gamma - 1}\right)^{\frac{\gamma - 1}{\gamma}} \sqrt[\gamma]{t}, \quad b_q(t) = \left(\frac{\gamma q}{\gamma - 1}\right)^{\frac{\gamma - 1}{\gamma}} \sqrt[\gamma]{t}.$$
(17)

These N-waves are bounded by $-A_p(t) \leq N_{p,q}(x,t) \leq B_q(t)$, where

$$A_p(t) = -g\left(\frac{-a_p(t)}{t}\right) = \left(\frac{\gamma p}{\gamma - 1}\right)^{\frac{1}{\gamma}} t^{-\frac{1}{\gamma}} = O(t^{-\frac{1}{\gamma}}),$$
$$B_q(t) = g\left(\frac{b_q(t)}{t}\right) = \left(\frac{\gamma q}{\gamma - 1}\right)^{\frac{1}{\gamma}} t^{-\frac{1}{\gamma}} = O(t^{-\frac{1}{\gamma}})$$
(18)

measure the height of the N-wave.

Lemma 2. For any $\alpha > 0$,

$$\lim_{t \to \infty} t \int_{-a_p(t)}^{b_q(t)} \left| N_{p,q}(x,t) - g\left(\frac{x}{t+\alpha}\right) \right| dx = \frac{\alpha(p+q)}{\gamma - 1}.$$
 (19)

Proof. Since $g(\frac{x}{t}\frac{t}{t+\alpha}) = g(\frac{x}{t})(\frac{t}{t+\alpha})^{\frac{1}{\gamma-1}}$, we have

$$\int_0^{b_q(t)} g\left(\frac{x}{t+\alpha}\right) dx = q\left(\frac{t}{t+\alpha}\right)^{\frac{1}{\gamma-1}} = q\left(1-\frac{\alpha}{t+\alpha}\right)^{\frac{1}{\gamma-1}}.$$

Clearly, $g(x/t) > g(x/(t + \alpha))$ for x > 0, and the Taylor expansion gives

$$\int_{0}^{b_{q}(t)} N_{p,q}(x,t) - g\left(\frac{x}{t+\alpha}\right) dx$$

= $q - q\left(1 - \frac{\alpha}{t+\alpha}\right)^{\frac{1}{\gamma-1}} = \frac{\alpha q}{\gamma-1} \frac{1}{t+\alpha} - \frac{(2-\gamma)q\alpha^{2}}{2(\gamma-1)^{2}} \frac{1}{(t+\alpha)^{2}} y^{\frac{3-2\gamma}{\gamma-1}}$

where $1 - \frac{\alpha}{t+\alpha} \leq y \leq 1$. So we have

$$\lim_{t \to \infty} t \int_0^{b_q(t)} \left| N_{p,q}(x,t) - g\left(\frac{x}{t+\alpha}\right) \right| dx = \frac{\alpha q}{\gamma - 1}$$

Similarly we may show that $\lim_{t\to\infty} t \int_{-a_p(t)}^0 |N_{p,q}(x,t) - g(\frac{x}{t+\alpha})| dx = \frac{\alpha p}{\gamma-1}$, and obtain (19). \Box

For example, consider the flux of the Burgers equation $f(u) = \frac{1}{2}u^2$. In the case the similarity profile is simply g(x) = x. In Fig. 1, *N*-wave $N_{8\pi/9,2\pi}(x,t)$ has been displayed together with a rarefaction wave $g(x/(t+\alpha))$. Lemma 2 implies that the thin area enclosed by these two waves converges to zero with order $O(t^{-1})$ as $t \to \infty$. Furthermore, we have the coefficient part of the convergence rate, which is $\alpha(p+q)/(\gamma-1)$.

Lemma 3. For any given L > 0,

$$\lim_{t \to \infty} \sqrt[\gamma]{t} \int_0^{b_q(t)} N_{p,q}(x,t) - g\left(\frac{x-L}{t}\right) dx = \left(\frac{\gamma q}{\gamma - 1}\right)^{\frac{1}{\gamma}} L$$
(20)

and

$$\lim_{t \to \infty} \sqrt[\gamma]{t} \int_{-a_p(t)}^0 g\left(\frac{x+L}{t}\right) - N_{p,q}(x,t) \, dx = \left(\frac{\gamma p}{\gamma - 1}\right)^{\frac{1}{\gamma}} L. \tag{21}$$

Proof. After a simple translation, we can easily check that

$$\sqrt[n]{t} \int_0^{b_q(t)} g\left(\frac{x}{t}\right) - g\left(\frac{x-L}{t}\right) dx = \sqrt[n]{t} \int_0^L g\left(\frac{x}{t}\right) dx + \sqrt[n]{t} \int_{b_q(t)-L}^{b_q(t)} g\left(\frac{x}{t}\right) dx.$$

The first term is bounded by

$$0 \leqslant \sqrt[\gamma]{t} \int_0^L g\left(\frac{x}{t}\right) dx \leqslant \sqrt[\gamma]{t} g\left(\frac{L}{t}\right) L = \sqrt[\gamma]{t} \left(\frac{L}{t}\right)^{\frac{1}{\gamma-1}} L \to 0$$

as $t \to \infty$ since $\gamma > 1$. The second term is bounded by

$$\sqrt[n]{t}g\left(\frac{b_q(t)-L}{t}\right)L \leqslant \sqrt[n]{t}\int_{b_q(t)-L}^{b_q(t)} g\left(\frac{x}{t}\right) dx \leqslant \sqrt[n]{t}g\left(\frac{b_q(t)}{t}\right)L.$$

Since both of the lower and the upper bounds converge to $(\frac{\gamma q}{\gamma-1})^{\frac{1}{\gamma}}L$ as $t \to \infty$, the asymptotic estimate in (20) holds. The other estimate (21) is obtained in the same way. \Box

In Fig. 2, *N*-wave $N_{9\pi/8,2\pi}(x,t)$ has been displayed together with $g((x\pm L)/t)$ for L = 1, t = 15. Lemma 3 implies that the area enclosed with these waves has order $O(t^{-\frac{1}{\gamma}})$ as $t \to \infty$ with a coefficient $(\sqrt[\gamma]{p} + \sqrt[\gamma]{q})(\frac{\gamma}{\gamma-1})^{\frac{1}{\gamma}}L$.

In the proof of Theorem 1 we show that these rarefaction waves form thin layers and the solution u(x,t) of (1) lies inside of them over the interval $[-a_p(t), b_q(t)]$. These observations immediately give the convergence orders in Theorem 1.

3. Evolution of general N-waves

In this section we obtain estimates corresponding to Lemmas 2 and 3 with a general flux under the condition

$$\lim_{u \to 0} uf'(u)/f(u) = \gamma, \quad \gamma > 1.$$
(4)

First, we observe that the similarity profile g(x) also has the similar property near x = 0.

Lemma 4. Let g(x) be the similarity profile, i.e., f'(g(x)) = x. Then

$$\lim_{x \to 0} xg'(x)/g(x) = (\gamma - 1)^{-1}.$$
(22)

Proof. Differentiating the basic relation f'(g(x)) = x with respect to x, we obtain f''(g(x))g'(x) = 1, i.e., f''(g(x)) = 1/g'(x). Apply the l'Hopital's rule to the limit in (4) and get

$$\gamma = 1 + \lim_{u \to 0} u f''(u) / f'(u).$$
(23)

Setting u = g(x) in (23), we obtain

$$\lim_{x \to 0} g(x) f''(g(x)) / f'(g(x)) = \lim_{x \to 0} g(x) / x g'(x) = \gamma - 1.$$

It is natural to expect that the relation f'(g(x)) = x between the similarity profile g(x) and the wave speed f'(u) will give basic estimates in the evolution of solutions. We start with a trivial lemma.

Lemma 5. Let a function G(x) be increasing on $[0, x_0]$ and have values G(0) = 0, $G(x_0) = u_0$. Then

$$\int_0^{x_0} G(x) \, dx + \int_0^{u_0} F(u) \, du = x_0 u_0, \tag{24}$$

where F(u) is the unique function satisfying F(G(x)) = x for $x \in (0, x_0)$.

Proof. The integration by parts and the change of variable u = G(x) give

$$\int_0^{u_0} F(u) \, du = \int_0^{x_0} x G'(x) \, dx = [xG(x)]_0^{x_0} - \int_0^{x_0} G(x) \, dx,$$

that implies (24). \Box

In the following lemma we observe how the height and the width of an *N*-wave evolve asymptotically. Remember that the support $[-a_p(t), b_q(t)]$ measures the width of the *N*-wave $N_{p,q}(x, t)$ and the values at the end points,

$$A_p(t) \equiv -g\left(\frac{-a_p(t)}{t}\right), \quad B_q(t) \equiv g\left(\frac{b_q(t)}{t}\right), \tag{25}$$

measure the height.

Lemma 6. Let $[-a_p(t), b_q(t)]$ be the support of an N-wave $N_{p,q}(x, t)$ and $A_p(t) = -g(-a_p(t)/t), B_q(t) = g(b_q(t)/t)$. Then

$$\lim_{t \to \infty} tf(-A_p(t)) = \frac{p}{\gamma - 1}, \quad \lim_{t \to \infty} a_p(t)A_p(t) = \frac{\gamma p}{\gamma - 1}, \tag{26}$$

$$\lim_{t \to \infty} tf(B_q(t)) = \frac{q}{\gamma - 1}, \quad \lim_{t \to \infty} b_q(t)B_q(t) = \frac{\gamma q}{\gamma - 1}.$$
(27)

Proof. Setting G(x) = g(x/t) and F(u) = tf'(u), we have F(G(x)) = x for x > 0, G(0) = 0 and $G(b_q(t)) = B_q(t)$. So Lemma 5 implies that

$$\int_0^{b_q(t)} g(x/t) \, dx + \int_0^{B_q(t)} t f'(u) \, du = b_q(t) B_q(t)$$

Since $\int_{0}^{b_{q}(t)} g(x/t) dx = q, f(0) = 0$ and $b_{q}(t)/t = f'(B_{q}(t))$, we have

$$q + tf(B_q(t)) = tf'(B_q(t))B_q(t).$$

Take $t \to \infty$ limit after dividing the both side by $tf(B_q(t))$ and obtain

$$\frac{q}{\lim_{t\to\infty} tf(B_q(t))} + 1 = \gamma,$$

which implies the first part of (27). Since $b_q(t)B_q(t) = q + tf(B_q(t))$, the second part of (27) is clear from the first part. Estimate (26) is obtained similarly. \Box

Now we consider the property corresponding to Lemma 2.

210

Lemma 7. For any $\alpha > 0$,

$$\lim_{t \to \infty} t \int_{-a_p(t)}^{b_q(t)} \left| N_{p,q}(x,t) - g\left(\frac{x}{t+\alpha}\right) \right| dx = \frac{\alpha(p+q)}{\gamma-1}.$$
 (28)

Proof. Let $h \equiv x/t - x/(t + \alpha) = \alpha x/(t + \alpha)t$. Since $g(x/t) > g(x/(t + \alpha))$ on the interval $(0, b_q(t))$, we have

$$\int_0^{b_q(t)} \left| g\left(\frac{x}{t}\right) - g\left(\frac{x}{t+\alpha}\right) \right| dx = \frac{\alpha}{t+\alpha} \int_0^{b_q(t)} \frac{x}{t} \frac{g\left(\frac{x}{t}\right) - g\left(\frac{x}{t}-h\right)}{h} dx.$$

Since $b_q(t)/t \rightarrow 0$ as $t \rightarrow \infty$, estimate (22) implies that

$$\lim_{t \to \infty} t \int_0^{b_q(t)} \left| g\left(\frac{x}{t}\right) - g\left(\frac{x}{t+\alpha}\right) \right| dx = \lim_{t \to \infty} \frac{\alpha t}{t+\alpha} \int_0^{b_q(t)} \frac{1}{\gamma - 1} g\left(\frac{x}{t}\right) dx = \frac{\alpha q}{\gamma - 1}.$$

Similarly, we may show that $\lim_{t\to\infty} t \int_{-a_p(t)}^0 |g(\frac{x}{t}) - g(\frac{x}{t+\alpha})| dx = \frac{\alpha p}{\gamma-1}$ and complete (28). \Box

Now we consider the last lemma which corresponds to Lemma 3.

Lemma 8. For any L > 0,

$$\int_{0}^{b_{q}(t)} \left| g\left(\frac{x}{t}\right) - g\left(\frac{x-L}{t}\right) \right| dx + \int_{-a_{p}(t)}^{0} \left| g\left(\frac{x}{t}\right) - g\left(\frac{x+L}{t}\right) \right| dx$$
$$= O(A_{p}(t) + B_{q}(t)).$$
(29)

Proof. We can easily check that

$$\int_0^{b_q(t)} g\left(\frac{x}{t}\right) - g\left(\frac{x-L}{t}\right) dx = -\int_{-L}^0 g\left(\frac{x}{t}\right) dx + \int_{b_q(t)-L}^{b_q(t)} g\left(\frac{x}{t}\right) dx.$$

The first term is bounded by

$$0 \leqslant -\int_{-L}^{0} g\left(\frac{x}{t}\right) dx \leqslant -g\left(\frac{-L}{t}\right) L = O(A_{p}(t))$$

as $t \to \infty$. The second term is bounded by

$$0 \leqslant \int_{b_q(t)-L}^{b_q(t)} g\left(\frac{x}{t}\right) dx \leqslant g\left(\frac{b_q(t)}{t}\right) L = O(B_q(t)).$$

So we have obtained the half of (29), i.e., $\int_0^{b_q(t)} |g(\frac{x}{t}) - g(\frac{x-L}{t})| dx = O(A_p(t) + B_q(t))$. The other half is obtained similarly. \Box

4. Optimal convergence order in L^1 norm

In the followings we briefly review the theory of characteristics (see [3, Chapter XI] for a detailed introduction). A minimal backward characteristic $x = \xi_{-}(t)$ associated to the solution u(x, t) that emanates from a given point (x_0, t_0) is a straight line in the half-plane $\mathbf{R} \times \mathbf{R}^+$ such that $\xi_{-}(t) = x_0 + (t - t_0)f'(u(x_0 - t_0)), 0 < t < t_0$. A maximal one $x = \xi_{+}(t)$ is defined similarly by $\xi_{+}(t) = x_0 + (t - t_0)f'(u(x_0 + t_0))$. If the solution u(x, t) is continuous at the given point (x_0, t_0) , then they are identical, and we write $\xi(t) \equiv \xi_{-}(t) = \xi_{+}(t)$. The solution u(x, t) is constant along a characteristic line, i.e., $u(\xi_{\pm}(t), t) = u(x_0 \pm t_0), 0 < t < t_0$. Setting $\bar{x}_{\pm} = x_0 - t_0 f'(u(x_0 \pm t_0))$, we may write it as $\xi_{\pm}(t) = \bar{x} + tf'(u_0(\bar{x}_{\pm}))$.

A characteristic line $x = \bar{x} + tf'(u_0(\bar{x}))$ is called a *divide* if there exists a sequence (x_m, t_m) such that $t_m \to \infty$ as $m \to \infty$ and $x_m + (t - t_m)f'(u(x_m, t_m)) \to \bar{x} + tf'(u_0(\bar{x}))$ uniformly on any closed interval [0, T] as $m \to \infty$. In the case we may show that

$$\int_{z}^{\bar{x}} [u_0(y) - u_0(\bar{x})] \, dy \leq 0, \quad -\infty < z < \infty.$$
(30)

(See Theorem 11.4.1 in [3].) It is well known that, if $q = \int_{\beta}^{\infty} u_0(y) dy = \sup_x \int_x^{\infty} u_0(y) dy$, then, for all t > 0, $u(\beta, t) = 0$ and

$$\int_{-\infty}^{\beta} u(y,t) \, dy = -p, \quad \int_{\beta}^{\infty} u(y,t) \, dy = q. \tag{31}$$

(See Theorem 11.4.2 in [3].)

An *N*-wave $N_{p,q}(x,t)$ is a special solution of the conservation law (1). Let $v(x,t) = N_{p,q}(x - L, t)$ and $\xi(t)$ be a characteristic line that emanates from a point (x_0, t_0) , $L - a_p(t_0) < x_0 < L + b_q(t_0)$. Then the slope of the characteristic line is $1/f'(g((x_0 - L)/t_0)) = t_0/(x_0 - L)$ and it always passes through the point (L, 0).

Suppose two solutions u_1, u_2 are given. Since the flux is convex, $f'' \ge 0$, we may compare the solutions using the wave speed, i.e.,

$$f'(u_1(x_0, t_0)) \leqslant f'(u_2(x_0, t_0)) \implies u_1(x_0, t_0) \leqslant u_2(x_0, t_0).$$
(32)

The following proposition comes from these observations on characteristics and their speed of propagation.

Proposition 9. Let the flux f(u) be convex and have an algebraic growth rate near the zero state as in (4). Let the bounded initial value u_0 have a compact support $\subset [-L, L]$

and invariant constants p, q in (8). Then, for any point $\beta \in \mathbf{R}$ that satisfies

$$-p \equiv \inf_{x} \int_{-\infty}^{x} u_{0}(y) \, dy = \int_{-\infty}^{\beta} u_{0}(y) \, dy, \quad q \equiv \sup_{x} \int_{x}^{\infty} u_{0}(y) \, dy = \int_{\beta}^{\infty} u_{0}(y) \, dy, \quad (14)$$

the solution u(x, t) to problem (1) satisfies

$$|u(x+\beta,t)| \leq |g(x/t)|, \quad -\infty < x < \infty, \tag{33}$$

$$g((x-L)/t) \leq u(x,t) \leq g((x+L)/t), \quad -a(t) < x < b(t), \quad t \ge 0,$$
(34)

where $b(t) = \max\{x \in \operatorname{supp}(u(\cdot, t))\}$ and $-a(t) = \min\{x \in \operatorname{supp}(u(\cdot, t))\}$ are estimated by

$$|a_p(t) - a(t)| \leq L, \quad |b_q(t) - b(t)| \leq L.$$
 (35)

Furthermore, if such a point β in (14) is unique and

$$|g(x/\alpha)| \leq |u_0(x+\beta)|, \quad |x| \leq \delta, \tag{15}$$

for some constants $\alpha, \delta > 0$, then there exists T > 0 such that

$$|g(x/(t+\alpha))| \leq |u(x+\beta,t)|, \quad a(t) < x < b(t), \ t \geq T,$$
(36)

where the support supp(u(x, t)) = [-a(t), b(t)] is estimated by

$$a_p(t) \leq a(t) - \beta \leq a_p(t+\alpha), \quad b_q(t) \leq b(t) - \beta \leq b_q(t+\alpha)$$
(37)

for all t > T.

Proof. Let v(x, t) = g(x/t). Then we can easily check that $f'(v)_x = 1/t$ and v(0, t) = 0 for all t > 0. The Oleinik estimate, $f'(u)_x \leq 1/t$, gives $f'(u)_x \leq f'(v)_x$. Since $u(\beta, t) = v(0, t) = 0$ for all t > 0, we obtain $f'(u(x + \beta, t)) \leq f'(v(x, t))$ for x > 0 and $f'(u(x + \beta, t)) \geq f'(v(x, t))$ for x < 0. The convexity of the flux implies (33).

Fix $t_0 > 0$ and $-a(t_0) < x_0 < b(t_0)$. Let $\xi_{\pm}(t)$ be the extremal backward characteristics associated to the solution u(x,t) that emanates from the point (x_0, t_0) . Since y = -a(t), b(t) are (generalized) characteristics, the uniqueness of the forward characteristics implies that $-a(t) < \xi_{\pm}(t) < b(t)$ for all $0 < t < t_0$ and, hence, $-L \leq \xi_{\pm}(0) \leq L$. Since backward characteristics associated to special solutions $v_{\pm}(x,t) = g((x \pm L)/t)$ always pass through the points $(\pm L, 0)$ respectively, the speed of characteristics are ordered as

$$f'\left(g\left(\frac{x-L}{t}\right)\right) \leqslant f'(u(x\pm,t)) \leqslant f'\left(g\left(\frac{x+L}{t}\right)\right), \quad -a(t) < x < b(t), \ t \ge 0.$$

So we may conclude (34) using (32). Furthermore, since

$$q = \sup_{x} \int_{x}^{\infty} u(x,t) \, dx \ge \int_{L}^{b(t)} u(x,t) \, dx$$
$$\ge \int_{L}^{b(t)} g\left(\frac{x-L}{t}\right) \, dx = \int_{0}^{b(t)-L} g\left(\frac{x}{t}\right) \, dx$$

we have $b(t) - L \leq b_q(t)$. On the other hand, since there exists $\beta > -L$ such that $\int_{\beta}^{\infty} u(x,t) dx = q$ (31),

$$q = \int_{\beta}^{b(t)} u(x,t) \, dx \leqslant \int_{\beta}^{b(t)} g\left(\frac{x+L}{t}\right) \, dx$$
$$\leqslant \int_{-L}^{b(t)} g\left(\frac{x+L}{t}\right) \, dx = \int_{0}^{b(t)+L} g\left(\frac{x}{t}\right) \, dx$$

So $b(t) + L \ge b_q(t)$ and we may conclude that $|b_q(t) - b(t)| \le L$. The other half of (35) can be shown similarly.

Now we show (36) and (37) assuming (15) and the uniqueness of the point $x = \beta$ that satisfies (14). Note that we may assume that $\beta = 0$ without loss of generality. The uniqueness of such a point implies that

$$\int_0^x u_0(y) \, dy > 0 \quad \text{for all } x \neq 0.$$
(38)

Let $y = \xi_{-}^{t}(s)$, 0 < s < t be the minimal backward characteristic that emanates from the point (b(t), t) (see Fig. 3). Then, since $\xi_{-}^{t}(0)$ is decreasing as $t \to \infty$, there exists a point \bar{x} such that $\xi_{-}^{t}(0) \to \bar{x}$ as $t \to \infty$. Since $|u(x,t)| \to 0$ as $t \to \infty$ and u(x,t) is

Fig. 3. Characteristics in the proof of Proposition 9.

constant along a characteristic line, $u(\bar{x}, t) \rightarrow 0$ as $t \rightarrow 0+$ and the constant characteristic line $y = \bar{x} (\equiv \bar{x} + tf'(0))$ is a divide. Putting z = 0 in (30) we obtain

$$\int_0^{\bar{x}} u_0(y) \, dy \leq 0$$

Hence, (38) implies that $\bar{x} = 0$. So there exists T > 0 such that $0 \leq \xi_{-}^{t}(0) \leq \delta$ for all t > T. To complete estimate (36) it is enough to consider continuity points of the solution since there is no isolated discontinuity (the Oleinik estimate). Clearly, for any 0 < x < b(t), t > T, the backward characteristic $\xi_{x}^{t}(\cdot)$ that emanates from the point (x, t) satisfy $0 < \xi_{x}^{t}(0) < \delta$ and, hence,

$$u(x,t) = u_0(\xi_x^t(0)) > g((\xi_x^t(0))/\alpha).$$

Let $u_0(\xi_x^t(0)) = g(\xi_x^t(0)/\alpha_0 \text{ for some } \alpha_0 > 0)$. Then, clearly, $\alpha_0 < \alpha$ and the forward characteristic associated to $v(x,t) = g(x/(\alpha_0 + t))$ that emanates from the point $(\xi_x^t(0), 0)$ is identical to $\xi_x^t(s)$ for 0 < s < t. Hence,

$$u(x,t) = g\left(\frac{x}{\alpha_0 + t}\right) > g\left(\frac{x}{\alpha + t}\right), \quad 0 < x < b(t), \ t > T.$$

Similarly, we may show that $u(x,t) < g(x/(t+\alpha))$ for any -a(t) < x < 0, t > T and obtain (36).

Furthermore, since

$$q = \int_0^{b(t)} u(x,t) \, dx \leq \int_0^{b(t)} g\left(\frac{x}{t}\right) \, dx,$$
$$q = \int_0^{b(t)} u(x,t) \, dx \geq \int_0^{b(t)} g\left(\frac{x}{t+\alpha}\right) \, dx$$

for t > T, we have $b_q(t) \le b(t) \le b_q(t + \alpha)$. Similarly, $a_p(t) \le a(t) \le a_p(t + \alpha)$ and (37) is obtained. \Box

The existence of β that satisfies (14) is obvious. First, since $\int_{-\infty}^{x} u_0(y) dy$ is continuous and $\sup p(u_0) \subset [-L, L]$, there exists a point $\beta \in [-L, L]$ such that

$$\int_{-\infty}^{\beta} u_0(y) \, dy = \inf_x \int_{-\infty}^x u_0(y) \, dy.$$

Furthermore, since

$$\int_{\beta}^{\infty} u_0(y) \, dy - \int_{x}^{\infty} u_0(y) \, dy = \int_{\beta}^{x} u_0(y) \, dy = \int_{-\infty}^{x} u_0(y) \, dy - \int_{-\infty}^{\beta} u_0(y) \, dy \ge 0,$$

the point $\beta \in [-L, L]$ also satisfies

$$\int_{\beta}^{\infty} u_0(y) \, dy = \sup_{x} \int_{x}^{\infty} u_0(y) \, dy$$

In the proposition we have seen that the solution essentially stays inside of an envelope enclosed with similarity profiles. This property gives the optimal order of convergence to the *N*-wave. In the following, we show our main result of this article:

Proof. (*Theorem* 1). First, we check that $u(x, t) \ge 0$ for all x > L. If not, there exists a continuity point (x_0, t_0) such that $u(x_0, t_0) < 0$, $x_0 > L$, $t_0 > 0$. Let $\xi(s)$, $0 < s < t_0$, be the genuine backward characteristic that emanates from the point (x_0, t_0) . Then, since the characteristic speed $f'(u(x_0, t_0))$ is negative, we have $\xi(0) > x_0 > L$, which contradicts to the assumption $\sup (u_0) \subset [-L, L]$. Similarly, we may show $u(x, t) \le 0$ for all x < -L.

Let q>0. Then, we may take T>0 such that $b_q(T)>L$. Estimates (33) and (34) imply

$$g((y - (L - \beta))/t) \leq u(x + \beta, t) \leq g(x/t), \quad 0 \leq x \leq b_q(t).$$

Since $\int_{\beta}^{b_q(t)+\beta} g((y-\beta)/t) dy = \int_{\beta}^{\infty} u(y+\beta,t) dy = q$, we obtain

$$\int_{\beta}^{\infty} |N_{p,q}(y-\beta,t) - u(y,t)| \, dy = 2 \int_{0}^{b_{q}(t)} (N_{p,q}(y,t) - u(y+\beta,t)) \, dy$$
$$\leq 2 \int_{0}^{b_{q}(t)} (g(y/t) - g((y-(L-\beta)/t)) \, dy.$$
(39)

So Lemma 8 implies that

$$\int_{\beta}^{\infty} |N_{p,q}(y-\beta,t) - u(y,t)| \, dy = O(B_q(t)).$$

If q = 0, we may take $\beta = L$ and the estimate is trivial. Similarly, we may show $\int_{-\infty}^{\beta} |N_{p,q}(y - \beta, t) - u(y, t)| dy = O(A_p(t))$. Hence, (13) is obtained from

$$\begin{split} ||N_{p,q}(x,t) - u(x,t)||_1 \\ \leqslant ||N_{p,q}(x,t) - N_{p,q}(x-\beta,t)||_1 + ||N_{p,q}(x-\beta,t) - u(x,t)||_1 \\ = O(A_p(t) + B_q(t)) = O(\max_x |N_{p,q}(x,t)|). \end{split}$$

The convergence order in (16) is obtained from (33) and (36). Let T > 0 be the constant in (36). Then, for t > T,

$$\int_{0}^{\infty} |u(x+\beta,t) - N_{p,q}(x,t)| \, dx = 2 \int_{0}^{b_{q}(t)} |N_{p,q}(x,t) - u(x+\beta,t)| \, dx$$
$$\leq 2 \int_{0}^{b_{q}(t)} \left| g\left(\frac{x}{t}\right) - g\left(\frac{x}{t+\alpha}\right) \right| \, dx. \tag{40}$$

So Lemma 7 implies that $\int_0^\infty |u(x+\beta,t) - N_{p,q}(x,t)| dx = O(t^{-1})$. Similarly we may show that $\int_{-\infty}^0 |u(x+\beta,t) - N_{p,q}(x,t)| dx = O(t^{-1})$ and, therefore, (16) is complete. \Box

Remark 10. We can estimate the coefficients in estimates (13) and (16). Under the power law, $f(u) = |u|^{\gamma}/\gamma$, Lemma 3 and estimate (39) imply that

$$\lim_{t \to \infty} \sqrt[\gamma]{t} ||u(x,t) - N_{p,q}(x,t)||_1 \leq 2 \left(\left(\frac{\gamma q}{\gamma - 1} \right)^{\frac{1}{\gamma}} + \left(\frac{\gamma p}{\gamma - 1} \right)^{\frac{1}{\gamma}} \right) L.$$

Under conditions (14), (15), Lemma 7 and estimate (40) imply that

$$\lim_{t \to \infty} t ||u(x+\beta,t) - N_{p,q}(x,t)||_1 \leq 2 \frac{\alpha(p+q)}{\gamma - 1}$$

Remark 11. The convergence order $O(\max_x |N_{p,q}(x,t)|)$ in (13) depends on the flux f(u). Since estimates in (27) imply that $f(B_q(t)) = O(t^{-1})$, we can easily see that $B_q(t) = O(t^{-\frac{1}{\gamma}})$ under the power law $f(u) = c|u|^{\gamma}$. Suppose the flux is strictly convex, i.e., f''(u) > 0, with f''(0) = c > 0. Then

$$\gamma = \lim_{u \to 0} \frac{uf'(u)}{f(u)} = 1 + \lim_{u \to 0} \frac{uf''(u)}{f'(u)}.$$

Substituting $u = B_q(t) = g(b_q(t)/t)$, we obtain

$$\lim_{t \to \infty} \frac{tB_q(t)c}{b_q(t)} = \gamma - 1 = O(1).$$

Since $b_q(t)B_q(t)$ is of order O(1), we may conclude that $b_q(t) = O(\sqrt{t})$ and $B_q(t) = O(1/\sqrt{t})$. So we have achieved the well-known convergence rate for the strictly convex case.

Remark 12. Let u(x,t) be a solution given by an *N*-wave $u(x,t) = N_{p,q}(x - L,t)$, $L \neq 0$. Then Lemma 3 implies that $||u(x,t) - N_{p,q}(x,t)||_1$ is of order $O(t^{-\frac{1}{\gamma}})$, not

 $o(t^{-\frac{1}{\gamma}})$. So it is clear that the solution or the *N*-wave should be placed at the correct place, say β , to get the optimal convergence rate $O(t^{-1})$ in (16) and the initial value should have some growth near the point in the sense of (15). Without these extra conditions on the initial value $u_0(x)$, convergence order of $O(t^{-\frac{1}{\gamma}})$ is optimal.

5. Uniform convergence order

Proposition 9 gives a uniform convergence order to the *N*-wave. In this section we study the uniform estimate of the solution under the power law $f(u) = |u|^{\gamma}/\gamma$, $\gamma > 1$. Let the bounded initial value u_0 have a compact support $\subset [-L, L]$. First consider the case $1 < \gamma \le 2$. From the Taylor series, we have $g(\frac{x}{t}) - g(\frac{x-L}{t}) = \frac{L}{t}g'(\frac{y}{t})$ for $y \in [x - L, x]$. Since g'(x) is an increasing function for x > 0, we have a uniform estimate

$$\left|g\left(\frac{x}{t}\right) - g\left(\frac{x-L}{t}\right)\right| \leq \frac{L}{t}g'\left(\frac{b_q(t)}{t}\right), \quad L < x < b_q(t).$$

Using Lemmas 4 and 6, the right-hand side is estimated by

$$\frac{L}{t}g'\left(\frac{b_q(t)}{t}\right) = \frac{L}{b_q(t)}\frac{b_q(t)}{t}g'\left(\frac{b_q(t)}{t}\right) = O\left(\frac{1}{b_q(t)}g\left(\frac{b_q(t)}{t}\right)\right) = O(t^{-\frac{2}{\gamma}}).$$

A similar estimate for $|g(\frac{x}{t}) - g(\frac{x+L}{t})|$ holds for $x \in (-a_p(t), -L)$, and Proposition 9 implies that

$$|N_{p,q}(x,t) - u(x,t)| = O(t^{-\frac{2}{\gamma}}), \quad -\min(a_p(t), a(t)) < x < \min(b_q(t), b(t)),$$
$$|N_{p,q}(x,t) - u(x,t)| = 0, \quad x < -\max(a_p(t), a(t)) \text{ or } x > \max(b_q(t), b(t)).$$

This estimate shows a uniform convergence order $O(t^{-\frac{2}{\gamma}})$ away from the discontinuity points x = -a(t), x = b(t). The essential difficulty in the uniform estimate lies in estimating the shock location.

It is convenient to consider similarity variables

$$\xi = x/\sqrt[3]{t}, \quad w(\xi, t) = \sqrt[3]{t} u(x, t), \quad N_{p,q}(\xi, t) = \sqrt[3]{t} N_{p,q}(x, t).$$
(41)

Then, the supports of solutions are also similarly transformed

$$\tilde{a}_p = \frac{a_p(t)}{\sqrt[\gamma]{t}} = \left(\frac{\gamma p}{\gamma - 1}\right)^{\frac{\gamma - 1}{\gamma}}, \quad \tilde{b}_q = \frac{b_q(t)}{\sqrt[\gamma]{t}} = \left(\frac{\gamma q}{\gamma - 1}\right)^{\frac{\gamma - 1}{\gamma}}, \quad \tilde{a}(t) = \frac{a(t)}{\sqrt[\gamma]{t}}, \quad \tilde{b}(t) = \frac{b(t)}{\sqrt[\gamma]{t}},$$

and the N-wave $N_{p,q}(x, t)$ is transformed to a time independent function

$$N_{p,q}(\xi) = \begin{cases} \operatorname{sign}(\xi) & -\tilde{a}_p < \xi < \tilde{b}_q, \\ 0 & \text{otherwise.} \end{cases}$$
(42)

The supports $[-a_p(t), b_q(t)]$ of the *N*-wave $N_{p,q}(x, t)$ and [-a(t), b(t)] of the similarity solution $w(\xi, t)$ are transformed to a fixed interval $[-\tilde{a}_p, \tilde{b}_q]$ and $[-\tilde{a}(t), \tilde{b}(t)]$, respectively. After the transformation we have a uniform estimate for $1 < \gamma \leq 2$,

$$|N_{p,q}(\xi) - w(\xi,t)| = O(t^{-\frac{1}{\gamma}}), \quad -\min(\tilde{a}_p, \tilde{a}(t)) < \xi < \min(\tilde{b}_q, \tilde{b}(t)),$$
$$|N_{p,q}(\xi) - w(\xi,t)| = 0, \quad \xi < -\max(\tilde{a}_p, \tilde{a}(t)) \text{ or } \xi > \max(\tilde{b}_q, \tilde{b}(t)).$$

Furthermore, since $|b_q(t) - b(t)|, |a_p(t) - a(t)| < L$, (35), we have

$$|\tilde{a}_p - \tilde{a}(t)| = O(1/\sqrt[q]{t}), \quad |\tilde{b}_q - \tilde{b}(t)| = O(1/\sqrt[q]{t}).$$

So we may conclude that the similarity solution $w(\xi, t)$, which is transformed by (41), converges to $N_{p,q}(\xi)$ with the uniform convergence order $O(1/\sqrt[7]{t})$ in the sense of graphs.

If $\gamma > 2$, g'(x) is a decreasing function for x > 0 and we have a uniform estimate

$$\left|g\left(\frac{x}{t}\right) - g\left(\frac{x \pm L}{t}\right)\right| \leq 2g\left(\frac{L}{t}\right) = O(t^{-\frac{1}{\gamma - 1}}), \quad -\infty < x < \infty.$$

So, for $\gamma > 2$, the uniform convergence order in similarity variables is

$$|N_{p,q}(\xi) - w(\xi,t)| = O(t^{-\frac{1}{\gamma(\gamma-1)}}), \quad -\min(\tilde{a}_p, \tilde{a}(t)) < \xi < \min(\tilde{b}_q, \tilde{b}(t)),$$
$$|N_{p,q}(\xi) - w(\xi,t)| = 0, \quad \xi < -\max(\tilde{a}_p, \tilde{a}(t)) \text{ or } \xi > \max(\tilde{b}_q, \tilde{b}(t)).$$

Now consider the uniform convergence order under assumptions (14) and (15). Let $\beta = 0$ for the convenience. The Taylor expansion implies that

$$g\left(\frac{x}{t}\right) - g\left(\frac{x}{t+\alpha}\right) = \frac{\alpha x}{t(t+\alpha)}g'\left(\frac{y}{t+\alpha}\right),$$

where $y \in (x, x + \alpha x/t)$. The left-hand side is an increasing function for all $\gamma > 1$ and x > 0. So, for x > 0, we have

$$\left|g\left(\frac{x}{t}\right) - g\left(\frac{x}{t+\alpha}\right)\right| = O\left(\frac{\alpha}{t}\frac{b_q(t)}{t+\alpha}g'\left(\frac{b_q(t)}{t+\alpha}\right)\right) = O(t^{-\frac{\gamma+1}{\gamma}})$$

and, hence,

$$|N_{p,q}(x,t) - u(x,t)| = \begin{cases} O(t^{-\frac{\gamma+1}{\gamma}}), & -\tilde{a}_p < x < \tilde{b}_q, \\ 0, & x < -\tilde{a}(t) \text{ or } x > \tilde{b}(t). \end{cases}$$

The support [-a(t), b(t)] of the solution u(x, t) is estimated by (37), and (17) gives

$$|b(t) - b_q(t)| = O((t + \alpha)^{1/\gamma} - t^{1/\gamma}) = O(t^{\frac{1-\gamma}{\gamma}}).$$

If we transform these estimates into similarity variables, we obtain

$$\begin{aligned} |N_{p,q}(\xi) - w(\xi,t)| &= O(1/t), \quad -\tilde{a}_p < \xi < \tilde{b}_q, \\ |N_{p,q}(\xi) - w(\xi,t)| &= 0, \quad \xi < -\tilde{a}(t) \text{ or } \xi > \tilde{b}(t), \\ |\tilde{a}(t) - \tilde{a}_p| &= O(1/t), \quad |\tilde{b}(t) - \tilde{b}_q| = O(1/t). \end{aligned}$$

So we may conclude a uniform convergence to $N_{p,q}(\xi)$ of order O(1/t) in the sense of graphs.

We summarize these uniform estimates in the following theorem:

Theorem 13. Let u(x, t) be the solution of the conservation law (1) with the power law $f(u) = |u|^{\gamma}/\gamma, \gamma > 1$. Let the bounded initial value u_0 have a compact support $\subset [-L, L]$ and invariance variables p, q (8). Then, the similarity solution $w(\xi, t)$ transformed by (41) uniformly converges to $N_{p,q}(\xi)$ in the sense of graphs and

$$\sup_{\xi \in \mathbf{R}} \left\{ \inf_{\zeta \in \mathbf{R}} \{ |w(\xi, t) - N_{p,q}(\zeta)| + |\xi - \zeta| \} \right\} = \begin{cases} O(t^{-\frac{1}{\gamma(\gamma - 1)}}), & \gamma \ge 2, \\ O(t^{-\frac{1}{\gamma}}), & 1 < \gamma \le 2. \end{cases}$$
(43)

Furthermore, if a point $x = \beta$ such that

$$p = -\int_{-\infty}^{\beta} u_0(y) \, dy, \quad q = \int_{\beta}^{\infty} u_0(y) \, dy \tag{14}$$

is unique, and there exist constants $\alpha > t_0$, $\delta > 0$ such that

$$u_0(x+\beta) \leq g(x/\alpha), \quad -\delta \leq x \leq 0; \quad u_0(x+\beta) \geq g(x/\alpha), \quad 0 \leq x \leq \delta, \tag{15}$$

then

$$\sup_{\xi \in \mathbf{R}} \left\{ \inf_{\zeta \in \mathbf{R}} \{ |w(\xi, t) - N_{p,q}(\zeta)| + |\xi - \zeta| \} \right\} = O(1/t).$$
(44)

220

6. A numerical example

Consider the solution to the Burgers equation

$$u_t + (\frac{1}{2}u^2)_x = 0, \quad t > 0, \ x \in \mathbf{R},$$
(45)

with its initial value

$$u(x,0) = u_0(x) = \begin{cases} -\sqrt{-x(3+x)}, & -3 < x < 0, \\ \sqrt{x(4-x)}, & 0 < x < 4, \\ 0 & \text{otherwise.} \end{cases}$$
(46)

In this example we can easily check that the center of the initial value is $\beta = 0$, the similarity profile is g(x) = x, and that invariants are

$$p = -\int_{-\infty}^{0} u_0(y) \, dy = 9\pi/8, \quad q = \int_{0}^{\infty} u_0(y) \, dy = 2\pi$$

So the asymptotic behavior of the solution u(x,t) is given by $N_{p,q}(x,t)$ with $p = 9\pi/8, q = 2\pi$. Near the center, $\beta = 0$, the initial value is bounded by

$$u_0(x) \leq g(x/0.5), -0.5 \leq x \leq 0 \quad u_0(x) \geq g(x/0.5), \ 0 \leq x \leq 0.5.$$

Let $x = \xi(t)$ be the characteristic line associated to the solution u(x, t) that emanates from a point $(x_0, 15), -a_p(15) < x_0 < b_q(15)$. Then, since $|N_{p,q}(x, 15)| < 1$ and $|u_0(\pm 0.5)| > 1$, we have $-0.5 < \xi(0) < 0.5$. Hence, u(x, 15) should be bounded by

$$g(x/15) \leq u(x, 15) \leq g(x/(15+0.5)), \quad -a_p(15) < x < 0,$$

$$g(x/(15+0.5)) \leq u(x, 15) \leq g(x/15), \quad 0 < x < b_q(15).$$
(47)

In Fig. 1, the *N*-wave $N_{p,q}(x,t)$ has been displayed together with $g(x/(t+\alpha))$ for $t = 15, \alpha = 0.5$. Estimate (47) implies that the solution u(x,t) lies inside of the small and thin area enclosed with two similarity profiles g(x/15) and g(x/15.5) for $-a_p(15) < x < b_q(15)$. This observation together with Lemma 7 is the essence of the proof of Theorem 1.

Now we present a computational simulation to observe the phenomenon numerically which has been explained above. We briefly introduce our numerical scheme. We consider a uniform space $x_{j+1/2} = (j + 1/2)\Delta x$ and time $t_n = n\Delta t$ mesh, where $j \in \mathbf{R}$, $n \in \mathbf{R}^+$. The cell-average of the solution is approximated by the solution of finite difference equation,

$$U_j^n \sim \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} u(x, t_n) dx$$

where U_i^n is given by an explicit method,

$$U_j^{n+1} = U_j^n - \frac{\Delta t}{\Delta x} (F(U_j^n, U_{j+1}^n) - F(U_{j-1}^n, U_j^n)).$$

In our examples we employ the numerical flux of the Godunov method,

$$F(U_j^n, U_{j+1}^n) = \begin{cases} U_{j+1}^n & \text{if } U_j^n + U_{j+1}^n \leqslant 0, U_{j+1}^n \leqslant 0, \\ U_j^n & \text{if } U_j^n + U_{j+1}^n > 0, U_j^n > 0, \\ 0 & \text{if } U_j^n < 0, U_{j+1}^n > 0. \end{cases}$$

In Fig. 4, we set $\Delta x = 0.01$ and $\Delta t = 0.0025$. The numerical approximations of the solution u(x,t) (dots) are displayed together with similarity profiles g(x/t) and $g(x/(t+\alpha))$ (lines), which make thin layers. We can clearly observe that the numerical solution lies inside of them for $t \ge 10$.

References

- A. Carpio, Large time behaviour in convection-diffusion equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (3) (1996) 551–574.
- [2] C.M. Dafermos, Regularity and large time behaviour of solutions of a conservation law without convexity, Proc. Roy. Soc. Edinburgh Sect. A 99 (1985) 201–239.
- [3] C.M. Dafermos, Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften, Vol. 325, Springer, Berlin, 2000, xvi+443pp.
- [4] R.J. DiPerna, Decay and asymptotic behavior of solutions to nonlinear hyperbolic systems of conservation laws, Indiana Univ. Math. J. 24 (11) (1974/75) 1047–1071.
- [5] M. Escobedo, J. Vazquez, E. Zuazua, Asymptotic behaviour and source-type solutions for a diffusion-convection equation, Arch. Rational Mech. Anal. 124 (1) (1993) 43–65.
- [6] M. Escobedo, E. Zuazua, Large time behavior for convection-diffusion equations in R^N, J. Funct. Anal. 100 (1) (1991) 119–161.
- [7] Y.-J. Kim, Piecewise self-similar solutions and a numerical scheme for scalar conservation laws, SIAM J. Numer. Anal. 40 (6) (2002) 2105–2132.
- [8] Y.-J. Kim, W.-M. Ni, On the rate of convergence and asymptotic profile of solutions to the viscous Burgers equation, Indiana Univ. Math. J. 51 (3) (2002) 727–752.
- [9] Y.-J. Kim, A.E. Tzavaras, Diffusive N-waves and metastability in Burgers equation, SIAM J. Math. Anal. 33 (3) (2001) 607–633.
- [10] P.D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957) 537-566.
- [11] T.-P. Liu, Decay to N-waves of solutions of general systems of nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math. 30 (5) (1977) 586–611.

Fig. 4. Numerical simulations for solutions to (45)–(46) (dots: Godunov scheme with $\Delta x = 0.01$, $\Delta t = 0.0025$): We may observe that the solution u(x, t) of the inviscid problem (1) lies inside of the thin layer eventually which consists of similarity profiles g(x/t) and $g(x/(t + \alpha))$. (a) Initial value (6.45) and g(x/0.5); (b) u(x, 1) and the layer at t = 1; (c) u(x, 2) and the layer at t = 2; (d) u(x, 3) and the layer at t = 3; (e) u(x, 5) and the layer at t = 5; (f) u(x, 10) and the layer at t = 10; (g) u(x, 10) near the shock; (h) u(x, 15) near the shock.

- [12] T.-P. Liu, M. Pierre, Source-solutions and asymptotic behavior in conservation laws, J. Differential Equations 51 (1984) 419–441.
- [13] T.-P. Liu, C.-H. Wang, On a nonstrictly hyperbolic system of conservation laws, J. Differential Equations 57 (1) (1985) 1–14.
- [14] M. Sablé-Tougeron, Lax *N*-waves for the mixed problem (French), Comm. Partial Differential Equations 19 (9–10) (1994) 1449–1479.
- [15] J. Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Science), Vol. 258, Springer, New York, Berlin, 1983, xxi+581pp.
- [16] G. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics, Wiley Interscience, New York, 1974.
- [17] K. Zumbrun, N-waves in elasticity, Comm. Pure Appl. Math. 46 (1) (1993) 75-95.
- [18] K. Zumbrun, Decay rates for nonconvex systems of conservation laws, Comm. Pure Appl. Math. 46 (1993) 353–386.