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Abstract

The goal of this article is to develop a new technique to obtain better asymptotic estimates

for scalar conservation laws. General convex flux, f 00ðuÞX0; is considered with an assumption

limu-0 uf 0ðuÞ=f ðuÞ ¼ g41: We show that, under suitable conditions on the initial value, its

solution converges to an N-wave in L1 norm with the optimal convergence order of Oð1=tÞ:
The technique we use in this article is to enclose the solution with two rarefaction waves. We

also show a uniform convergence order in the sense of graphs. A numerical example of this

phenomenon is included.
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1. Introduction

In this article we obtain the optimal convergence order of sign-changing solutions
to the Cauchy problem of a scalar conservation law in one-space dimension

ut þ f ðuÞx ¼ 0; uðx; 0Þ ¼ u0ðxÞ; xAR; t40; ð1Þ

where the initial value u0 is integrable and has a compact support,

u0AL1ðRÞ; suppðu0ÞC½�L;L	; LAR: ð2Þ
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We assume that the flux f ðuÞ is convex,

f ð0Þ ¼ f 0ð0Þ ¼ 0; f 00ðuÞX0; ð3Þ

and has an algebraic growth of order g41 near the zero state u ¼ 0 in the sense that

lim
u-0

uf 0ðuÞ=f ðuÞ ¼ g; g41: ð4Þ

Note that we may assume f ð0Þ ¼ f 0ð0Þ ¼ 0 without loss of generality.
It is well known that the nonlinearity in the flux f ðuÞ may generate a singularity

and, hence, a smooth solution does not exist globally in time. In this article we
consider weak solutions satisfying the entropy condition

uðx�; tÞXuðxþ; tÞ; xAR; tX0: ð5Þ

Since the convexity of the flux f ðuÞ is not strict, the flux can be linear in an interval
and the Cauchy problem may accept a discontinuity which violates the entropy
condition. This kind of discontinuities can be avoided by simply assuming that the
initial value does not include any of them, i.e., by assuming u0ðx�ÞXu0ðxþÞ; xAR:
Under the convexity hypothesis (3), f 0ðuÞ is an increasing function and the

similarity profile u ¼ gðxÞ is uniquely defined by the relation

gð0Þ ¼ 0; f 0ðgðxÞÞ ¼ x; xAR: ð6Þ

We can easily check that gðxÞ is also an increasing function and rarefaction waves
have this profile, i.e., uðx; tÞ ¼ gððx � x0Þ=ðt þ t0ÞÞ for some constants x0AR; t0X0:
It is well known that the asymptotic structure of the solution uðx; tÞ is a member of

two parameters family of N-waves,

Np;qðx; tÞ ¼
gðx=tÞ; �apðtÞoxobqðtÞ;
0 otherwise;

(
ð7Þ

where p; q are the invariants of the Cauchy problem (1), i.e.,

p ¼ � inf
x

Z x

�N

u0ðyÞ dy; q ¼ sup
x

Z
N

x

u0ðyÞ dy;

q � p ¼ M ¼
Z

u0ðyÞ dy; ð8Þ

and apðtÞ; bqðtÞX0 satisfy

p ¼ �
Z 0

�apðtÞ
gðy=tÞ dy; q ¼

Z bqðtÞ

0

gðy=tÞ dy: ð9Þ
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The convergence of the solution uðx; tÞ to the N-wave has been studied in various
contexts. Liu and Pierre [12] show

lim
t-N

tðr�1Þ=grjjuð�; tÞ � Np;qð�; tÞjjLr ¼ 0 ð10Þ

for the general L1 initial value u0 under the power law,

f ðuÞ ¼ 1

g
jujg; g41: ð11Þ

It is clear that the long-time behavior of the solution mostly depends on the structure
of the flux f ðuÞ near the zero state u ¼ 0 since uðx; tÞ-0 as t-N: So assumption (4)

is a natural generalization of the power law (11). If L1 norm is considered (r ¼ 1 in
(10)), the estimate gives the convergence to the N-wave, but it does not give any
convergence order.
Lax [10] shows the asymptotic structure for the strictly convex case f 00ðuÞ40;

which is the N-wave, and the technique is employed to show Oð1=
ffiffi
t

p
Þ convergence

rate in L1 norm by DiPerna [4] (also see [15, Chapter 16]). A different approach
based on generalized characteristics has been used in [3, Chapter XI] obtaining
similar results. Basically, the strictly convex flux represents the Burgers equation
g ¼ 2 and these techniques have been extended to genuinely nonlinear hyperbolic
systems (see [4,10,11,14]).
It is well known that the m-0 limit of solutions umðx; tÞ to a regularized problem,

u
m
t þ f ðumÞx ¼ mum

xx; umðx; 0Þ ¼ u0ðxÞ; ð12Þ

is the entropy solution of the inviscid problem. The asymptotic behavior of this type
of equation has been studied in [1,5,6] under the power laws. For the viscous Burgers
equation, diffusive N-waves are suggested for its asymptotics in [8,9,16]. The

convergence order to a diffusive N-wave in L1 norm is given in [8], which is Oð1=tÞ:
Since limm-0 limt-N umðx; tÞalimt-N limm-0 umðx; tÞ in general, we cannot expect

the same convergence order for the inviscid problem.
The main goal of this article is to develop a new technique to obtain better

asymptotic L1 estimates for general scalar conservation laws with the convexity. For
the case without the convexity, we refer to [2,13,17,18]. In our method we monitor
the evolution of the solution more closely. The main idea is to enclose the solution
uðx; tÞ with two rarefaction waves gðx=tÞ and gðx=ðt þ aÞÞ; or gððx þ LÞ=tÞ and
gððx � LÞ=tÞ; where constants a;L are decided from the initial value. In [7] a
piecewise self-similar solution has been employed to approximate a general solution.
That study shows the effectiveness of estimates based on rarefaction waves. The
main result in this article is:

Theorem 1. Let the flux f ðuÞ be convex (3) and have an algebraic growth rate g41
near the zero state (4). Let the bounded initial value u0 have a compact support
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C½�L;L	 and invariant constants p; q (8). Then, the solution uðx; tÞ to problem (1)
satisfies

jjuðx; tÞ � Np;qðx; tÞjj1pconst: max
x

jNp;qðx; tÞj as t-N: ð13Þ

Furthermore, if a point x ¼ b satisfying

�p  inf
x

Z x

�N

u0ðyÞ dy ¼
Z b

�N

u0ðyÞ dy; q  sup
x

Z
N

x

u0ðyÞ dy ¼
Z

N

b
u0ðyÞ dy ð14Þ

is unique and there exist constants a; d40 satisfying

ju0ðx þ bÞjXjgðx=aÞj; jxjpd; ð15Þ

then

jjuðx þ b; tÞ � Np;qðx; tÞjj1pconst: t�1 as t-N: ð16Þ

The asymptotic estimate in (13) shows that the solution converges to an N-wave in

L1 norm with the same order of the height of the N-wave. If the flux is given by the

power law, f ðuÞ ¼ jujg=g; g41; we can easily check that the order is Oðt�
1
gÞ: The

coefficients in the asymptotic estimates (13) and (16) can be estimated by the limits in
Lemmas 2 and 3 (see Remark 10). For the strictly convex case, f 0040; we can easily

verify that maxx jNp;qðx; tÞj is of order Oðt�
1
2Þ (see Remark 11).

The convergence order in (16) is optimal in the sense that we may construct a

solution which has the convergence order of Oðt�1Þ; but not oðt�1Þ: We can also
easily check that the uniqueness of the point x ¼ b in (14) is necessary and that
assumption (15) which restrict the profile of the initial value near the point x ¼ b is
also needed. Without these assumptions the convergence order in (13) is optimal
which is already mentioned in [4] for the strictly convex case.
Our approach is as follows. In Section 2, we consider the evolution of N-waves

under the power law (11). In this case we can explicitly evaluate the areas enclosed by
the N-wave Np;qðx; tÞ and rarefaction waves gðx=ðt þ aÞÞ or gððx7LÞ=tÞ (see Figs. 1
and 2). In Section 3, we obtain convergence orders of these areas for a general flux
satisfying (4). In Section 4, we show that the solution uðx; tÞ stays inside of the area
for sufficiently large t40 (Proposition 9) and prove Theorem 1. These estimates
also provide uniform convergence orders (Theorem 13) in the sense of graphs in
Section 5. Finally, in Section 6, we provide a numerical simulation which shows how
the solution evolves and be placed inside of the area.

2. Evolution of N-waves under the power law

In this section, roughly speaking, we consider the convergence order of the thin
areas enclosed by two N-waves, Fig. 1 or 2. These areas converge to zero as t-N;
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and the solution uðx; tÞ converges to the N-wave Np;qðx; tÞ with the same order in L1

norm. Consider N-waves under the power law

f ðuÞ ¼ 1

g
jujg; g41: ð11Þ

Then, the similarity profile gðxÞ is given by

gðxÞ ¼ signðxÞ
ffiffiffiffiffiffi
jxjg�1

p
;
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Fig. 2. The area of the thin layer enclosed with an N-wave Np;qðx; tÞ (solid lines) and a rarefaction wave

gððx7LÞ=tÞ (dashed lines) is of order Oð1=
ffiffi
tg

p
Þ as t-N: In this figure, p ¼ 9p=8; q ¼ 2p; t ¼ 15 and

L ¼ 1:
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Fig. 1. The area of the thin layer enclosed with an N-wave Np;qðx; tÞ (solid lines) and a rarefaction wave

gðx=ðt þ aÞÞ (dashed line) is of order Oð1=tÞ as t-N: In the figure, p ¼ 8p=9; q ¼ 2p; t ¼ 15 and a ¼ 0:5:
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and N-waves are by

Np;qðx; tÞ ¼
gðx=tÞ; �apðtÞoxobqðtÞ;
0 otherwise;

(

where

apðtÞ ¼
gp

g� 1

� �g�1
g ffiffi

tg
p

; bqðtÞ ¼
gq

g� 1

� �g�1
g ffiffi

tg
p

: ð17Þ

These N-waves are bounded by �ApðtÞpNp;qðx; tÞpBqðtÞ; where

ApðtÞ ¼ �g
�apðtÞ

t

� �
¼ gp

g� 1

� �1
g
t
�1g ¼ Oðt�

1
gÞ;

BqðtÞ ¼ g
bqðtÞ

t

� �
¼ gq

g� 1

� �1
g
t
�1g ¼ Oðt�

1
gÞ ð18Þ

measure the height of the N-wave.

Lemma 2. For any a40;

lim
t-N

t

Z bqðtÞ

�apðtÞ
Np;qðx; tÞ � g

x

t þ a

� �����
���� dx ¼ aðp þ qÞ

g� 1
: ð19Þ

Proof. Since gðx
t

t
tþaÞ ¼ gðx

t
Þð t

tþaÞ
1

g�1; we have

Z bqðtÞ

0

g
x

t þ a

� �
dx ¼ q

t

t þ a

� � 1
g�1

¼ q 1� a
t þ a

� � 1
g�1

:

Clearly, gðx=tÞ4gðx=ðt þ aÞÞ for x40; and the Taylor expansion gives

Z bqðtÞ

0

Np;qðx; tÞ � g
x

t þ a

� �
dx

¼ q � q 1� a
t þ a

� � 1
g�1

¼ aq

g� 1

1

t þ a
� ð2� gÞqa2

2ðg� 1Þ2
1

ðt þ aÞ2
y
3�2g
g�1 ;

where 1� a
tþapyp1: So we have

lim
t-N

t

Z bqðtÞ

0

Np;qðx; tÞ � g
x

t þ a

� �����
���� dx ¼ aq

g� 1
:
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Similarly we may show that limt-N t
R 0

�apðtÞ jNp;qðx; tÞ � gð x
tþaÞj dx ¼ ap

g�1; and obtain

(19). &

For example, consider the flux of the Burgers equation f ðuÞ ¼ 1
2

u2: In the case the

similarity profile is simply gðxÞ ¼ x: In Fig. 1, N-wave N8p=9;2pðx; tÞ has been

displayed together with a rarefaction wave gðx=ðt þ aÞÞ: Lemma 2 implies that the

thin area enclosed by these two waves converges to zero with order Oðt�1Þ as t-N:
Furthermore, we have the coefficient part of the convergence rate, which is
aðp þ qÞ=ðg� 1Þ:

Lemma 3. For any given L40;

lim
t-N

ffiffi
tg

p Z bqðtÞ

0

Np;qðx; tÞ � g
x � L

t

� �
dx ¼ gq

g� 1

� �1
g
L ð20Þ

and

lim
t-N

ffiffi
tg

p Z 0

�apðtÞ
g

x þ L

t

� �
� Np;qðx; tÞ dx ¼ gp

g� 1

� �1
g
L: ð21Þ

Proof. After a simple translation, we can easily check that

ffiffi
tg

p Z bqðtÞ

0

g
x

t

	 

� g

x � L

t

� �
dx ¼

ffiffi
tg

p Z L

0

g
x

t

	 

dx þ

ffiffi
tg

p Z bqðtÞ

bqðtÞ�L

g
x

t

	 

dx:

The first term is bounded by

0p
ffiffi
tg

p Z L

0

g
x

t

	 

dxp

ffiffi
tg

p
g

L

t

� �
L ¼

ffiffi
tg

p L

t

� � 1
g�1

L-0

as t-N since g41: The second term is bounded by

ffiffi
tg

p
g

bqðtÞ � L

t

� �
Lp

ffiffi
tg

p Z bqðtÞ

bqðtÞ�L

g
x

t

	 

dxp

ffiffi
tg

p
g

bqðtÞ
t

� �
L:

Since both of the lower and the upper bounds converge to ð gq
g�1Þ

1
gL as t-N; the

asymptotic estimate in (20) holds. The other estimate (21) is obtained in the same
way. &
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In Fig. 2, N-wave N9p=8;2pðx; tÞ has been displayed together with gððx7LÞ=tÞ for
L ¼ 1; t ¼ 15: Lemma 3 implies that the area enclosed with these waves has order

Oðt�
1
gÞ as t-N with a coefficient ð ffiffiffi

pg
p þ ffiffiffi

qg
p Þð g

g�1Þ
1
gL:

In the proof of Theorem 1 we show that these rarefaction waves form thin layers
and the solution uðx; tÞ of (1) lies inside of them over the interval ½�apðtÞ; bqðtÞ	:
These observations immediately give the convergence orders in Theorem 1.

3. Evolution of general N-waves

In this section we obtain estimates corresponding to Lemmas 2 and 3 with a
general flux under the condition

lim
u-0

uf 0ðuÞ=f ðuÞ ¼ g; g41: ð4Þ

First, we observe that the similarity profile gðxÞ also has the similar property near
x ¼ 0:

Lemma 4. Let gðxÞ be the similarity profile, i.e., f 0ðgðxÞÞ ¼ x: Then

lim
x-0

xg0ðxÞ=gðxÞ ¼ ðg� 1Þ�1: ð22Þ

Proof. Differentiating the basic relation f 0ðgðxÞÞ ¼ x with respect to x; we obtain
f 00ðgðxÞÞg0ðxÞ ¼ 1; i.e., f 00ðgðxÞÞ ¼ 1=g0ðxÞ: Apply the l’Hopital’s rule to the limit in
(4) and get

g ¼ 1þ lim
u-0

uf 00ðuÞ=f 0ðuÞ: ð23Þ

Setting u ¼ gðxÞ in (23), we obtain

lim
x-0

gðxÞf 00ðgðxÞÞ=f 0ðgðxÞÞ ¼ lim
x-0

gðxÞ=xg0ðxÞ ¼ g� 1: &

It is natural to expect that the relation f 0ðgðxÞÞ ¼ x between the similarity profile
gðxÞ and the wave speed f 0ðuÞ will give basic estimates in the evolution of solutions.
We start with a trivial lemma.

Lemma 5. Let a function GðxÞ be increasing on ½0; x0	 and have values Gð0Þ ¼ 0;
Gðx0Þ ¼ u0: Then Z x0

0

GðxÞ dx þ
Z u0

0

FðuÞ du ¼ x0u0; ð24Þ

where FðuÞ is the unique function satisfying FðGðxÞÞ ¼ x for xAð0; x0Þ:
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Proof. The integration by parts and the change of variable u ¼ GðxÞ giveZ u0

0

FðuÞ du ¼
Z x0

0

xG0ðxÞ dx ¼ ½xGðxÞ	x00 �
Z x0

0

GðxÞ dx;

that implies (24). &

In the following lemma we observe how the height and the width of an N-wave
evolve asymptotically. Remember that the support ½�apðtÞ; bqðtÞ	 measures the width
of the N-wave Np;qðx; tÞ and the values at the end points,

ApðtÞ  �g
�apðtÞ

t

� �
; BqðtÞ  g

bqðtÞ
t

� �
; ð25Þ

measure the height.

Lemma 6. Let ½�apðtÞ; bqðtÞ	 be the support of an N-wave Np;qðx; tÞ and ApðtÞ ¼
�gð�apðtÞ=tÞ;BqðtÞ ¼ gðbqðtÞ=tÞ: Then

lim
t-N

tf ð�ApðtÞÞ ¼
p

g� 1
; lim

t-N

apðtÞApðtÞ ¼
gp

g� 1
; ð26Þ

lim
t-N

tf ðBqðtÞÞ ¼
q

g� 1
; lim

t-N

bqðtÞBqðtÞ ¼
gq

g� 1
: ð27Þ

Proof. Setting GðxÞ ¼ gðx=tÞ and FðuÞ ¼ tf 0ðuÞ; we have FðGðxÞÞ ¼ x for x40;
Gð0Þ ¼ 0 and GðbqðtÞÞ ¼ BqðtÞ: So Lemma 5 implies that

Z bqðtÞ

0

gðx=tÞ dx þ
Z BqðtÞ

0

tf 0ðuÞ du ¼ bqðtÞBqðtÞ:

Since
R bqðtÞ
0

gðx=tÞ dx ¼ q; f ð0Þ ¼ 0 and bqðtÞ=t ¼ f 0ðBqðtÞÞ; we have

q þ tf ðBqðtÞÞ ¼ tf 0ðBqðtÞÞBqðtÞ:

Take t-N limit after dividing the both side by tf ðBqðtÞÞ and obtain

q

limt-N tf ðBqðtÞÞ
þ 1 ¼ g;

which implies the first part of (27). Since bqðtÞBqðtÞ ¼ q þ tf ðBqðtÞÞ; the second part

of (27) is clear from the first part. Estimate (26) is obtained similarly. &

Now we consider the property corresponding to Lemma 2.
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Lemma 7. For any a40;

lim
t-N

t

Z bqðtÞ

�apðtÞ
Np;qðx; tÞ � g

x

t þ a

� �����
���� dx ¼ aðp þ qÞ

g� 1
: ð28Þ

Proof. Let h  x=t � x=ðt þ aÞ ¼ ax=ðt þ aÞt: Since gðx=tÞ4gðx=ðt þ aÞÞ on the
interval ð0; bqðtÞÞ; we have

Z bqðtÞ

0

g
x

t

	 

� g

x

t þ a

� �����
���� dx ¼ a

t þ a

Z bqðtÞ

0

x

t

gðx
t
Þ � gðx

t
� hÞ

h
dx:

Since bqðtÞ=t-0 as t-N; estimate (22) implies that

lim
t-N

t

Z bqðtÞ

0

g
x

t

	 

� g

x

t þ a

� �����
���� dx ¼ lim

t-N

at

t þ a

Z bqðtÞ

0

1

g� 1
g

x

t

	 

dx ¼ aq

g� 1
:

Similarly, we may show that limt-N t
R 0

�apðtÞ jgð
x
t
Þ � gð x

tþaÞ jdx ¼ ap
g�1 and complete

(28). &

Now we consider the last lemma which corresponds to Lemma 3.

Lemma 8. For any L40;

Z bqðtÞ

0

g
x

t

	 

� g

x � L

t

� �����
���� dx þ

Z 0

�apðtÞ
g

x

t

	 

� g

x þ L

t

� �����
���� dx

¼ OðApðtÞ þ BqðtÞÞ: ð29Þ

Proof. We can easily check that

Z bqðtÞ

0

g
x

t

	 

� g

x � L

t

� �
dx ¼ �

Z 0

�L

g
x

t

	 

dx þ

Z bqðtÞ

bqðtÞ�L

g
x

t

	 

dx:

The first term is bounded by

0p�
Z 0

�L

g
x

t

	 

dxp� g

�L

t

� �
L ¼ OðApðtÞÞ

as t-N: The second term is bounded by

0p
Z bqðtÞ

bqðtÞ�L

g
x

t

	 

dxpg

bqðtÞ
t

� �
L ¼ OðBqðtÞÞ:
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So we have obtained the half of (29), i.e.,
R bqðtÞ
0 jgðx

t
Þ � gðx�L

t
Þj dx ¼ OðApðtÞ þ BqðtÞÞ:

The other half is obtained similarly. &

4. Optimal convergence order in L1 norm

In the followings we briefly review the theory of characteristics (see [3, Chapter XI]
for a detailed introduction). A minimal backward characteristic x ¼ x�ðtÞ associated
to the solution uðx; tÞ that emanates from a given point ðx0; t0Þ is a straight line in the
half-plane R � Rþ such that x�ðtÞ ¼ x0 þ ðt � t0Þf 0ðuðx0�; t0ÞÞ; 0otot0: A maximal
one x ¼ xþðtÞ is defined similarly by xþðtÞ ¼ x0 þ ðt � t0Þf 0ðuðx0þ; t0ÞÞ: If the
solution uðx; tÞ is continuous at the given point ðx0; t0Þ; then they are identical, and
we write xðtÞ  x�ðtÞ ¼ xþðtÞ: The solution uðx; tÞ is constant along a characteristic
line, i.e., uðx7ðtÞ; tÞ ¼ uðx07; t0Þ; 0otot0: Setting %x7 ¼ x0 � t0f

0ðuðx07; t0ÞÞ; we
may write it as x7ðtÞ ¼ %x þ tf 0ðu0ð %x7ÞÞ:
A characteristic line x ¼ %x þ tf 0ðu0ð %xÞÞ is called a divide if there exists a sequence

ðxm; tmÞ such that tm-N as m-N and xm þ ðt � tmÞf 0ðuðxm; tmÞÞ- %x þ tf 0ðu0ð %xÞÞ
uniformly on any closed interval ½0;T 	 as m-N: In the case we may show that

Z %x

z

½u0ðyÞ � u0ð %xÞ	 dyp0; �NozoN: ð30Þ

(See Theorem 11.4.1 in [3].) It is well known that, if q ¼
R
N

b u0ðyÞ dy ¼
supx

R
N

x
u0ðyÞ dy; then, for all t40; uðb; tÞ ¼ 0 and

Z b

�N

uðy; tÞ dy ¼ �p;

Z
N

b
uðy; tÞ dy ¼ q: ð31Þ

(See Theorem 11.4.2 in [3].)
An N-wave Np;qðx; tÞ is a special solution of the conservation law (1). Let vðx; tÞ ¼

Np;qðx � L; tÞ and xðtÞ be a characteristic line that emanates from a point ðx0; t0Þ;
L � apðt0Þox0oL þ bqðt0Þ: Then the slope of the characteristic line is 1=f 0ðgððx0 �
LÞ=t0ÞÞ ¼ t0=ðx0 � LÞ and it always passes through the point ðL; 0Þ:
Suppose two solutions u1; u2 are given. Since the flux is convex, f 00

X0; we may
compare the solutions using the wave speed, i.e.,

f 0ðu1ðx0; t0ÞÞpf 0ðu2ðx0; t0ÞÞ ) u1ðx0; t0Þpu2ðx0; t0Þ: ð32Þ

The following proposition comes from these observations on characteristics and
their speed of propagation.

Proposition 9. Let the flux f ðuÞ be convex and have an algebraic growth rate near the

zero state as in (4). Let the bounded initial value u0 have a compact support C½�L;L	
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and invariant constants p; q in (8). Then, for any point bAR that satisfies

�p  inf
x

Z x

�N

u0ðyÞ dy ¼
Z b

�N

u0ðyÞ dy; q  sup
x

Z
N

x

u0ðyÞ dy ¼
Z

N

b
u0ðyÞ dy; ð14Þ

the solution uðx; tÞ to problem (1) satisfies

juðx þ b; tÞjpjgðx=tÞj; �NoxoN; ð33Þ

gððx � LÞ=tÞpuðx; tÞpgððx þ LÞ=tÞ; �aðtÞoxobðtÞ; tX0; ð34Þ

where bðtÞ ¼ maxfxAsuppðuð�; tÞÞg and �aðtÞ ¼ minfxAsuppðuð�; tÞÞg are estimated

by

japðtÞ � aðtÞjpL; jbqðtÞ � bðtÞjpL: ð35Þ

Furthermore, if such a point b in (14) is unique and

jgðx=aÞjpju0ðx þ bÞj; jxjpd; ð15Þ

for some constants a; d40; then there exists T40 such that

jgðx=ðt þ aÞÞjpjuðx þ b; tÞj; aðtÞoxobðtÞ; tXT ; ð36Þ

where the support suppðuðx; tÞÞ ¼ ½�aðtÞ; bðtÞ	 is estimated by

apðtÞpaðtÞ � bpapðt þ aÞ; bqðtÞpbðtÞ � bpbqðt þ aÞ ð37Þ

for all t4T :

Proof. Let vðx; tÞ ¼ gðx=tÞ: Then we can easily check that f 0ðvÞx ¼ 1=t and vð0; tÞ ¼
0 for all t40: The Oleinik estimate, f 0ðuÞxp1=t; gives f 0ðuÞxpf 0ðvÞx: Since uðb; tÞ ¼
vð0; tÞ ¼ 0 for all t40; we obtain f 0ðuðx þ b; tÞÞpf 0ðvðx; tÞÞ for x40 and f 0ðuðx þ
b; tÞÞXf 0ðvðx; tÞÞ for xo0: The convexity of the flux implies (33).
Fix t040 and �aðt0Þox0obðt0Þ: Let x7ðtÞ be the extremal backward

characteristics associated to the solution uðx; tÞ that emanates from the point
ðx0; t0Þ: Since y ¼ �aðtÞ; bðtÞ are (generalized) characteristics, the uniqueness of the
forward characteristics implies that �aðtÞox7ðtÞobðtÞ for all 0otot0 and, hence,

�Lpx7ð0ÞpL: Since backward characteristics associated to special solutions

v7ðx; tÞ ¼ gððx7LÞ=tÞ always pass through the points ð7L; 0Þ respectively, the
speed of characteristics are ordered as

f 0 g
x � L

t

� �� �
pf 0ðuðx7; tÞÞpf 0 g

x þ L

t

� �� �
; �aðtÞoxobðtÞ; tX0:

Y. J. Kim / J. Differential Equations 192 (2003) 202–224 213



So we may conclude (34) using (32). Furthermore, since

q ¼ sup
x

Z
N

x

uðx; tÞ dxX

Z bðtÞ

L

uðx; tÞ dx

X

Z bðtÞ

L

g
x � L

t

� �
dx ¼

Z bðtÞ�L

0

g
x

t

	 

dx;

we have bðtÞ � LpbqðtÞ: On the other hand, since there exists b4� L such thatR
N

b uðx; tÞ dx ¼ q (31),

q ¼
Z bðtÞ

b
uðx; tÞ dxp

Z bðtÞ

b
g

x þ L

t

� �
dx

p
Z bðtÞ

�L

g
x þ L

t

� �
dx ¼

Z bðtÞþL

0

g
x

t

	 

dx:

So bðtÞ þ LXbqðtÞ and we may conclude that jbqðtÞ � bðtÞjpL: The other half of (35)

can be shown similarly.
Now we show (36) and (37) assuming (15) and the uniqueness of the point x ¼ b

that satisfies (14). Note that we may assume that b ¼ 0 without loss of generality.
The uniqueness of such a point implies thatZ x

0

u0ðyÞ dy40 for all xa0: ð38Þ

Let y ¼ xt
�ðsÞ; 0osot be the minimal backward characteristic that emanates from

the point ðbðtÞ; tÞ (see Fig. 3). Then, since xt
�ð0Þ is decreasing as t-N; there exists a

point %x such that xt
�ð0Þ- %x as t-N: Since juðx; tÞj-0 as t-N and uðx; tÞ is

(x, t)
t > T

T

y = ξ t
x (s) y = ξ_t (s)

y = ξ_T (s)

t
x

Tξ_ (0
ξ_ (0

δξ (0) ) b(0) L y
t
 )

s y = b(s)

Fig. 3. Characteristics in the proof of Proposition 9.
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constant along a characteristic line, uð %x; tÞ-0 as t-0þ and the constant
characteristic line y ¼ %xð %x þ tf 0ð0ÞÞ is a divide. Putting z ¼ 0 in (30) we obtain

Z %x

0

u0ðyÞ dyp0:

Hence, (38) implies that %x ¼ 0: So there exists T40 such that 0pxt
�ð0Þpd for all

t4T : To complete estimate (36) it is enough to consider continuity points of the
solution since there is no isolated discontinuity (the Oleinik estimate). Clearly, for

any 0oxobðtÞ; t4T ; the backward characteristic xt
xð�Þ that emanates from the point

ðx; tÞ satisfy 0oxt
xð0Þod and, hence,

uðx; tÞ ¼ u0ðxt
xð0ÞÞ4gððxt

xð0ÞÞ=aÞ:

Let u0ðxt
xð0ÞÞ ¼ gðxt

xð0Þ=a0 for some a040). Then, clearly, a0oa and the forward

characteristic associated to vðx; tÞ ¼ gðx=ða0 þ tÞÞ that emanates from the point

ðxt
xð0Þ; 0Þ is identical to xt

xðsÞ for 0osot: Hence,

uðx; tÞ ¼ g
x

a0 þ t

� �
4g

x

aþ t

� �
; 0oxobðtÞ; t4T :

Similarly, we may show that uðx; tÞogðx=ðt þ aÞÞ for any �aðtÞoxo0; t4T and
obtain (36).
Furthermore, since

q ¼
Z bðtÞ

0

uðx; tÞ dxp
Z bðtÞ

0

g
x

t

	 

dx;

q ¼
Z bðtÞ

0

uðx; tÞ dxX

Z bðtÞ

0

g
x

t þ a

� �
dx

for t4T ; we have bqðtÞpbðtÞpbqðt þ aÞ: Similarly, apðtÞpaðtÞpapðt þ aÞ and (37) is
obtained. &

The existence of b that satisfies (14) is obvious. First, since
R x

�N
u0ðyÞ dy is

continuous and suppðu0ÞC½�L;L	; there exists a point bA½�L;L	 such that

Z b

�N

u0ðyÞ dy ¼ inf
x

Z x

�N

u0ðyÞ dy:

Furthermore, since

Z
N

b
u0ðyÞ dy �

Z
N

x

u0ðyÞ dy ¼
Z x

b
u0ðyÞ dy ¼

Z x

�N

u0ðyÞ dy �
Z b

�N

u0ðyÞ dyX0;
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the point bA½�L;L	 also satisfies

Z
N

b
u0ðyÞ dy ¼ sup

x

Z
N

x

u0ðyÞ dy:

In the proposition we have seen that the solution essentially stays inside of an
envelope enclosed with similarity profiles. This property gives the optimal order of
convergence to the N-wave. In the following, we show our main result of this article:

Proof. (Theorem 1). First, we check that uðx; tÞX0 for all x4L: If not, there exists a
continuity point ðx0; t0Þ such that uðx0; t0Þo0; x04L; t040: Let xðsÞ; 0osot0;
be the genuine backward characteristic that emanates from the point ðx0; t0Þ: Then,
since the characteristic speed f 0ðuðx0; t0ÞÞ is negative, we have xð0Þ4x04L; which
contradicts to the assumption suppðu0ÞC½�L;L	: Similarly, we may show uðx; tÞp0
for all xo� L:
Let q40: Then, we may take T40 such that bqðTÞ4L: Estimates (33) and (34)

imply

gððy � ðL � bÞÞ=tÞpuðx þ b; tÞpgðx=tÞ; 0pxpbqðtÞ:

Since
R bqðtÞþb
b gððy � bÞ=tÞ dy ¼

R
N

b uðy þ b; tÞ dy ¼ q; we obtain

Z
N

b
jNp;qðy � b; tÞ � uðy; tÞj dy ¼ 2

Z bqðtÞ

0

ðNp;qðy; tÞ � uðy þ b; tÞÞ dy

p 2

Z bqðtÞ

0

ðgðy=tÞ � gððy � ðL � bÞ=tÞÞ dy: ð39Þ

So Lemma 8 implies that

Z
N

b
jNp;qðy � b; tÞ � uðy; tÞj dy ¼ OðBqðtÞÞ:

If q ¼ 0; we may take b ¼ L and the estimate is trivial. Similarly, we may showR b
�N

jNp;qðy � b; tÞ � uðy; tÞj dy ¼ OðApðtÞÞ: Hence, (13) is obtained from

jjNp;qðx; tÞ � uðx; tÞjj1

pjjNp;qðx; tÞ � Np;qðx � b; tÞjj1 þ jjNp;qðx � b; tÞ � uðx; tÞjj1

¼ OðApðtÞ þ BqðtÞÞ ¼ OðmaxxjNp;qðx; tÞjÞ:
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The convergence order in (16) is obtained from (33) and (36). Let T40 be the
constant in (36). Then, for t4T ;

Z
N

0

juðx þ b; tÞ � Np;qðx; tÞj dx ¼ 2

Z bqðtÞ

0

jNp;qðx; tÞ � uðx þ b; tÞj dx

p 2

Z bqðtÞ

0

g
x

t

	 

� g

x

t þ a

� �����
���� dx: ð40Þ

So Lemma 7 implies that
R
N

0 juðx þ b; tÞ � Np;qðx; tÞj dx ¼ Oðt�1Þ: Similarly we may
show that

R 0

�N
juðx þ b; tÞ � Np;qðx; tÞj dx ¼ Oðt�1Þ and, therefore, (16) is com-

plete. &

Remark 10. We can estimate the coefficients in estimates (13) and (16). Under the

power law, f ðuÞ ¼ jujg=g; Lemma 3 and estimate (39) imply that

lim
t-N

ffiffi
tg

p
jjuðx; tÞ � Np;qðx; tÞjj1p2

gq

g� 1

� �1
g
þ gp

g� 1

� �1
g

0
@

1
AL:

Under conditions (14), (15), Lemma 7 and estimate (40) imply that

lim
t-N

tjjuðx þ b; tÞ � Np;qðx; tÞjj1p2
aðp þ qÞ
g� 1

:

Remark 11. The convergence order Oðmaxx jNp;qðx; tÞjÞ in (13) depends on the flux

f ðuÞ: Since estimates in (27) imply that f ðBqðtÞÞ ¼ Oðt�1Þ; we can easily see that

BqðtÞ ¼ Oðt�
1
gÞ under the power law f ðuÞ ¼ cjujg: Suppose the flux is strictly convex,

i.e., f 00ðuÞ40; with f 00ð0Þ ¼ c40: Then

g ¼ lim
u-0

uf 0ðuÞ
f ðuÞ ¼ 1þ lim

u-0

uf 00ðuÞ
f 0ðuÞ :

Substituting u ¼ BqðtÞ ¼ gðbqðtÞ=tÞ; we obtain

lim
t-N

tBqðtÞc
bqðtÞ

¼ g� 1 ¼ Oð1Þ:

Since bqðtÞBqðtÞ is of order Oð1Þ; we may conclude that bqðtÞ ¼ Oð
ffiffi
t

p
Þ and BqðtÞ ¼

Oð1=
ffiffi
t

p
Þ: So we have achieved the well-known convergence rate for the strictly

convex case.

Remark 12. Let uðx; tÞ be a solution given by an N-wave uðx; tÞ ¼ Np;qðx �

L; tÞ; La0: Then Lemma 3 implies that jjuðx; tÞ � Np;qðx; tÞjj1 is of order Oðt�
1
gÞ; not
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oðt�
1
gÞ: So it is clear that the solution or the N-wave should be placed at the correct

place, say b; to get the optimal convergence rate Oðt�1Þ in (16) and the initial value
should have some growth near the point in the sense of (15). Without these extra

conditions on the initial value u0ðxÞ; convergence order of Oðt�
1
gÞ is optimal.

5. Uniform convergence order

Proposition 9 gives a uniform convergence order to the N-wave. In this section we

study the uniform estimate of the solution under the power law f ðuÞ ¼ jujg=g; g41:
Let the bounded initial value u0 have a compact support C½�L;L	: First consider
the case 1ogp2: From the Taylor series, we have gðx

t
Þ � gðx�L

t
Þ ¼ L

t
g0ðy

t
Þ for yA

½x � L; x	: Since g0ðxÞ is an increasing function for x40; we have a uniform estimate

g
x

t

	 

� g

x � L

t

� �����
����pL

t
g0 bqðtÞ

t

� �
; LoxobqðtÞ:

Using Lemmas 4 and 6, the right-hand side is estimated by

L

t
g0 bqðtÞ

t

� �
¼ L

bqðtÞ
bqðtÞ

t
g0 bqðtÞ

t

� �
¼ O

1

bqðtÞ
g

bqðtÞ
t

� �� �
¼ Oðt�

2
gÞ:

A similar estimate for jgðx
t
Þ � gðxþL

t
Þj holds for xAð�apðtÞ;�LÞ; and Proposition 9

implies that

jNp;qðx; tÞ � uðx; tÞj ¼ Oðt�
2
gÞ; �minðapðtÞ; aðtÞÞoxominðbqðtÞ; bðtÞÞ;

jNp;qðx; tÞ � uðx; tÞj ¼ 0; xo�maxðapðtÞ; aðtÞÞ or x4maxðbqðtÞ; bðtÞÞ:

This estimate shows a uniform convergence order Oðt�
2
gÞ away from the

discontinuity points x ¼ �aðtÞ; x ¼ bðtÞ: The essential difficulty in the uniform
estimate lies in estimating the shock location.
It is convenient to consider similarity variables

x ¼ x=
ffiffi
tg

p
; wðx; tÞ ¼

ffiffi
tg

p
uðx; tÞ; Np;qðx; tÞ ¼

ffiffi
tg

p
Np;qðx; tÞ: ð41Þ

Then, the supports of solutions are also similarly transformed

ãp ¼ apðtÞffiffi
tg

p ¼ gp

g� 1

� �g�1
g
; b̃q ¼ bqðtÞffiffi

tg
p ¼ gq

g� 1

� �g�1
g
; ãðtÞ ¼ aðtÞffiffi

tg
p ; b̃ðtÞ ¼ bðtÞffiffi

tg
p ;
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and the N-wave Np;qðx; tÞ is transformed to a time independent function

Np;qðxÞ ¼
signðxÞ

ffiffiffiffiffiffi
jxjg�1

p
; �ãpoxob̃q;

0 otherwise:

(
ð42Þ

The supports ½�apðtÞ; bqðtÞ	 of the N-wave Np;qðx; tÞ and ½�aðtÞ; bðtÞ	 of the similarity

solution wðx; tÞ are transformed to a fixed interval ½�ãp; b̃q	 and ½�ãðtÞ; b̃ðtÞ	;
respectively. After the transformation we have a uniform estimate for 1ogp2;

jNp;qðxÞ � wðx; tÞj ¼ Oðt�
1
gÞ; �minðãp; ãðtÞÞoxominðb̃q; b̃ðtÞÞ;

jNp;qðxÞ � wðx; tÞj ¼ 0; xo�maxðãp; ãðtÞÞ or x4maxðb̃q; b̃ðtÞÞ:

Furthermore, since jbqðtÞ � bðtÞj; japðtÞ � aðtÞjoL; (35), we have

jãp � ãðtÞj ¼ Oð1=
ffiffi
tg

p
Þ; jb̃q � b̃ðtÞj ¼ Oð1=

ffiffi
tg

p
Þ:

So we may conclude that the similarity solution wðx; tÞ; which is transformed by (41),

converges to Np;qðxÞ with the uniform convergence order Oð1=
ffiffi
tg

p
Þ in the sense of

graphs.
If g42; g0ðxÞ is a decreasing function for x40 and we have a uniform estimate

g
x

t

	 

� g

x7L

t

� �����
����p2g

L

t

� �
¼ Oðt�

1
g�1Þ; �NoxoN:

So, for g42; the uniform convergence order in similarity variables is

jNp;qðxÞ � wðx; tÞj ¼ Oðt�
1

gðg�1ÞÞ; �minðãp; ãðtÞÞoxominðb̃q; b̃ðtÞÞ;

jNp;qðxÞ � wðx; tÞj ¼ 0; xo�maxðãp; ãðtÞÞ or x4maxðb̃q; b̃ðtÞÞ:

Now consider the uniform convergence order under assumptions (14) and (15). Let
b ¼ 0 for the convenience. The Taylor expansion implies that

g
x

t

	 

� g

x

t þ a

� �
¼ ax

tðt þ aÞ g0 y

t þ a

� �
;

where yAðx; x þ ax=tÞ: The left-hand side is an increasing function for all g41 and
x40: So, for x40; we have

g
x

t

	 

� g

x

t þ a

� �����
���� ¼ O

a
t

bqðtÞ
t þ a

g0 bqðtÞ
t þ a

� �� �
¼ Oðt�

gþ1
g Þ
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and, hence,

jNp;qðx; tÞ � uðx; tÞj ¼ Oðt�
gþ1
g Þ; �ãpoxob̃q;

0; xo� ãðtÞ or x4b̃ðtÞ:

8<
:

The support ½�aðtÞ; bðtÞ	 of the solution uðx; tÞ is estimated by (37), and (17) gives

jbðtÞ � bqðtÞj ¼ Oððt þ aÞ1=g � t1=gÞ ¼ Oðt
1�g
g Þ:

If we transform these estimates into similarity variables, we obtain

jNp;qðxÞ � wðx; tÞj ¼ Oð1=tÞ; �ãpoxob̃q;

jNp;qðxÞ � wðx; tÞj ¼ 0; xo� ãðtÞ or x4b̃ðtÞ;

jãðtÞ � ãpj ¼ Oð1=tÞ; jb̃ðtÞ � b̃qj ¼ Oð1=tÞ:

So we may conclude a uniform convergence to Np;qðxÞ of order Oð1=tÞ in the sense of
graphs.
We summarize these uniform estimates in the following theorem:

Theorem 13. Let uðx; tÞ be the solution of the conservation law (1) with the power law

f ðuÞ ¼ jujg=g; g41: Let the bounded initial value u0 have a compact support C½�L;L	
and invariance variables p; q (8). Then, the similarity solution wðx; tÞ transformed by

(41) uniformly converges to Np;qðxÞ in the sense of graphs and

sup
xAR

inf
zAR

fjwðx; tÞ � Np;qðzÞj þ jx� zjg
� �

¼
Oðt�

1
gðg�1ÞÞ; gX2;

Oðt�
1
gÞ; 1ogp2:

8><
>: ð43Þ

Furthermore, if a point x ¼ b such that

p ¼ �
Z b

�N

u0ðyÞ dy; q ¼
Z

N

b
u0ðyÞ dy ð14Þ

is unique, and there exist constants a4t0; d40 such that

u0ðx þ bÞpgðx=aÞ; � dpxp0; u0ðx þ bÞXgðx=aÞ; 0pxpd; ð15Þ

then

sup
xAR

inf
zAR

fjwðx; tÞ � Np;qðzÞj þ jx� zjg
� �

¼ Oð1=tÞ: ð44Þ
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6. A numerical example

Consider the solution to the Burgers equation

ut þ ð1
2

u2Þx ¼ 0; t40; xAR; ð45Þ

with its initial value

uðx; 0Þ ¼ u0ðxÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xð3þ xÞ

p
; �3oxo0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð4� xÞ
p

; 0oxo4;

0 otherwise:

8><
>: ð46Þ

In this example we can easily check that the center of the initial value is b ¼ 0; the
similarity profile is gðxÞ ¼ x; and that invariants are

p ¼ �
Z 0

�N

u0ðyÞ dy ¼ 9p=8; q ¼
Z

N

0

u0ðyÞ dy ¼ 2p:

So the asymptotic behavior of the solution uðx; tÞ is given by Np;qðx; tÞ with

p ¼ 9p=8; q ¼ 2p: Near the center, b ¼ 0; the initial value is bounded by

u0ðxÞpgðx=0:5Þ; � 0:5pxp0 u0ðxÞXgðx=0:5Þ; 0pxp0:5:

Let x ¼ xðtÞ be the characteristic line associated to the solution uðx; tÞ that emanates
from a point ðx0; 15Þ;�apð15Þox0obqð15Þ: Then, since jNp;qðx; 15Þjo1 and

ju0ð70:5Þj41; we have �0:5oxð0Þo0:5: Hence, uðx; 15Þ should be bounded by

gðx=15Þpuðx; 15Þpgðx=ð15þ 0:5ÞÞ; �apð15Þoxo0;

gðx=ð15þ 0:5ÞÞpuðx; 15Þpgðx=15Þ; 0oxobqð15Þ: ð47Þ

In Fig. 1, the N-wave Np;qðx; tÞ has been displayed together with gðx=ðt þ aÞÞ for
t ¼ 15; a ¼ 0:5: Estimate (47) implies that the solution uðx; tÞ lies inside of the small
and thin area enclosed with two similarity profiles gðx=15Þ and gðx=15:5Þ for
�apð15Þoxobqð15Þ: This observation together with Lemma 7 is the essence of the

proof of Theorem 1.
Now we present a computational simulation to observe the phenomenon

numerically which has been explained above. We briefly introduce our numerical
scheme. We consider a uniform space xjþ1=2 ¼ ð j þ 1=2ÞDx and time tn ¼ nDt mesh,

where jAR; nARþ: The cell-average of the solution is approximated by the solution
of finite difference equation,

Un
j B

1

Dx

Z xjþ1=2

xj�1=2

uðx; tnÞ dx;
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where Un
j is given by an explicit method,

Unþ1
j ¼ Un

j � Dt

Dx
ðFðUn

j ;Un
jþ1Þ � FðUn

j�1;Un
j ÞÞ:

In our examples we employ the numerical flux of the Godunov method,

FðUn
j ;Un

jþ1Þ ¼
Un

jþ1 if Un
j þ Un

jþ1p0;Un
jþ1p0;

Un
j if Un

j þ Un
jþ140;Un

j 40;

0 if Un
j o0;Un

jþ140:

8>><
>>:

In Fig. 4, we set Dx ¼ 0:01 and Dt ¼ 0:0025: The numerical approximations of the
solution uðx; tÞ (dots) are displayed together with similarity profiles gðx=tÞ and
gðx=ðt þ aÞÞ (lines), which make thin layers. We can clearly observe that the
numerical solution lies inside of them for tX10:

References

[1] A. Carpio, Large time behaviour in convection–diffusion equations, Ann. Scuola Norm. Sup. Pisa Cl.

Sci. (4) 23 (3) (1996) 551–574.

[2] C.M. Dafermos, Regularity and large time behaviour of solutions of a conservation law without

convexity, Proc. Roy. Soc. Edinburgh Sect. A 99 (1985) 201–239.

[3] C.M. Dafermos, Hyperbolic conservation laws in continuum physics, Grundlehren der Mathema-

tischen Wissenschaften, Vol. 325, Springer, Berlin, 2000, xvi+443pp.

[4] R.J. DiPerna, Decay and asymptotic behavior of solutions to nonlinear hyperbolic systems of

conservation laws, Indiana Univ. Math. J. 24 (11) (1974/75) 1047–1071.

[5] M. Escobedo, J. Vazquez, E. Zuazua, Asymptotic behaviour and source-type solutions for a

diffusion–convection equation, Arch. Rational Mech. Anal. 124 (1) (1993) 43–65.

[6] M. Escobedo, E. Zuazua, Large time behavior for convection–diffusion equations in RN ; J. Funct.

Anal. 100 (1) (1991) 119–161.

[7] Y.-J. Kim, Piecewise self-similar solutions and a numerical scheme for scalar conservation laws,

SIAM J. Numer. Anal. 40 (6) (2002) 2105–2132.

[8] Y.-J. Kim, W.-M. Ni, On the rate of convergence and asymptotic profile of solutions to the viscous

Burgers equation, Indiana Univ. Math. J. 51 (3) (2002) 727–752.

[9] Y.-J. Kim, A.E. Tzavaras, Diffusive N-waves and metastability in Burgers equation, SIAM J. Math.

Anal. 33 (3) (2001) 607–633.

[10] P.D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957) 537–566.

[11] T.-P. Liu, Decay to N-waves of solutions of general systems of nonlinear hyperbolic conservation

laws, Comm. Pure Appl. Math. 30 (5) (1977) 586–611.

Fig. 4. Numerical simulations for solutions to (45)–(46) (dots: Godunov scheme with

Dx ¼ 0:01;Dt ¼ 0:0025): We may observe that the solution uðx; tÞ of the inviscid problem (1) lies inside

of the thin layer eventually which consists of similarity profiles gðx=tÞ and gðx=ðt þ aÞÞ: (a) Initial value
(6.45) and gðx=0:5Þ; (b) uðx; 1Þ and the layer at t ¼ 1; (c) uðx; 2Þ and the layer at t ¼ 2; (d) uðx; 3Þ and the

layer at t ¼ 3; (e) uðx; 5Þ and the layer at t ¼ 5; (f) uðx; 10Þ and the layer at t ¼ 10; (g) uðx; 10Þ near the
shock; (h) uðx; 15Þ near the shock.

Y. J. Kim / J. Differential Equations 192 (2003) 202–224 223



[12] T.-P. Liu, M. Pierre, Source-solutions and asymptotic behavior in conservation laws, J. Differential

Equations 51 (1984) 419–441.

[13] T.-P. Liu, C.-H. Wang, On a nonstrictly hyperbolic system of conservation laws, J. Differential

Equations 57 (1) (1985) 1–14.
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