
DIFFUSION WITH A DISCONTINUOUS POTENTIAL:

A NON-LINEAR SEMIGROUP APPROACH

YONG-JUNG KIM AND MARSHALL SLEMROD

Dedicated to Paul Rabinowitz on the occasion of his 80th birthday

Abstract. This paper studies existence of mild solution to a sharp cut
off model for contact driven tumor growth. Analysis is based on applica-
tion of the Crandall-Liggett theorem for ω-quasi-contractive semigroups
on the Banach space L1(Ω). Furthermore, numerical computations are
provided which compare the sharp cut off model with the tumor growth
model of Perthame, Quirós, and Vázquez [13].
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1. Introduction

In their paper [13], Perthame, Quirós, and Vázquez proposed the following
model for tumor growth

(1.1) vt = ∇ · (v∇p) + v(1− p), v(0) = v0,

where v is the cell density, v0 is the initial value, and p is the pressure field.
In their model, the pressure field is approximated by

(1.2) p ∼= pm :=
m

1−m

( v
vc

)m−1
,

where the coefficient vc is the maximum packing density and is set to vc = 1
for convenience. In this case, Eq. (1.1) is written as

(1.3) vt = ∆vm + v(1− pm).

The contact driven tumor growth model is taken as limit m → ∞ of (1.3).
Perthame, Quirós, and Vázquez [13] proved that, if the initial value is smooth
and bounded

(1.4) 0 ≤ v0 ≤ 1,

the pair (vm, pm) converges to (v∞, p∞) as m → ∞ which satisfy a Hele-
Shaw type diffusion model

(1.5) ∂tv∞ = ∆p∞ + v∞(1− p∞), v∞(0) = v0
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in the sense of distributions. Furthermore,

v∞ ∈ C((0,∞);L1(RN ) ∩BV (RN × (0,∞)), 0 ≤ v∞ ≤ 1,

and

(1.6) p∞ ∈ P∞(v∞), 0 ≤ p∞ ≤ 1,

where the inclusion relation (1.6) is given by the set-valued function

(1.7) P∞(v) =

{
0, 0 ≤ v < 1,

[0,∞), v = 1.

Note that the diffusion term in (1.5) is present only when v∞ = 1. Indeed,
the limiting case gives an extreme scenario that the domain is divided into
two parts, specifically when (a) the diffusion does not appear at all or (b) it
is concentrated at v = 1.

We note the Hele-Shaw diffusion equation, (1.5)-(1.7), cannot be used as a
model for the limiting case. First, it does not single out a solution. (Though
to be fair the extended version of (3.1) that we introduce in Section 3 will
also be defined by an inclusion relation.) The main reason is that the set-
valued function P∞(v) has discontinuity at the stable steady state of the
reaction term, v = 1. Furthermore, if the initial value is not bounded by
(1.4), the solution is not defined. As an alternative system, we consider a
sharp cut off model

(1.8) ut = ∆G(u) + f(u), u(0) = u0 ≥ 0,

where

(1.9) G(u) =

{
0, u < 1,
1, u ≥ 1,

and

(1.10) f(u) =

{
u, 0 ≤ u < 1,
0, u ≥ 1,

which has been introduced by Kim and Pan [11]. We set G(1) = 1 in (1.9)
to connect the model to the nonlinear diffusion in (1.3) which has the same
property, i.e., vm = 1 when v = 1. The value of the potential at the discon-
tinuity point u = 1 makes a difference since it is a stable steady state of the
reaction function f(u).

Kim and Pan suggested that the cut off model (1.8)-(1.10) provides an
alternative to (1.3)-(1.4) with m � 1 large. To check their conjecture Kim
and Pan performed numerical experiments and their results are here illus-
trated in Figure 1 of Section 4. We observe that that numerical results for
(1.3) with m large and (1.8)-(1.10) are almost identical.

The apparent success of the Kim-Pan model of course raises the math-
ematical issue as to existence of solutions to (1.8)-(1.10) for appropriately
given initial and boundary conditions. To address this issue we will place the
problem within the context of non-linear semigroups of ω-quasi-contractions
on the Banach space L1(Ω). The advantage of this formulation is obvious:



PIECEWISE CONSTANT DIFFUSION POTENTIAL 3

we will only need use of the existing mathematical theory as provided by
the classical Crandall-Liggett theorem [6].

This paper has three sections after this Introduction. Section 2 provides
a review of the theory of m-accretive operators and non-linear semigroup
theory on Banach spaces. Section 3 applies this theory to obtain the existence
of mild solution to system (1.8)-(1.10). Section 4 gives careful comparisons
of numerical solutions of (1.3) and (1.8)-(1.10). In particular, we observed
there is nice convergence solutions of (1.3) to a solution of (1.8)-(1.10) when
the CFL condition is satisfied. However, when the CFL condition is violated,
solutions of (1.3) blow up where as solutions of (1.8)-(1.10) remain bounded
albeit with oscillations.

2. Review of m-accretive operators and non-linear semigroups

We follow the presentations of Evans [9] and Barbu [1] though the defini-
tions are standard (also see [2, 12]). Let X be a Banach space with norm ‖·‖.
An operator A : D(A)→ X with its domain D(A) ⊂ X is called accretive if

(2.1) ‖u− v‖ ≤ ‖u− v + λ(A(u)−A(v))‖

for all u, v ∈ D(A) and λ ∈ R+. If, in addition, Range(I+λA) = X for some
(equivalently for all) λ > 0, then A is called m-accretive. A simple way to
check accretiveness in examples is to define

[u, v]+ = inf
λ>0

‖u+ λv‖ − ‖u‖
λ

.

Then the operator A is accretive if and only if

(2.2) 0 ≤ [u− v,A(u)−A(v)]+ for all u, v ∈ D(A).

When X = L1(Ω) for a bounded domain Ω ⊂ Rn, we may use the result of
Sato [14]:

[u, v]+ =

∫
u>0

vdx−
∫
u<0

vdx+

∫
u=0
|v|dx.

We are interested in resolving the initial value problem

ut +Au 3 0, 0 < t <∞,(2.3)

u(0) = u0 ∈ D(A),(2.4)

where A is an m-accretive set-valued operator.
In their classic paper, Crandall and Liggett [6] provided a mild solution

to (2.3),(2.4) via a sequence of discrete problems where the time derivative
in (2.3) is replaced by a difference quotient:

(2.5)
u(t)− u(t− ε)

ε
+Au(t) 3 0

for ε > 0 small so that (2.4),(2.5) can be solved recursively. We summarize
their results as follows.
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If C ⊂ X, a semigroup on C is a function S on [0,∞) such that S(t) maps
C into C for each t ≥ 0 and satisfies

S(t+ τ) = S(t)S(τ), for t, τ ≥ 0

and

lim
t→0+

S(t)u = S(0)u = u for u ∈ C.

If S is a semigroup on C and there is a real number ω so that

‖S(t)u− S(t)v‖ ≤ eωt‖u− v‖
for t ≥ 0 and u, v ∈ C, we say the semigroup is ω-quasi-contractive.

Theorem 2.1 (Crandall-Liggett [6]). Let A be a possibly set-valued operator
A : D(A)→ X such that there is a real number ω with A+ωI being accretive.

If D(A) ⊂ R(I + λA) for all sufficiently small λ > 0, then

lim
n→∞

(I +
t

n
A)nu0

exists for all u0 ∈ D(A) and t > 0. Moreover, if S(t)u0 is defined as this

limit in C, then S is a ω-quasi-contractive semigroup on D(A).

We call u(t) := S(t)u0 a mild solution of (2.3),(2.4).
In general, we do not know that D(A) is invariant under the map S(t)

(unlike the case of linear semigroups where u(t) = S(t)u0, u0 ∈ D(A),
provides a strong solution of (2.3), (2.4), see e.g. [10]). However, there is a

generalized domain D̂(A) defined by Crandall [7] which is invariant under

S(t). In particular, S(t)u0 is locally Lipschitz continuous in t, u0 ∈ D̂(A).
In the initial-boundary value problem of Section 3, we will be interested in

the case of X = L1(Ω) and thus the nonlinear semigroup theory for reflexive
Banach spaces does not apply (see for example Barbu [1], Evans [8, 9], and
Zeidler [15]).

3. Existence

We consider the initial-boundary value problem

ut = ∆G(u) + f(u) in Ω ⊂ RN , t > 0,(3.1)

u = 0 on ∂Ω,(3.2)

u = u0 ∈ L1(Ω) at t = 0,(3.3)

where Ω is a bounded open set in RN with a smooth boundary. Here,

G(u) =

{
0, u < 1,
1, u ≥ 1,

and

f(u) =

 0, u < 0,
u, 0 ≤ u < 1,
0, u ≥ 1.
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Note

q(u) := f(u)− u =

 −u, u < 0,
0, 0 ≤ u < 1,
−u, u ≥ 1,

and hence −g(u) = u− f(u) has a monotone increasing graph. Next, note

g(u) := q(u) +G(u) =

 −u, u < 0,
0, 0 ≤ u < 1,

−u+ 1, u ≥ 1,

and hence −g(u) is continuous on R with a monotone graph. Thus

−g(u) = −q(u)−G(u) = −f(u) + u−G(u),

f(u) = g(u) + u−G(u),

and we can rewrite (2.1),(2.2) as

ut = (∆− I)G(u) + g(u) + u in Ω ⊂ RN , t > 0,

u = u0 ∈ L1(Ω) at t = 0.

Next, we recall two results given by Brézis-Strauss [3] and Barbu [1].

Proposition 3.1. Let X be a real Banach space, A an m-accretive operator,
and B a continuous m-accretive operator with D(B) = X. Then, A + B is
m-accretive.

Proposition 3.2 (Barbu [1], p. 114). Let X = L1(Ω). Define the operator

Au := −∆β(u) for u ∈ D(A),

D(A) = {u ∈ L1(Ω);β(u) ∈W 1,1
0 (Ω), ∆β(u) ∈ L1(Ω)},

where β is a maximum monotone graph in R×R with 0 ∈ β(0) and Ω is an
open bounded subset of RN with smooth boundary. Then, the operator A is
m-accretive in L1(Ω)× L1(Ω).

We note Remark 3.1 (Barbu [1, p. 114]) that ∆ can be replaced by any
second order elliptic linear operator on Ω. In other words, Proposition 3.2
applies to the operator (−∆ + I)G(u) since (a) (−∆ + I) is a second order
linear elliptic operator and (b) G has a maximal monotone graph where

G =

 0, u < 1,
[0, 1], u = 1,

1, u > 1.

Lemma 3.3. The map −g : R→ R is continuous and m-accretive on L1(Ω).

Proof. The map −g : R→ R is globally Lipschitz continuous: |g(u)−g(v)| ≤
L|u−v|. This implies ‖g(u)−g(v)‖L1(Ω) ≤ L‖u−v‖L1(Ω). Furthermore, Sato’s

lemma of Section 2 implies −g : L1(Ω) → L1(Ω) is accretive. Finally, the
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range condition u+λg(u) = f , f ∈ L1(Ω) is satisfied by solving this equation
for each u:

u =

 (1 + λ)−1f f < 0,
f 0 ≤ f ≤ 1,

(1 + λ)−1f + 1 f > 1.

Clearly, f ∈ L1(Ω) implies u ∈ L1(Ω). �

Lemma 3.4. The operator A1 defined by

A1u := (−∆ + I)G(u)− g(u)

is m-accretive on L1(Ω) where

D(A1) = {u ∈ L1(Ω);G ∈W 1,1
0 (Ω),∆G(u) ∈ L1(Ω)}.

Proof. Use Proposition 3.1, Proposition 3.2, and Lemma 3.3. �

Lemma 3.5. The operator A2 := A1 − I, D(A2) = D(A1), satisfies the
range condition R(I + λA2) = L1(Ω) for λ > 0, sufficiently small.

Proof. For f ∈ L1(Ω) we wish to solve, u+λA2u 3 f , i.e., (1−λ)u+λA1u =
f , or

(3.4) u+
( λ

1− λ

)
A1u 3

f

1− λ
.

Since A1 is m-accretive, (3.4) possesses a solution u ∈ D(A1) for all f ∈
L1(Ω). �

Finally, the Crandall-Liggett Theorem is applied to show the existence of
a solution.

Theorem 3.6. −A2 is the generator of a semigroup of ω-quasi-contractions
on D(A2) ⊂ L1(Ω). For u0 ∈ D(A2), u(t) = S(t)u0, t > 0, provides a mild
solution of the initial-boundary value problem (3.1)-(3.3).

4. Numerical simulations

The heat and the Poisson equations are often used as canonical systems
to test numerical schemes. In the theory, uniform ellipticity and bounded
diffusivity are assumed. However, the diffusion model with a discontinuous
potential is an extreme case where both assumptions fail. The behavior of
numerical schemes for such discontinuous diffusion models is not usually
studied. An explicit finite difference scheme, a forward in time and centered
in space scheme (see Appendix A), is considered in this section which gives
characteristic properties of related numerical schemes in this simple context.

We first test if the numerical solution of

(4.1) ut = ∆G(u) + f(u)

gives the same subsequential limit of

(4.2) vt = ∆vm + v(1− pm),
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which has been obtained by Perthame et al. [13]. Here, pm, G, and f are
respectively given by (1.2), (1.9), and (1.10). The two model equations are
solved numerically and compared in Figure 1. The computation is done on a
domain Ω = [−10, 10] with the zero Dirichlet boundary condition. The initial
values are u0(x) = v0(x) = 0.1 cos(x) if −π

2 ≤ x ≤ π
2 and zero otherwise.

The solution is symmetric with respect to x = 0 and hence displayed only
on the domain 0 < x < 10.

An explicit numerical scheme for a partial differential equation of an ad-
vection phenomenon should satisfy the CFL condition, i.e., the Courant
number C should be less than one, i.e.,

s∆t

∆x
≤ 1,

where s > 0 is the speed of the advection phenomenon, ∆x is the space mesh
size, and ∆t is the time step. The Courant number of a numerical scheme
for a parabolic problem is given by

(4.3) C :=
2dn∆t

|∆x|2
,

where d > 0 is the diffusivity and n ≥ 1 is the space dimension. In the first
three numerical computations, we take time and space meshes with

(4.4) ∆x = 10−1, ∆t = 5× 10−5.

The diffusivity of the continuous diffusion model (4.2) is d = mvm−1. Hence,
if the mesh size is given by (4.4), the Courant number is bounded by

Cv :=
mvm−12∆t

|∆x|2
≤ m 2∆t

|∆x|2
= m× 10−2,

where the inequality comes from the solution bound |v| ≤ 1. The Courant
number for the discontinuous diffusion model (4.1) is

(4.5) Cu := G′(u)
2∆t

|∆x|2
= G′(u)× 10−2,

where G′(u) = 0 for u 6= 1 and G′(u) = ∞ for u = 1. The CFL stability
condition is “C ≤ 1”, which is a necessary condition for the stability of a
numerical scheme. Hence, if the discretization is given by (4.4), the numerical
solution of (4.2) satisfies the CFL condition if m ≤ 100. We indeed observe
that numerical solutions blow up soon after m > 100. On the other hand,
since the discontinuous diffusion model (4.1) is the limiting case of (4.2)
as m → ∞, one may expect that its numerical solution blows up as well.
However, we found that the numerical scheme is actually stable and stays
bounded as long as 2∆t

|∆x|2 < 1, which is the CFL condition for the constant

diffusivity case with d = 1. This observation is quite surprising and requires
a better understanding.

In Figure 1, snap shots of numerical solutions of the two models are given
at t = 10. See Appendix A for the matlab code of this computation. Solutions
of (4.2) clearly converge to the solution of the cut off model (4.1) as m→∞.
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1

Figure 1. Snap shots of (4.1) and (4.2) at t = 10. Mesh
sizes are ∆x = 0.1 and ∆t = 5× 10−5.

0 2 4 6 8
0

0.5

1

u
G(u)

0 2 4 6 8
0

0.5

1

v
pm

Figure 2. Snap shots of cell density and potential for (4.1)
and (4.2). We took m = 100 and t = 10.

This convergence is monotone and convinces us that the solution of the cut
off model (4.1) is the limit of Perthame et al. [13] that satisfies the Hele-Shaw
diffusion equation, (1.5)-(1.7).

In Figure 2, the cell density and the diffusion pressure for the two models
are compared when m = 100. The figure in the right shows that the diffusion
pressure pm of the continuous model (4.2) connects the interface and inside
cells monotonically. This profile is consistent in time and propagates with
the front without changing its shape. On the other hand, the potential G
of the discontinuous model (4.1), which also plays the role of the pressure,
oscillates as in the figure in the left. The position and size of the oscillating
region varies as the solution propagates. However, the inconsistent behavior
is completely averaged out and the cell growth interfaces of the two models
agree perfectly.

In Figure 3, we observe numerically what happens when the CFL condi-
tion fails. The Courant number for the numerical solution of the continuous
diffusion model (4.2) is Cv = m × 10−2 when the mesh is given by (4.4).
Hence, the CFL condition fails if m > 100, which is why we did the compu-
tation for m ≤ 100 in Figure 1. Indeed, if m = 102, the numerical solution
blows up and becomes unbounded in a finite time. In the right of Figure 1,
the numerical solutions are magnified for values between 0.9 and 1.2. One
can see that the numerical solution of the discontinuous cut off model oscil-
lates. This is because of the discontinuity of the diffusion potential G and
the fact that u = 1 is a stable steady state. Note that even a small numerical
error near the steady state u = 1 gives large oscillating noise in ∆G(u) due
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to the discontinuity of the potential G and produces the oscillation. We can
also see that the solution of the cut off model (4.1) stays above other solu-
tions. To see this more clearly, the solutions are magnified near the steady
state u = 1 in Figure 3. See the figure in the left and find that numeri-
cal solutions for the nonlinear diffusion model (4.2) increase as m increases
and stay below the solution of the sharp cut off model (4.1). However, even
the solution of the nonlinear diffusion model oscillates when m = 101, i.e.,
when the CFL condition fails (see the figure in the right). The solution of
the discontinuous model (4.1) is not an upper bound of the solution of the
continuous model (4.2) anymore. If m = 102, the solution blows up entirely
and becomes unbounded.

0 2 4 6 8

0.999

1

1.001

1.002
(4.1, cut off)
(4.2, m=100)
(4.2, m=80)
(4.2, m=60)

0 2 4 6 8

0.999

1

1.001

1.002
(4.1, cut off)
(4.2, m=101)

Figure 3. Magnified snap shots of (4.1) and (4.2) at t = 10.
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1.5

C=4-1

0 2 4 6 8 10
0

0.5

1

1.5

C=16-1

Figure 4. Snap shots of (4.1) at t = 10. We took ∆x = 0.1
fixed and ∆t = 0.005, 0.0013, and 0.00033 from left.

In Figure 4, three snap shots of the numerical solution of the cut off model
(4.1) are given with different Courant numbers. The space mesh size is taken
with ∆x = 0.1 and three different time mesh sizes taken with

∆t = 0.005, 0.0013, and 0.00033.

Notice that the Courant number Cu in (4.5) is not defined since G′(u) =
∞ when u = 1. The Courant number denoted in Figure 4 is the one for
the constant diffusivity case given in (4.3) with d = 1 and n = 1. We
observe that the solution oscillates with any Courant number. However, the
solution is numerically stable as long as the Courant number is less than
one, i.e., if the CFL condition for a constant diffusivity case is satisfied. If
C > 1, both numerical solutions of the discontinuous diffusion model (4.1)
and of the constant diffusivity one blow up together. It is unexpected that
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the discontinuous diffusion model (4.1) is more stable than the continuous
nonlinear diffusion model (4.2).

0 2 4 6 8
0

0.5

1

C=1/4, m=5.0515

u
v

0 2 4 6 8
0

0.5

1

C=1/8, m=9.05

u
v

0 2 4 6 8
0

0.5

1

C=1/16, m=17.049

u
v

Figure 5. Snap shots of (4.1) and (4.2) at t = 10. ∆x = 0.1
and ∆t = 0.0013, 0.00065 and 0.00033 from left.

In Figure 5, we observe that the blowup behavior of the continuous dif-
fusion model (4.2) is consistent. We take ∆x = 0.1 fixed and three cases
of

∆t = 0.0013, 0.00065, and 0.00033.

In these three cases, the Courant numbers of the unit diffusivity cases are
respectively C = 4−1, 8−1, and 16−1. Numerical solutions of the cut off
model (4.1) are denoted by u in the figures. The numerical solutions of the
continuous model (4.2) are given with borderline exponents m which makes
a solution about to blow up. We may observe that these m × C & 1, i.e.,
Cv & 1.

Conclusion

The diffusion equation (1.8) with a discontinuous diffusion potential G
can be used as a simplified model for contact driven tumor growth [13], fi-
nite time extinction [5], obstacle problems [4], and etc. However, since most
theories of parabolic and elliptic problems are based on bounded diffusivity,
such equations are rarely studied. In this paper we demonstrated that non-
linear semigroup theory is applicable to such extreme cases and obtained
the existence of a mild solution. We also found that a numerical scheme ap-
plied to a discontinuous diffusion model (4.1) is more stable than expected.
It surprisingly gives the correct interface of tumor growth even when the
numerical solution for the continuous diffusion model (4.2) blows up.

Appendix A. Numerical computation code

The numerical computations in this paper are based on a matlab code in
the below. We have computed the solution changing the parameter m and
time step size dt, and then displayed them as in figures.

%% parameters

m=80;

L=10; % computation space domain: [-L,L]
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T=10; % computation time domain: [0 T]

dx=0.1; % space mesh size

dt=dx^2/200; % time step size

%% variables

x=-L:dx:L; % space mesh

NX=size(x,2); % number of mesh points

NT=floor(T/dt); % total time steps

N1=floor(NT/10); % total time steps

%% initial value

u0=zeros(1,NX);

for i=1:NX

if(abs(x(i))<pi/2)

u0(i)=cos(x(i))*0.1;% initial value

end

end

u=u0;

v=u0;

%% computation

for i=1:NT

Gv=v.^m; % Diffusion potential

p=v.^(m-1)*m/(m-1); % Diffusion pressure

v=v+dt*(del2(Gv,dx)*4+v.*(1-p)); % Solving PDE

v(1)=0;v(NX)=0; % Dirichlet BC

Gu=floor(u); % Diffusion potential

u=u+dt*(del2(Gu,dx)*4+u.*(1-Gu)); % Solving PDE

u(1)=0;u(NX)=0; % Dirichlet BC

end

%% display

figure(1);plot(x,u,x,v); axis([0 L 0 1.5]);

figure(2);plot(x,Gu,x,Gv);axis([0 L 0 1.5]);
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