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Abstract. The dynamics in the pattern formation of a chemotaxis cell aggre-

gation model is studied when density-suppressed motility is used. We present
four types of cell aggregation patterns depending on the parameter regimes

and the mean population density, which are peaks, hot spots, cold spots, and

stripes. The analysis is done in two ways. First, the classical instability anal-
ysis is used to find two critical densities, where cell aggregation starts when

the mean population is between the two values. Second, the phase separation

method using van der Waals’ double well potential is used to find a population
range of pattern formation that is greater than the one the instability analysis

gives.

1. Introduction

The purpose of the paper is to classify four types of cell aggregation patterns in
a chemotaxis model,

(1.1)


ut = ∆(γ(v)um), x ∈ Ω, t > 0,

vt = ε∆v + u− v, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0), v(x, 0) > 0, x ∈ Ω,

and introduce the phase separation theory to cell aggregation problems to identify
the structure of the aggregation pattern. The motility function of the model is given
by

(1.2) γ(v) = a+
b

(d+ v)c
for b, c > 0, and a, d ≥ 0.

The domain Ω ⊂ Rn is bounded with a smooth boundary, and the initial values
are bounded. In chemotaxis theory, the unknown solution u is the cell (or amoeba)
density, and v is the chemical (or acrasin) density produced by the cells. Nonlinear
diffusion is taken with m > 0, which is believed to fit as the diffusion of biological
organisms. This chemotactic cell aggregation model provides various patterns, such
as classical single-point concentrating peaks, uniformly bounded cold and hot spots,
and stripe patterns. Peak solutions are known well in chemotaxis theory (see [17,
19, 20]) These four types of patterns fill the missing patterns of chemotaxis theory
which are observed in many other fields. We will see that this model connects the
chemotaxis theory to the phase separation one.

The chemotaxis model (1.1) can be considered a special case of the Keller-Segel
equation, but is based on the opposite concept. The Keller-Segel equation for cell
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aggregation phenomena is written as

ut = ∇ ·
(
µ(v)

(
∇u− χ(v)

u

v
∇v

))
,(1.3)

vt = ε∆v + u− v,(1.4)

where µ(v) the diffusivity of cells, and χ(v) the chemosensitivity (see [15, (3)–
(5)]). The equation (1.3) contains a Fickian diffusion µ(v)∇u and a logarithmic
chemotactic advection −µ(v)χ(v)uv∇v. The fundamental hypothesis on which the
model is based is that microorganisms actively sense the macroscopic-scale chemical
gradient ∇v to find the direction toward the source, but chemotaxis disappears in
the absence of sensing the gradient. Keller and Segel said in their seminal paper
[14] that “even though a cell may not be capable of making an accurate assessment
of the gradient to which it is exposed at a given time, its average behavior can
nevertheless reflect the gradient with arbitrary accuracy.” Under the hypothesis,
there have been many studies to model the gradient sensing mechanism, and µ(v)
and χ(v) are taken independently under such a hypothesis. In particular, Keller
and Segel assumed that amoebae are sensitive to the relative chemical gradient and
hence took the logarithmic model [14, (2.3)].

The model (1.1) is based on the theory that the random dispersal is not given
as Fick’s diffusion, but as a Fokker-Plank type diffusion,

(1.5) ut = ∆(γ(v)u),

where the motility γ(v) is the migration rate (see Appendix A). We may write it
in the form of a logarithmic chemotaxis model as

ut = ∇ ·
(
γ(v)

(
∇u− χ(v)

u

v
∇v

))
,

where the chemosensitivity χ(v) is given by a relation

(1.6) χ(v) = −vγ′(v)

γ(v)
.

In other words, the random diffusion model (1.5) is a special case of the chemotaxis
model (1.3) when the diffusivity and the chemosensitivity satisfy the relation (1.6)
but are not given independently. It is just the randomness, not efforts of micro-
organisms to sense the chemical gradient, that gives chemotaxis in the model (1.1).
Yoon and Kim introduced a consumption model using the random diffusion in [24]
and then an aggregation model in [25]. See [3, 4, 6, 9] for the derivation of a related
diffusion model.

There are two requirements to be a meaningful chemotaxis model. First, a chemo-
taxis model should provide appropriate cell aggregation patterns. Keller and Segel
[14] viewed the initiation of cell aggregation as instability of constant steady states,
which we will follow. However, we will go one step further and investigate the cell
aggregation pattern in (1.1) using a phase separation theory. This technique gives
information about the structure of the pattern as well as the generation of it. The
second requirement is the solution existence. The global well-posedness of Keller-
Segel equations has taken a lot of attention. However, the global existence of the
logarithmic model has not been obtained in a parameter regime where patterns
occur. Recently, the global existence of various chemotaxis models taking (1.5) to-
gether with (1.4) or their variations is actively studied (see [7, 8, 11, 23]). These
studies indicate that the relation (1.6) helps to obtain the global existence of the
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solution of such logarithmic chemotaxis models. These models are also studied with
a population growth term in [10, 13].

The diffusion in (1.5) has been generalized in (1.1) by taking an exponent m > 0.
Under this generalization, the first equation of (1.1) is written as

ut = ∇ ·
(
mγ(v)um−1

(
∇u− χ(v)

u

v
∇v

))
,

and the corresponding chemosensitivity χ(v) is

χ(v) := − vγ′(v)

mγ(v)
.

We call v > 0 an excitable density if χ(v) > 1 and denote the collection of all
excitable density values by E, i.e.,

E := {v ∈ R+|χ(v) > 1}.
Let µ1 be the principal eigenvalue of the operator −∆ on Ω under the Neumann
boundary condition and denote

ε1 := − 1

µ1

(
1 +

v̄γ′(v̄)

mγ(v̄)

)
= − 1

µ1
(1− χ(v̄))

for a constant v̄ > 0. We show in Theorem 3.2 that a constant steady state solution
(ū, v̄) is linearly unstable if ε1 > 0 and 0 < ε < ε1. Therefore, if v̄ ∈ E, ε1 > 0 and
an aggregation will occur when ε < ε1. If γ is given by (1.2), a = 0, and c > m,
then the excitable density set E is unbounded, and cells aggregate into peaks (see
Theorem 3.3). If a > 0, c > m, and d is small, the excitable density set E is a
bounded interval, and cells aggregate into three different patterns of hot spots, cold
spots, and stripes depending on the population size.

Note that the instability of a constant steady state (ū, v̄) provides the emergence
of an aggregation pattern, but not its shape. Furthermore, the stability is only
under a small perturbation. Even if v̄ ̸∈ E, a pattern may develop under a large
perturbation. We take the phase separation theory of Carr, Gurtin, and Slemrod
[2] to find further stable nonconstant solutions and their structure (see also [18]).
For the case with a > 0, we employ a Van der Waals double-well potential given by

W (v) =

∫ v

0

f(s)ds, f(v) := v −K0
(d+ v)c/m

(a(d+ v)c + b)1/m
,

where K0 is the unique constant that makes f(v) a balanced bi-stable nonlinearity,

i.e., there exist three positive zeros of f(v), α < µ < β, such that
∫ β

α
f(s)ds = 0.

Such a coefficient K0 exists if and only if E ̸= ∅. If v̄ ∈ (α, β) and ε > 0 is small
enough, there exists a function v ∈ H1(Ω) that minimizes the energy defined by

(1.7)

∫
Ω

(
W (v(x)) +

1

2
εv′(x)2

)
dx.

In the one space dimension with Ω = (0, ℓ), the minimum energy solution is mono-
tone and is the monotone solution of the elliptic problem of (1.1). A constant state
v̄ ∈ (α, β) is called a separable phase and E ⊂ (α, β). If v̄ ̸∈ (α, β), the constant
steady state (ū, v̄) is stable even under a large perturbation.

The paper is organized as follows. In Section 2, we derive our model system
(1.1)–(1.2) from a mesoscopic-scale model with constant diffusivities. We will see
that the random diffusion (1.5) naturally appears, and it is more natural for the
motility function γ in (1.2) having a ̸= 0. A bifurcation phenomenon of the model
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is discussed. In Section 3, linear stability analysis for constant steady states of (1.1)
are given. The excitable density set E is characterized when the motility function
is given by (1.2). In Section 4, four kinds of cell aggregation patterns are observed
numerically. If v̄ ∈ E, a pattern appears for any perturbation, if v̄ ∈ (α, β) \ E, a
pattern appears for a large perturbation size, and if v̄ ̸∈ (α, β), any pattern never
appears. In Section 5, we consider the elliptic problem for the steady state of (1.1)
in the one space dimension and then transform it into a minimization problem with
the energy function in (1.7). The phase separation theory is applied to obtain the
minimum energy solution of the elliptic problem and its structure. The conclusions
and discussions are given in Section 6.

2. Motility function and parameter regime

The original Keller-Segel model (1.3) contains two independent parameters µ(v)
and χ(v). Usually, they are taken as positive constants and hence the relation (1.6)
fails. On the other hand, the model (1.1) is decided by the single choice of γ, and
the relation (1.6) is automatically satisfied. Most information on the chemotactic
behavior in the model is included in the motility function γ(v) and hence, the
critical step is how to choose the motility function. The motility function γ in
(1.2) is general enough and provides all of the typical patterns in phase separation
dynamics depending on the choice of the four coefficients, a, b, c, and d. We construct
the nonlinear motility function γ from diffusion models with constant diffusivity.

Transition between active and inactive states. It is well-documented that
exposure to a hormone may reduce the mobility of many organisms. Suppose that
a cell becomes inactive with a small diffusivity a > 0 if exposed to the hormone. It
becomes active with a larger diffusivity a+ b > 0 if not exposed to the hormone for
a while. Such a situation can be modeled by reaction-diffusion equations,

(2.1)


∂tu1 = a∆u1 +

1

δ
(k(v)u2 − h(v)u1),

∂tu2 = (a+ b)∆u2 −
1

δ
(k(v)u2 − h(v)u1),

∂tv = ε∆v + (u1 + u2)− v,

t ∈ (0, T ), x ∈ Ω,

where u1 is the density of inactive cells with diffusivity a > 0, u2 the density
of active ones with a larger diffusivity a + b, and v the density of a signaling
chemical (or hormone) produced by the cells. The function h(v) is the conversion
rate that inactive cells turns into active cells, which decreases as v increases. In
other words, the chemical reduces cell motility. Similarly, the other conversion rate
k(v) is assumed to be an increasing function of v. In summary, we assume

(2.2) h′(v) ≤ 0, k′(v) ≥ 0.

Funaki et al. [9] showed that, if the conversion rates h and k are smooth, and
bounded above and below away from zero, then the total population density u =
u1 + u2 and the chemical density v converge to the solution of

(2.3)

{
ut = ∆(γ(v)u),

vt = ε∆v + u− v,
t ∈ (0, T ), x ∈ Ω
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as δ → 0, where

γ(v) =
(a+ b)h(v) + ak(v)

h(v) + k(v)
= a+

bh(v)

h(v) + k(v)
.

If we choose

(2.4) h(v) =
1

(1 + v)c
and k(v) = 1− 1

(1 + v)c

for an exponent c > 0, then (2.2) is satisfied and

γ(v) = a+
b

(1 + v)c
.

Then, γ′(v) < 0, γ(v) → a as v → ∞, and γ(v) → a+ b as v → 0. The case a = 0 is
the limit case that the slower cells do not diffuse at all, which allows the peak type
solution. However, it is more natural to expect a > 0 in most cases. The motility
function γ in (1.2) is a generalization of this case. See [9] for a rigorous convergence.

Bifurcation. Let m = 1 and µ1 > 0 be the principal eigenvalue of −∆ on the
domain Ω under the Neumann boundary condition. If we linearize the system (2.3)
at a constant equilibrium (ū, v̄) with ū = v̄, we obtain{

ut = γ(v̄)∆u+ γ′(v̄)ū∆v,

vt = ε∆v + u− v,
t ∈ (0, T ), x ∈ Ω.

Therefore, the sign of eigenvalues of the matrix[
−γ(v̄)µ1 −γ′(v̄)ūµ1

1 −εµ1 − 1

]
determines the sign of eigenvalues of the linearized system above. Since the trace is
negative, at least one of the eigenvalues is negative. The bifurcation curve surface
is given when the determinant becomes zero, which is(

a+
b

(d+ v̄)c

)
(εµ1 + 1)− cbv̄

(d+ v̄)c+1
= 0.

If we write the equation for b, we obtain

b =
−a(εµ1 + 1)(d+ v̄)c+1

(εµ1 + 1− c)v̄ + (εµ1 + 1)d
.

There are seven parameters, a, b, c, d, v̄, ε, and µ1. The principal eigenvalue µ1 is a
constant decided by the domain Ω. The other six parameters can be freely chosen.

In Figure 1, bifurcation curves are given for b and v̄ when other coefficients are
fixed as in the caption. We can see that the bifurcation curves converge to the
purple-colored solid curve as ε → 0. This is the curve that decides the excitable
density set E when b is chosen. For example, if b = 20, the horizontal line segment
between the curve for ε = 0 gives the excitable density set. Note that this set
is bounded above and below away from zero. The segment between the curve for
ε = 0.01 gives the range of steady state value v̄ which are unstable when ε = 0.01.
We can see the set expands as b increases and becomes empty if b < 9 in the figure.

In Figure 2, bifurcation curves are given for four different values of a. We can
see that the excitable set E expands as a decreases. It looks like that the excitable
set becomes unbounded as a → 0, which will be confirmed in the next section.
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Figure 1. Bifurcation curves of (1.1) for the relation between b
and v̄. Other parameters are fixed at as a = 0.3, µ1 = π2, c = 2,
m = 1, and d = 1.

Figure 2. Bifurcation curves of (1.1) for the relation between b
and v̄. Other parameters are fixed at ε = 0.01, µ1 = π2, c = 2,
m = 1, and d = 1.

Similarly, we can find the bifurcation curve of constant equilibrium solution (ū, v̄)
of the reaction-diffusion system (2.1) with (2.4). In this system, the parameter d is
set to be one and there is an extra parameter δ > 0. The corresponding equation is

ABC − 1

δ2
k(v̄)η +

1

δ2
h(v̄)η +

1

δ
Aη − 1

δ
Bη − C

1

δ2
h(v̄)k(v̄) = 0,

where

A = −aµ1 −
1

δ
h(v̄),

B = −(a+ b)µ1 −
1

δ
k(v̄),

C = −εµ1 − 1,

η = k′(v̄)h(v̄)v̄ − h′(v̄)k(v̄)v̄.

One can easily compute that the bifurcation curve converges to the ones for the
problem (1.1) as δ → 0.
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3. Aggregation viewed as an instability

Keller and Segel [14] viewed the initiation of slime mold aggregation as an in-
stability of a constant steady state and we follow that in this section. Their main
case can be written as {

ut = ∇ · µ0

(
∇u− χ0

u
v∇v

)
,

vt = ε∆v + u− v,

where µ0 and χ0 are constant. If ū = v̄, the constant state (ū, v̄) is a steady state
and it is unstable if χ0 > 1. Note that the stability of a steady state is independent
of the steady state itself for the classical logarithmic Keller-Segel equations. In
contrast, in the case of (1.1), if ū is too small or too large, (ū, v̄) becomes a stable
steady state as we will see in the section.

Denote the mean of the cell density by ū = 1
|Ω|

∫
Ω
udx. Then, a constant state

(ū, v̄) is a steady-state solution of (1.1) if and only if v̄ = ū. We call the mean
density ū (or v̄) excitable if the chemosensitivity corresponding to the steady state
is greater than 1, i.e., χ(v̄) > 1 for v̄ = ū. We denote the collection of excitable
density values by

(3.1) E = Eγ,m :=
{
v > 0 : χ(v) = − vγ′(v)

mγ(v)
> 1

}
and call it the excitable density set. The excitable density set is decided by the
motility function γ and the nonlinearity m > 0. We will see that the shape of the
excitable density set E decides the aggregation pattern types.

Lemma 3.1. (i) If the excitable density set E contains an unbounded interval (i.e.,
(v0,∞) ⊂ E for some v0 > 0), then a = 0 and c ≥ m. (ii) If E is bounded, then
a > 0 or c ≤ m, and peak solutions are not allowed.

Proof. (i) Suppose that (v0,∞) ⊂ E for some v0 > 0. The relation to be an excitable

density is written as γ′(v)
γ(v) < −m

v . Integrating it with respect to v gives

(3.2) 0 < γ(v) < Cv−m for all v > v0

for some constant C > 0. Therefore, the decay of γ(v) → 0 as v → ∞ should be
faster than or equal to the one of v−m. This is possible only when a = 0 and c ≥ m
for the motility functions given by (1.2).(ii) If E is bounded, any upper bound of
E becomes a stable upper solution. This indicates that a peak solution may appear
only when E is unbounded. □

We show that, if ū = v̄ ∈ E, and ε > 0 is small enough, the constant steady-state
(ū, v̄) is unstable.

Theorem 3.2 (Instability criterion). Let Ω ⊂ Rn be a bounded smooth domain,
µ1 > 0 be the principal eigenvalue of −∆ on Ω under the Neumann boundary
condition, γ(v) > 0 be a smooth motility function defined on R+, and (ū, v̄) be
a constant steady-state solution of (1.1). For an excitable density v̄ ∈ E, denote

ε1(v̄) := − 1
µ1

(
1 + v̄γ′(v̄)

mγ(v̄)

)
. (i) If 0 < ε < ε1, (ū, v̄) is linearly unstable. (ii) If

ε > ε1(v̄), (ū, v̄) is linearly stable. (iii) If v̄ ̸∈ E, (ū, v̄) is linearly stable for all
ε > 0. (iv) If E = ∅, (ū, v̄) is linearly stable for all v̄ > 0 and ε > 0.
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Proof. If v̄ ∈ E, we obtain ε1(v̄) > 0. Let u = ū + u1 and v = v̄ + v1. Then, the
linearized problem of (1.1) at the steady-state (ū, v̄) is given by

(3.3)
∂

∂t

(
u1

v1

)
=

(
mγ(v̄)ūm−1∆ ūmγ′(v̄)∆

1 ε∆− 1

)(
u1

v1

)
=: A(ū, v̄)

(
u1

v1

)
.

Let (µ, ϕ) be an eigen-pair of the Laplace operator −∆ under the Neumann bound-
ary condition and

B(ū, v̄) :=

(
−mγ(v̄)ūm−1µ −ūmγ′(v̄)µ

1 −εµ− 1

)
.

Let (λ, c) be an eigen-pair of the matrix B. Then,

A(ū, v̄)(ϕeλtc) = B(ū, v̄)(ϕeλtc) = λϕeλtc =
∂

∂t
(ϕeλtc),

and hence ϕeλtc is a solution of (3.3). Therefore, the sign of eigenvalues of B
determines the local stability of constant steady-states. The characteristic equation
of B is

λ2 + (mγ(v̄)ūm−1µ+ εµ+ 1)λ+mγ(v̄)ūm−1µ(εµ+ 1) + ūmγ′(v̄)µ = 0.

The eigenvalues are λ± :=
−P±

√
P 2−4Q
2 , where P := mµ(γ(v̄)ūm−1 + ε) + 1 and

Q := ūm−1[εmγ(v̄)µ2 + (mγ(v̄) + ūγ′(v̄))µ]. Since P is positive, the steady-state
(ū,v̄) is unstable if and only if there exists µ such that Q(µ) < 0. Since Q(µ) takes
its minimum value when µ = µ1, and

Q(µ1)

ūm−1µ1
= εmγ(v̄)µ1 + (mγ(v̄) + ūγ′(v̄)) < 0

⇐⇒ ε < − 1

µ1

(
1 +

v̄

m

γ′(v̄)

γ(v̄)

)
= ε1(v̄).

Therefore, if 0 < ε < ε1(v̄), (ū, v̄) is linearly unstable, and if ε > ε1(v̄), (ū, v̄) is
linearly stable. If v̄ ̸∈ E, ε1(v̄) ≤ 0. Therefore, for all ε > 0, ε > ε1 and hence (ū, v̄)
is linearly stable. If E = ∅, ε1(v̄) ≤ 0 for any v̄ > 0. Hence, by the same reason,
(ū, v̄) is linearly stable for all v̄ > 0 and ε > 0. □

It is observed from several chemotaxis models that a minimum population size
is required to make a cell aggregation start, which is called a critical mass phe-
nomenon. This critical mass gives a necessary condition for aggregation, and the
actual aggregation may happen depending on the initial distribution of the given
mass (see [1]). In this section, we will see that the chemotaxis model (1.1) also has
a related phenomenon in terms of density, not of the total mass. The phenomenon
is divided into three cases. If E = R+, there is no critical density, which is the
case of Keller-Segel equations. If E = (v0,∞) as in (3.2), there is a critical density
for the minimum density. If the excitable density set E is bounded, there are two
critical densities for the lower and upper bound for the aggregation. We find E in
the following theorems.

Theorem 3.3 (a = 0). Let γ be given by (1.2), a = 0, and E the excitable density
set (3.1). (i) If c > m, then E = ( md

c−m ,∞). (ii) If c ≤ m, then E = ∅.
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Proof. Basically, we find the shape of the excitable density set E in this proof and
the rest of the assertion of the theorem comes from Theorem 3.2. First, consider
the case of c > m. Since a = 0, v ∈ E if and only if

(3.4) −vγ′(v)

γ(v)
= c

(
v

d+ v

)(
b

a(d+ v)c + b

)
= c

(
v

d+ v

)
> m.

If we rewrite the inequality for v, we obtain

v >
md

c−m
.

Hence, the excitable density set is an unbounded open interval E = ( md
c−m ,∞). If

c ≤ m, the inequality in (3.4) fails for any v > 0. Hence E = ∅. □

Next, let a > 0. Then, the condition to be an excitable density,

c

(
v

d+ v

)(
b

a(d+ v)c + b

)
> m,

is equivalently written as

(3.5) f(v) := m(v + d)c+1 + b(m− c)v/a+ bdm/a < 0.

Hence, we may write E = {v ∈ R+ : f(v) < 0}.

Theorem 3.4 (a > 0). Let γ be given by (1.2), f(v) by (3.5), a > 0, and

(3.6) Λ :=
(c−m

c+ 1

)( b(c−m)

am(c+ 1)

)1/c

.

(i) If d < Λ and c > m, f has two zeros, z1 ≥ 0 and z2 > z1, and E = (z1, z2). (ii)
If Λ < d or c < m, E = ∅.

Proof. The first and the second order derivatives of f in (3.5) are

f ′(v) = m(c+ 1)(v + d)c + b(m− c)/a,

f ′′(v) = mc(c+ 1)(v + d)c−1.

Since f ′′(v) > 0 for v > 0, f is a convex function on R+. Furthermore, since
f(0) = mdc+1 + bdm/a ≥ 0, lim

v→∞
f(v) = ∞, and E = {v > 0 : f(v) < 0}, E is

a nonempty set if and only if f has a negative minimum value at a critical point
v̂ > 0. If d = 0, f(0) = 0 and hence z1 = 0 is a zero of f(v).

Let v̂ be a positive critical value, i.e., f ′(v̂) = 0 and v̂ > 0. Then, it satisfies

(v̂ + d)c =
b(c−m)

am(c+ 1)
.

Therefore, if c ≤ m, there is no such positive zero, and hence E = ∅. Suppose that
c > m. Then, the critical point of f is unique and given by

v̂ :=

(
b(c−m)

am(c+ 1)

)1/c

− d,

and f(v) has its minimum when v = v̂. Compute that

f(v̂) < 0 ⇐⇒ d <
(c−m

c+ 1

)( b(c−m)

am(c+ 1)

)1/c

= Λ.
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Since
(
c−m
c+1

)
< 1, the condition Λ > d implies

( b(c−m)
am(c+1)

)1/c
> d, i.e., v̂ > 0. Finally,

since f is convex on R+, f has two positive zeros 0 < z1 < z2. Therefore, E is a
bounded open interval if and only if d < Λ. □

Cell aggregation usually starts when population size (or density) passes over a
certain level. If the motility function γ is given by (1.2), the chemotaxis model (1.1)
has the property when a = 0 and c > m. Then, the excitable density set E becomes
an unbounded open interval E = ( md

c−m ,∞). Therefore, large population size is a key
to aggregation. However, if a > 0, c > m, and d < Λ, the set E becomes a bounded
interval E = (z1, z2). Therefore, the population size should be in a reasonable range
to get the aggregation started. Both too much and too little population are obstacles
to aggregation which is biologically correct. On the other hand, if d = 0 and a > 0,

we get z1 = 0 and z2 =
(p(c−m)

m

)1/c
, i.e., E = (0,

(p(c−m)
m

)1/c
). In this case, too

large a population would be an obstacle to aggregation, but not too small.

4. Numerical Simulations

In this section, we numerically compute the chemotaxis model (1.1) in two space
dimensions and test how aggregation patterns emerge and develop. We consider two
cases of the motility function in (1.2), a = 0 and a = 0.02. The solution behavior
given in Desvillettes et al. [7] is when γ(v) = b

d+vc . This case corresponds to the
case with a = 0 and we will see that the two are indistinguishable.

4.1. Cases with a = 0. For a numerical simulation, we take a rectangular domain
Ω = (0, 20)× (0, 20) and parameters,

(4.1) m = 2, c = 4, a = 0, b = 1, d = 0.5.

Then, md
c−m = 1

2 and hence the excitable density set is E = ( 12 ,∞) by Theorem 3.3.
We take initial values as

(4.2) u(x, 0) = 1 and v(x, 0) = 1 +X,

where X is a random variable with values −0.05 ≤ X ≤ 0.05. This initial value is
a small perturbation of a constant steady state (ū, v̄) = (1, 1), which is unstable

since 1 ∈ E. The critical diffusivity is approximately ε1 = − 1
µ1
(1+ v̄γ′(v̄)

mγ(v̄) )
∼= 13.51,

where µ1 is the principle eigenvalue of the Laplace operator −∆ on the given domain
under the Neumann boundary condition. We take the diffusivity ε of the signaling
chemical as ε = 0.05 < ε1. Therefore, the instability conditions are satisfied, and
hence, cells are expected to aggregate by Theorem 3.3. Note that, since ε1

ε is large,
a large number of aggregation spots appear initially.

Figure 3. Snap shots of the numerical solution for the cell density
u. If γ is given by (1.2) with a = 0, it gives cell aggregation peaks.
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In Figure 3, three snapshots of a numerical solution of (1.1) are given when the
parameters and initial values are given in (4.1) and (4.2). Only the images of the
population density u are given at three different moments t = 102, 103, and 104.
In the first figure at the moment t = 102, we see many spots of density 13 or less.
Some of them are stuck together like Siamese twins, which are about to be merged
into a single spot. As time increases, the number of spots decreases, and the density
of spots increases. However, the radius of each peak changes little. The patterns
in Figure 3 can be called hot spots since the density inside the spot takes higher
values. However, since the height keeps increasing as spots are merged, it is rather
called a peak. This is the typical behavior of peak solutions. This solution behavior
is similar to the one in Desvillettes et al. [7, Figure 4.5].

4.2. Case with a > 0. The peak solutions are well-known patterns in chemotaxis
models. Patterns such as hot spot, cold spot, and stripe patterns are well-known in
phase separation models and in Turing patterns. It is a new observation that the
chemotaxis model such as (1.1) also produces such patterns.

The critical value Λ :=
(
c−m
c+1

)( b(c−m)
am(c+1)

)1/c
in Theorem 3.4 depends on four

parameters. We fix three of them as

m = 2, c = 4, a = 0.02,

and treat Λ as a function of b. In Figure 4, the graph of the function is given in the
plane of d and b variables, i.e., d = Λ(b). If d = 1 and b = 1, then d > Λ(b) and the
excitable density set E becomes empty by Theorem 3.4. The graph of the convex
function f(v) in (3.5) is given in Figure 4. We can confirm that f > 0 for all v > 0
and hence E = ∅. In this case, all constant steady-states are stable and we do not
expect any pattern formation.

Figure 4. (Graphs of Λ and f(v)) Parameters are m = 2, c =
4, a = 0.02.

In the second example, we take d = 0.5 and b = 1 so that d < Λ(b). The graph of
the convex function f(v) for this case is given in Figure 4. We can see that f(v) < 0
for v ∈ E ∼= (0.6, 1.8). Therefore, if v̄ ∈ E, we may expect a pattern formation
when ε > 0 is small enough. To compute the solution of (1.1) with the motility
function (1.2), we take the example of the previously discussed one with the same
parameter values,

(4.3) m = 2, c = 4, a = 0.02, b = 1, d = 0.5,
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and a larger domain

Ω = (0, 100)× (0, 100).

We take the same initial values as

u(x, 0) = 1, and v(x, 0) = 1 +X, x ∈ Ω,

where X is the same random variable which takes values −0.05 ≤ X ≤ 0.05. The
initial value is a perturbation of a constant steady-state (ū, v̄) = (1, 1) and 1 ∈ E.
In this case, the critical diffusivity is ε1 ∼= 213.53. We take ε = 0.05 < ε1 and hence,
an aggregation phenomenon is expected.

Figure 5. Snap shots of cell density u. Hot spots are observed
when ū = 1. Motility γ is by (1.2) and parameters are in (4.3).

In Figure 5, three snapshots of the population density u are given at three differ-
ent moments t = 2500, 25000, and 250000. There are lots of spots at the moment of
t = 250. As time passes, the spots are merged together and make larger spots. The
difference in comparison with the ones in Figure 3 is that the area of the circular
domain increase, but their height is not changing. Hence, the spot is more like a
plateau. This pattern is similar to the hot spots of Turing patterns. The difference
is that the spot size is uniform for a Turing pattern. However, the size of hot spots
in Figure 5 varies a lot. In reality, the size of slugs in amoeba cell aggregates is not
uniform and varies greatly, which is similar to the figure. The patterns in Figure 5
are approximately bounded approximately between u = 0.3 and 2.4.

Figure 6. Various patterns appear depending on the mean pop-
ulation density, which are ū = 1, 1.3, and 1.7 from the left.

If the population density changes, various patterns appear. These patterns fall
into three categories, which are compared in Figure 6. The first figure is from Figure
3, which is for hot spots. The second figure is a stripe pattern obtained when the
initial population is ū = 1.3. Roughly speaking, if there is too much population
and there is no enough space, the hot spots are connected and form stripes. If the
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initial population is increased to ū = 1.7, the stripe patterns turn into cold spots as
in the third figure in Figure 6. These patterns are like sinkholes with flat bottoms,
where the lower population density exists only inside spots.

5. Aggregation viewed as a phase separation

In this section, we consider the elliptic problem,

(5.1)


0 = (γ(v)um)xx, 0 < x < ℓ,

0 = εvxx − v + u, 0 < x < ℓ,

∂xu = ∂xv = 0, x = 0 and ℓ,

where m > 0 and ε > 0. This problem is satisfied by the steady state solution
of the chemotaxis model (1.1) in one space dimension. Nonconstant solutions of
the elliptic problem reflect aggregation patterns observed numerically. The motility
function γ and the parameter regimes in the section are

(5.2) γ(v) = a+
b

(d+ v)c
, a, b > 0, c > m, 0 ≤ d < Λ,

where

Λ =
(c−m

c+ 1

)( b(c−m)

am(c+ 1)

)1/c

.

The parameter regime above is the one in Theorem 3.4 that gives a non-empty
excitable set, E ̸= ∅, and uniformly bounded cell aggregation patterns. In this
section, we employ the phase separation theory of Carr, Gurtin, and Slemrod [2]
to characterize the pattern formation. We consider the case when a > 0. The
aggregation pattern is studied well in the other cases. It has been shown that the
solution u and v are of peak type with spikes at the boundary x = 0 or x = ℓ when
γ′(v)v
mγ(v) < 1 for all v ∈ R+, i.e., when E = (0,∞) (see [7, 22]). The motility function

in (5.2) satisfies the condition when a = 0, d = 0, and c > m.
Recall that the excitable density set E is given by

E :=
{
v > 0 : − γ′(v)v

mγ(v)
> 1

}
.

A constant state (ū, v̄) is a solution of (5.1) if ū = v̄. If v̄ ∈ E, this constant solution
is unstable and the evolution problem (1.1) will develop a pattern starting from the
unstable steady state after a small perturbation. For a non-constant static solution
(u, v) of (5.1), the two components u and v don’t need to be identical. However,
they have the same mass, i.e.,

ū =
1

ℓ

∫ ℓ

0

udx =
1

ℓ

∫ ℓ

0

(v − εvxx)dx =
1

ℓ

∫ ℓ

0

vdx = v̄,

by the second equation of (5.1) and the boundary condition. The existence of a
nonconstant monotone solution with mean

(5.3)
1

ℓ

∫ ℓ

0

v(x)dx = v̄

has been proved by Wang and Xu [22, Theorem 2.1] when m = 1 and v̄ ∈ E. The
proof can be extended to the case with m > 0 easily. However, the set E is not
the maximal set that gives a pattern. In this section, we find the maximal interval
(α, β) that includes E using the phase separation theory.
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First, consider a function,

(5.4) g(v) := γ(v)−1/m =
(d+ v)c/m

(a(d+ v)c + b)1/m
.

The function g(·) is smooth and satisfies the four properties in the following lemma.

Lemma 5.1. If a, b > 0, c > m, and 0 ≤ d < Λ, then

A1. g0 ≤ g(v) < M for g0 = dc/m

(adc+b)1/m
(= g(0)) and M = a−

1
m (= limv→∞ g(v)),

A2. g′(v) > 0 for all v > 0.
A3. There is vc > 0 such that g′′(v) > 0 for 0 < v < vc, g

′′(v) < 0 for v > vc,

and g′(vc) >
g(vc)
vc

.
A4. There exists a unique constant K0 > 0 such that

(a) K0g(v)− v has three zeros, 0 < α < µ < β,
(b) K0g(v)−v > 0 in [0, α)∪ (µ, β) and K0g(v)−v < 0 in (α, µ)∪ (β,∞),

and
(c)

∫ β

α
(K0g(s)− s)ds = 0.

Proof. The first two properties, A1 and A2, are satisfied directly from the function
g(v) in (5.4) for even without the restrictions of the parameters. The property A4
directly comes from A3. We only need to show A3. By computation, we can find
that the inflection point of g(v) is

vc =

(
b(c−m)

am(1 + c)

)1/c

− d.

Since d < Λ and c−m
c+1 < 1, we ave vc > 0. One can algebraically check

g′(vc) >
g(vc)

vc
⇐⇒ −γ′(vc)vc

mγ(vc)
> 1 ⇐⇒ vc ∈ E.

Notice that the two conditions d < Λ and vc ∈ E are equivalent as proved in
Theorem 3.4, which completes the proof. □

We deduce from A4 that K0g
′(α) < 1 and K0g

′(β) < 1. The graph of the
difference y = K0g(v) − v is given in Figure 7 when the parameters in (4.3) are
used. In this example, the numerical values are

K0 = 0.1957, α = 0.244, µ = 1.32, β = 2.381.

v

y = K0g(v)− v

0 α µ β

Figure 7. Graph of K0g(v) − v. a = 0.02, b = 1, c = 4, d = 0.5,
m = 2, and K0 = 0.1957. Here, α ≈ 0.244, µ ≈ 1.32, β ≈ 2.381.
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Next, we decouple u and v. Integrating the first equation of (5.1) twice using the
homogeneous Neumann boundary condition gives

γ(v)um = Km

for a constant K > 0. We have the freedom to choose K. For a constant solution
case (ū, v̄), we have ū = v̄ and K is given by

K = m
√

γ(v̄)v̄m.

However, the constant solution is not stable for v̄ ∈ E and we can observe only non-
constant solutions in numerical computations. To obtain a non-constant solution
case, we have to choose K = K0, the unique constant in the property A4 in Lemma
5.1. This is needed since the Maxwell line of van der Waals’ double well potential
should be taken as explained below. Then, the mass condition (5.3) is satisfied by
the profile (or the interface for the case of ε → 0 limit) of the solution. Since we
observe stable nonconstant patterns, we explore the case K = K0 and rewrite the
relation as

(5.5) u = K0g(v).

If we put (5.5) into the second equation of (5.1), we obtain a decoupled problem,

(5.6)

{
εvxx +K0g(v)− v = 0 in (0, ℓ),

vx(0) = vx(ℓ) = 0.

We are ready to construct a minimization problem for the phase separation which
takes (5.6) as its Euler-Lagrange equation. We briefly introduce the theory from [2].
Let W (·) be a double-well potential. It is assumed to satisfy the properties below;

B1. W : (0,∞) → R is C5,
B2. W ′′ > 0 on (0, w1) ∪ (w2,∞), and W ′′ < 0 on (w1, w2) for some w1, w2,
B3. W ′(0) < W ′(w2), W

′(∞) > W ′(w1).

Let H1(0, ℓ) be the usual Sobolev space of square-integrable functions possessing
square-integrable first derivatives, and H1

+(0, ℓ) be its subcollection with positive
functions. The energy of a function w ∈ H1

+(0, ℓ) is defined as

Ψ(w) =

∫ ℓ

0

1

2
εw′(x)2 +W (w(x))dx,

where ε > 0 is small. The function W (w) is the free energy per unit volume when
the density is constant. The term εw′(x)2 accounts for the interfacial energy. The
energy minimizer v ∈ H1

+(0, ℓ) for a given mass v̄ > 0 is a function with the smallest
energy, i.e.,

(5.7) Ψ(v) ≤ Ψ(w) for all w ∈ H1
+(0, ℓ) with

1

ℓ

∫ ℓ

0

w(x)dx = v̄.

The following theorem for the existence, uniqueness, and solution structure of the
minimizer is from Carr et al. [2].

Theorem 5.2 (Carr, Gurtin, and Slemrod [2]). Let 0 < α < β and satisfy

(5.8) W (β)−W (α) = σ(β − α) and W ′(α) = W ′(β) = σ

for some σ (see Figure 8). If ε > 0 is small enough and v̄ ∈ (α, β), the minimization
problem (5.7) has a unique (modulo reversal) global minimizer vε. In addition, vε
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is strictly monotone. Furthermore, as ε → 0, vε approaches a piece-wise constant
solution v0 given by

v0(x) =

{
α, 0 ≤ x < ℓ1

β, ℓ1 < x ≤ ℓ,

where ℓ1 = ℓ(β−v̄/ℓ)
β−α . If v̄ ̸∈ (α, β), there is no such minimizer.

w

y = W ′(w)

Maxwell line σ

α βw2w1

Figure 8. The two areas bounded by the Maxwell line y = σ and
the graph y = W ′ have the same size.

The function g(v) in (5.4) satisfies the four properties A1–A4 in Lemma 5.1 if
the motility is given by (5.2). We take the potential as

(5.9) W (w) =

∫ w

0

(s−K0g(s))ds,

where K0 > 0 is the unique constant in A4. Then, W satisfies the three properties
B1–B3. The condition (5.8) is satisfied with the same α and β in Property A4 and
with σ = 0. Therefore, the corresponding Euler-Lagrange equation is (5.6). In other
words, if vε is the unique minimum energy solution and uε = K0g(vε), then (uε, vε)
is the steady state solution of (5.1).

Theorem 5.3. Let γ(v) be the motility function given by (5.2). There exist α, β > 0
such that for any v̄ ∈ (α, β) and ε > 0 small enough, there exists a nonconstant
monotone solution (uε, vε) of (5.1) such that

α ≤ uε, vε ≤ β,

and

(5.10) lim
ε→0

uε = lim
ε→0

vε =

{
α, 0 ≤ x ≤ ℓ1

β, ℓ1 < x ≤ ℓ,

where ℓ1 = ℓ(β−v̄/ℓ)
β−α .

Proof. For the motility function γ in (5.2), the function g(v) = γ(v)−1/m satisfies
the properties A1–A4 in Lemma (5.1). If we take the double-well potential W in
(5.9) with the K0 in A4, it satisfies B1–B3. The conditions in Theorem 5.2 are
satisfied with the α and β in A4 and σ = 0. Hence, we may apply Theorem 5.2 for
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ε > 0 small enough. Let v̄ ∈ (α, β) and vε be the minimum energy solution. Then,
vε is monotone and satisfies (5.6). Denote uε := K0g(vε). Then, uε is a composition
of two monotone functions and hence is monotone. Since γ(vε)u

m
ε = Km

0 , the first
equation of (5.1) is satisfied. Therefore, (uε, vε) is a monotone solution of (5.1). To
show the uniform bound of the solution, consider the case when vε is decreasing.
Since vε has the maximum at x = 0 and satisfies the Neumann boundary condition,
εv′′ε (0) ≤ 0. Suppose that vε(0) > β. Then, K0g(vε(0)) − vε(0) < 0. It fails (5.6).
Therefore, vε(0) ≤ β. Similarly, vε(ℓ) ≥ α and hence α ≤ vε(x) ≤ β for all x ∈ (0, ℓ).
Since α = K0g(α) ≤ K0(g(vε(x)) = u(x) ≤ K0g(β) = β, uε is also bounded by
α ≤ uε(x) ≤ β for all x ∈ (0, ℓ). □

There could be many stationary solutions of the system (5.1). However, the
minimum energy solution is monotone and bounded by α and β if ε is small enough.
Since the solution converges to a step function given in (5.10), the minimum energy
solution for small ε > 0 is given as in Figure 9. This minimum energy solution is
stable. There could be other stationary solutions of (5.1). The patterns observed in
Figures 5 and 6 represent such solutions in two space dimensions. However, they are
unstable and what we can observe numerically is that they evolve slowly towards
the minimum energy solution.

Figure 9. Single-layer plateau

α

β

x

vε

l10 l

Chemotactic cell aggregation has been viewed in two ways, instability, and phase
separation. Instability analysis shows the possibility of pattern formation, but not
the shape. On the other hand, the phase separation theory explains the pattern
shape quite in detail. Now we compare the two approaches.

Lemma 5.4. (i) If E = ∅, then there is no such α, β in Theorem 5.3. (ii) If
E = (z1, z2) for some z1 < z2, z1, z2 ∈ (α, β).

Proof. We may algebraically check the equivalence of

(5.11) E = ∅ ⇐⇒ g′(v) ≤ g(v)

v
for all v > 0.

(i) We suppose E = ∅ and show Kg(v) − v has at most one sign change for any
given K > 0. Let z > 0 be a zero of f(v) := Kg(v)− v. Then, (5.11) implies

f ′(v) = Kg′(v)− 1 ≤ Kg(v)− v

v
=

f(v)

v
.

Suppose that f(v0) < 0 for some v0 > 0. Then, f ′(v0) < 0. Since f decreases when
f(v) < 0, there is no chance to obtain a positive value f(v) > 0 for v > v0. Hence,
f(v) may have a single sign change at most if E = ∅. Hence, f(v) cannot be a
balanced bistable nonlinearity.
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(ii) Next, we show if E ̸= ∅ and E = (z1, z2) for some z1 < z2, then z1, z2 ∈
(α, β). Notice that z1, z2 are points which satisfy

g′(zi) =
g(zi)

zi
, i = 1, 2

(see Figure 10). Then, there exists K0 > 0 that satisfies

g′(z1) =
g(z1)

z1
<

1

K0
<

g(z2)

z2
= g′(z2)

so thatK0g(v)−v has three zeros α, µ, β with an order α < µ < β, and
∫ β

α
(K0g(v)−

v)dv = 0. Then, the graph of the function K0g(v)−v corresponds to Figure 7. Since
K0g(z1)− z1 < 0, we have z1 > α. Likewise, K0g(z2)− z2 > 0 implies z2 < β. □

Figure 10. Relation among α, µ, β, z1, z2 and graph of g(x).

Theorem 5.3 and Lemma 5.4 implies that there is an interesting situation that
both constant and nonconstant steady states are stable. Hence, depending on the
perturbation, the solution of the parabolic problem may converge to any of the two.

Corollary 5.5. Let v̄ ∈ (α, z1) ∪ (z2, β). (i) The constant state (ū, v̄) is a stable

solution of (1.1) if ū = v̄. (ii) The minimal energy solution satisfying 1
ℓ

∫ ℓ

0
udx = v̄

is nonconstant, monotone, and stable.

6. Discussion and conclusion

The formation of patterns has attracted the attention of many theoretical and
mathematical biologists. Reaction-diffusion equations have been used the most as
mathematical models for the phenomenon, where the Turing patterns are the most
famous [21] (see [5]). In these models, the population growth is modeled by reaction
and the spreading by diffusion. Then, the patterns appear due to the balance be-
tween reaction and diffusion. However, in many cases, patterns appear without any
population growth. Chemotactic cell aggregation is such a case. If food dwindles,
amoeba starts to aggregate. Therefore, the main question is whether diffusion (or
migration) alone can create aggregation patterns. In the paper, we have observed
four aggregation patterns of the chemotactic self-organization model (1.1)–(1.2). If
a = 0, the peak solutions are obtained, which are bounded for a fixed ε > 0 and
blow up as ε → 0.1 If a > 0, the motility function γ has a positive lower bound,

1On the other hand, the solutions of the minimal model blow up in a finite time (see [12]) for
a fixed ε > 0.
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and patterns are uniformly bounded with respect to ε > 0. We have observed three
classical Turing patterns depending on the initial mean population, stripes, hot
spots, and cold spots. However, unlike the Turing patterns, the pattern size varies
as in Figure 5, which agrees with the actual observation of amoeba slugs.

The global existence of the logarithmic Keller-Segel equation is obtained only
for the parameter regimes without cell aggregation. Recently, Desvillettes et al. [7]
and Winkler [23] showed global existence for the problem (1.1) in some parameter
regimes with cell aggregation. The stability analysis in the paper shows that the
global existence is still missing for a large portion of parameter regimes with cell
aggregation. The main difficulty of the analysis comes from the degeneracy of the
motility. Hence, the case with a > 0 gives the global existence more easily and
makes aggregation patterns physically more meaningful.

The contribution of the paper from the technical side is that the technique of
phase separation is introduced to the chemotaxis theory. The cell aggregation has
been viewed as an instability of a constant steady state ever since Keller and Segel
[14]. In particular, the cell aggregation patterns were peak types (see [17, 19]).
These peak types solutions cannot be considered as a phase separation phenomenon.
However, if the motility γ has a positive lower bound, which is physically meaningful
as discussed in Funaki et al. [9] and Section 2, two phases appear, and the solution
takes the two phases and the transition layer. This behavior allowed us to use the
phase separation theory of Carr, Curtin, and Slemrod [2] and obtain the pattern
formation in a wider range of density v̄ ∈ (α, β) together with the detailed structure
of the solution. However, the analysis in the paper is for the one space dimension
and needs to be done in multiple dimensions.

Appendix A. Symmetric versus random dispersal

In this section, we see that Fick’s diffusion law in a heterogeneous environment is
not for random dispersal. It is actually a symmetric dispersal whatever it means. To
view the heterogeneous diffusion models clearly, we consider dispersal on a lattice.
Let ui be the population (or probability) at the ith patch. Denote cij (= ci←j) as
the migration rate from patch j to patch i. Then, the rate of change of population
ui satisfies

(A.1) u̇i = cii−1ui−1 + cii+1ui+1 − ci−1iui − ci+1iui.

There are two special dispersal relations. If cii+1 = ci+1i, i.e., if the migration rate
of population from patch i to i+1 is equal to that from patch i+1 to i, the dispersal
model (A.1) is called symmetric (see [16]). If we denote γi+1/2 := cii+1 = ci+1i,
(A.1) is rewritten as

u̇i = γi+1/2(ui+1 − ui)− γi−1/2(ui − ui−1)

∼= γi+1/2u
′
i+1/2 − γi−1/2u

′
i−1/2

∼= (γu′)′i.

In the above approximation, the distance between two adjacent patches is assumed
to be 1, which is considered small enough. In multi-space dimensions, this relation
is written as a partial differential equation (PDE),

ut = ∇ · (γ(x)∇u),
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which is called Fick’s diffusion law. In other words, we may say that Fick’s diffusion
law is related to the symmetric dispersal on a patch system. However, the physical
meaning of symmetric dispersal is not clear.

We are more interested in the case when ci−1i = ci+1i, i.e. when the migration
rate from patch i to i− 1 is equal to the one from patch i to i+ 1. This is the case
that the probabilities to move to the right patch and the left one are identical and
hence we may call it a random dispersal. If we denote γi := ci+1i = ci−1i, (A.1) is
written as

u̇i = γi−1ui−1 + γi+1ui+1 − 2γiui
∼= (γu)′′i .

The corresponding PDE model in multi-space dimensions is

ut = ∆(γ(x)u),

which is the diffusion model used in the model of the paper (1.1). The physical
meaning of this diffusion is random dispersal. Since this type of diffusion contains
an advection phenomenon, it is often called a Fokker-Planck type diffusion.

Appendix B. Nonconstant static pattern and Maxwell line

We formally describe what dynamics in the chemotaxis model (1.1) create cell
aggregation patterns. The instability analysis has been considered for a long time
in chemotaxis theory and gives localized viewpoint. In the paper, we introduced a
new approach based on the phase separation which gives a nonlocal viewpoint. We
want to know the time asymptotic of the solution u under the zero-flux boundary
condition. Since the total population is conserved, we have a restriction∫

Ω

u(x, t)dx =

∫
Ω

u(x, 0)dx = ū|Ω|,

where ū is the average population. The asymptotic convergence of the aggregation
pattern will satisfy the elliptic equation (5.1). The Neumann boundary condition
for v and the second equation of (5.1) imply

(B.1) v̄|Ω| =
∫
Ω

v(x)dx =

∫
Ω

ε∆v + u(x)dx = ū|Ω|.

Under the zero-flux boundary condition, the first equation gives

(B.2) γ(v)um = Km, K > 0,

where K is a constant free to choose. We need this freedom to fit the constraint
(B.1).

The solution of (5.1) is not unique even under the constraint (B.1). The first
group of solutions are constant ones. Constant solutions should have the mean
value and hence ū = v̄ and (ū, v̄) is the constant solution. Hence, the constant K is
given by K = Ψ(ū, v̄). Note that we can always find a constant solution by taking
this K. However, the instability analysis shows that some of them are unstable. In
that case, we expect a nonconstant stable solution. Even if the constant solution is
stable, we may still find a stable nonconstant solution.

Suppose that (u, v) is a nonconstant solution. Then, the relation (B.2) gives
u = Kg(v) with g(v) = γ(v)−1/m. Then, we obtain a decoupled equation with v
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only,

(B.3)

{
0 = ε∆v +Kg(v)− v in Ω

0 = ∂νv on ∂Ω.

Hence, finding a nonconstant solution of (5.1) is now turned to finding a noncon-
stant solution of (B.3). However, to obtain a nonconstant solution of (B.3), the
reaction part f(v) := Kg(v) − v should be a balanced bistable nonlinearity, i.e.,

there should exist two stable states, α < β, and
∫ β

α
f(v)dv = 0. In general, the

reaction term does not satisfy the condition, but there may exist such a constant K
depending on the function g(v) = γ(v)−1/m. In Figure 11, the graphs of y = g(v)
are given for three cases together with graphs of y = v/K. If they can intersect
each other at three points, there is such a case. The graph of g(v) in the left is con-
cave and hence there is no chance. The graph of the middle one has an inflection
point, but there is no such a case. However, the right side one has three intersection
point and we can find a K0 such that K0g(v) − v is a balanced bistable nonliner-
ity. If K = K0 is chosen, then we may apply the phase separation theory with
van der Waals’ double-well potential W (v) = −

∫ v

0
f(s)ds, and W ′ = 0 becomes

the Maxwell line. Such a constant K0 is unique proved in Lemma 5.1. The over-
all shapes of the three cases in Figure 11 are not different much. However, subtle
differences in the function g(v) = γ(v)−1/m make the aggregation patterns emerge.

Figure 11. If there exists K > 0 such that the line y = v/K in-
tersects the graph of y = g(v) three times, aggregation may occur.
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