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Abstract. We develop general heterogeneous nonlocal diffusion mod-
els and investigate their connection to local diffusion models by taking
a singular limit of focusing kernels. We reveal the link between the two
groups of diffusion equations which include both spatial heterogeneity
and anisotropy. In particular, we introduce the notion of deciding factors
which single out a nonlocal diffusion model and typically consist of the
total jump rate and the average jump length. In this framework, we also
discuss the dependence of the profile of the steady state solutions on
these deciding factors, thus shedding light on the preferential position
of individuals.
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1. Introduction

The purpose of this exploratory paper is to investigate the modelling of
heterogeneous nonlocal diffusion and the connection with local diffusion.
Starting from the most general nonlocal heterogeneous diffusion, we will
see how to obtain a large class of local heterogeneous diffusion equations by
taking a focusing kernel limit. This process sheds new light on the underlying
dynamics of these models. In particular, the notion of deciding factors, and
its implications on the shape of the steady state solutions, may help to
determine whether a heterogeneous diffusion model is appropriate or not for
a given application.
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2 HETEROGENEOUS NONLOCAL DIFFUSION

1.1. Homogeneous diffusion. Under a homogeneous environment, a local
diffusion equation is often given by the classical heat equation

(1.1) ut = D∆u,

where the diffusivity D > 0 is constant. This diffusion equation is used in
a wide range of applications from physics problems to ecology ones, where
the homogeneous diffusion, D∆u, describes a random dispersal and x ∈ RN
the spatial position. Such a linear diffusion model can be recovered from a
probabilistic individual based model. In the study of evolutionary biology,
linear diffusion also models the mutation process, where x ∈ RN denotes
a phenotypic trait (see [1, 27, 34, 35, 43, 44] among many other references).
Remember that the diffusion equation (1.1) is for an environment where
there is no advantageous direction (isotropic) nor location (homogeneous).
In ecology, evolutionary biology, epidemiology, etc. the model usually comes
with a nonlinear reaction term, which takes into account birth, death, com-
petition, etc. Throughout this paper, we neglect the nonlinear population
dynamics and focus on the role of diffusion.

When the spatial domain is the whole Euclidean space RN , the nonlocal
counterpart of the heat equation (1.1) is

(1.2) ut =

∫
RN

K(x− y)u(t, y) dy −mu(t, x),

where K : RN → R+ is a nonnegative integrable kernel and the coefficient m
is the total jump rate,

(1.3) m =

∫
RN

K(z) dz > 0.

The way to recover the local equation (1.1) from the nonlocal one (1.2)
through a focusing kernel limit is classical and will be made precise in Sec-
tion 3. The integro-differential equation (1.2) is motivated by the long-range
dispersal phenomenon meaning that an individual may “travel” long dis-
tance in a short time scale. Nonlocal diffusions are therefore very popular
in population models for which long-distance dispersal events are relevant.
The propagation of epidemics [37, 40] and dispersal of seeds [18] are such
examples. Note that, in evolutionary biology, the mutation is also typically
modeled in terms of integral operators [3, 8, 9, 28, 30, 34, 36]. In the follow-
ing, we mainly refer to “spatial dispersal” but, obviously, our analysis also
applies to “mutations”.

In the context of a spatial dispersal, the kernel K(z) stands for the jump
rate for an individual to move from x to x + z or, equivalently, K(x − y)
is the jump rate from y to x. Hence, the constant m is the total jump rate
from a given point x ∈ RN . In particular, the last term in (1.2) models the
amount of individuals (of the considered species) departing the position x.
By integrating (1.2), one may check that the total population of the solution
is preserved, i.e.

∫
RN u(t, x)dx is constant.
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The central underlying assumption in the nonlocal diffusion model (1.2)
is that the jump rate from x to x + z is independent from the departure
point x and the arrival one x + z. In most mathematical literature, the
constant m is normalized to 1 which can be done without loss of generality
and the function K is assumed to be radial (see [2,4,16,24,29] and references
therein). As a result, the obtained nonlocal equation (1.2) is isotropic and
homogeneous in space, as is (1.1).

1.2. Heterogeneous diffusion. However, the motility of biological species
(in both local and nonlocal cases) depends on the environment, which is usu-
ally spatially heterogeneous. This spatial heterogeneity gives us a challenge
to develop diffusion models that take into account the spatial heterogeneity
properly in local and nonlocal equations. One of our goals is to address both
issues jointly and to draw new connections between those models.

To give the motivation, let us first illustrate the challenge in modelling
heterogeneous diffusion starting with a local diffusion case. A naive approach
would be to simply replace the diffusivity D in (1.1) by a real-valued function
D(x) and obtain ut = D(x)∆u. However, the resulting evolution equation
does not satisfy the mass conservation property (even under the zero-flux
boundary condition) and one should instead consider a diffusion model in a
divergence form for the motion of biological organisms.

On the other hand, there are infinitely many choices of diffusion equations
in a divergence form when the diffusivity D is not constant, which can be
written

(1.4) ut = ∇ ·
(
D(x)q∇(D(x)1−qu)

)
, q ∈ R.

Obviously, when the diffusivity coefficient D is constant, these diffusion laws
are all equivalent to the heat equation (1.1). In a heterogeneous case, they
lead to different solutions. Furthermore, if D is not smooth enough, the
“classical weak solution” is not defined and a different approach, depending
on the choice of the diffusion law, is required.

Many well-known diffusion equations are written in the form of (1.4).
First, one recovers the so-called Fick’s diffusion law [26] when q = 1:

ut = ∇ ·
(
D(x)∇u)), (Fick’s law).

This is a case without an advection phenomenon and constants are steady
states. When q = 0, the equation is written as

ut = ∆(D(x)u). (Chapman’s law)

Chapman derived this diffusion law using the kinetic theory in [15] where
his main purpose is to explain the thermal diffusion phenomenon. Before
Chapman’s derivation, Wereide [47] derived a diffusion law that corresponds
to the case with q = 1

2 ,

ut = ∇ ·
(√

D(x)∇(
√
D(x)u)

)
, (Wereide’s law)
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using basic physical intuitive relations. The latter two equations are also re-
spectively called Itô and Stratonovich type since they are satisfied by prob-
ability density functions of the corresponding stochastic interpretations of
the Brownian motion. Unlike Fick’s law, these two contain drift phenomena
and hence they may also be called Fokker-Planck equations.

The diffusion laws in (1.4) satisfy the mass conservation property, and it is
not obvious to see which one is the right diffusion law among all possibilities.
The related question of whether heterogeneous dispersal is advantegeous to
a species has been adressed from the evolutionary point of view in several
works [6,11,12]. Recently, two of the authors of the present work derived het-
erogeneous diffusion equations from revertible kinetic systems and compared
the properties of diffusion laws using a thought experiment [33]. In particu-
lar, they obtained Wereide’s diffusion law as a special case. In this paper we
see that the same questions and issues exist and need to be addressed for
the spatially heterogeneous nonlocal diffusion case. In this process we hope
to obtain new insights on the long standing issue of heterogeneous diffusion
(see, e.g., [41] and the references therein).

1.3. Organization of the paper. In Section 2, we propose a general model
for nonlocal heterogeneous diffusion, introducing in particular the notion of
deciding factors, from which a wide range of nonlocal heterogeneous diffusion
laws can be derived. Next, in Section 3, we draw a connection between the
nonlocal and the local diffusion cases by a singular limit argument. This pro-
vides some new interpretation for equation (1.4). However, as was pointed
out by two of the present authors in an earlier work [33], the diffusivity
function D(x) may not be sufficient to describe heterogeneous diffusion ac-
curately, because it does not fully cover velocity jump processes given by
kinetic equations. In subsection 3.3, we make a related observation that the
nonlocal diffusion equation, or position jump process, also leads to a range
of local equations wider than (1.4). In Section 4, in order to answer the
question “Where are the individuals?”, we investigate steady states solu-
tions (through both rigorous computations and numerical simulations) of
the equations with heterogeneous nonlocal diffusion. This in particular re-
veals the role of deciding factors on the repartition of individuals, and may
guide the use of these models in the applications. Finally, in Section 5, we
briefly summarize our main contributions and present some perspectives.

2. Heterogeneous nonlocal diffusion equations

In a nonlocal ecological diffusion model, it is assumed that individuals
have the ability to jump from one position to another at any given time.
In particular, we occasionally refer to the corresponding equation as the
(position) jump process in order to distinguish it from kinetic equations
which take integro-differential terms of velocity jumps. As mentioned earlier,
a commonly used jump process is the homogeneous case (1.2), where the
jump rate depends only on the distance between two points (radial K).
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However, if the environment is heterogeneous, the jump rate may depend
on the departing point or arrival one. We may denote the jump rate by

J(x, y) : the jump rate from x to y.

Let us emphasize again that this jump rate depends not only on the dis-
tance between the two points, but also on the direction of the jump. Thus
the spatial heterogeneity of the environment along the way is counted by
considering the distance and direction. This leads to a general nonlocal het-
erogeneous equation

(2.1) ut(t, x) =

∫
RN

J(y, x)u(t, y) dy −
∫
RN

J(x, y)u(t, x) dy.

Here, the first integral term stands for individuals arriving at x from all
possible positions, whereas the second one accounts for individuals leaving
from the position x. We refer to [32] for its derivation from a discrete model
in space and time. Notice that, provided that J is integrable with respect
to each variable, the above equation is well-posed and satisfies the mass
conservation property (at least formally). Indeed, the total mass at time t,

M(t) :=

∫
RN

u(t, x)dx,

satisfies

dM
dt

=

∫
RN

[∫
RN

J(y, x)u(t, y) dy −
∫
RN

J(x, y)u(t, x) dy

]
dx

=

∫
RN

[∫
RN

J(y, x)u(t, y)dx

]
dy −

∫
RN

[∫
RN

J(x, y)u(t, x) dy

]
dx

= 0,

where we used Fubini’s theorem to invert integrals.
Observe that (2.1) becomes

ut(t, x) =

∫
RN

J(y, x)u(t, y) dy −m(x)u(t, x),

where

(2.2) m(x) :=

∫
RN

J(x, y)dy

stands for the total jump rate from position x. We also define

(2.3) J1(x) :=

∫
RN
‖y − x‖J(x, y)dy

the absolute first moment at position x. In other words, J1(x) stands for the
average jump length among individuals jumping from the position x. Both
the total jump rate and the average jump length are natural quantities which
may be impacted by spatial heterogeneity.

Obviously, equation (2.1) turns into the homogeneous nonlocal diffu-
sion equation (1.2) by selecting J(y, x) = K(x − y) and defining m :=
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RN K(z)dz. Yet our purpose is now to find practical ways to take into ac-

count the spatial heterogeneity and anisotropy in the choice of the jump rate
function J . We will see that it is advantageous to specify J by distinguishing
the effects of heterogeneity on the distance and on the direction of jumps.

2.1. A few illuminating examples. Before we introduce general ways to
handle heterogeneity, we start with some revealing examples. First, in the
context of evolutionary biology, let us mention the work [31] which considers
a mathematical model for the fitness distribution in an asexual population
under mutation and selection. Due to the presence of a phenotype opti-
mum, the distribution of mutation effects on fitness depends on the parent’s
fitness (corresponding to x). Hence the authors need to consider “context-
dependent” mutation kernels, corresponding in our setting to the case where

(2.4) J(x, y) = K(x; y − x).

In other words a dispersal kernel K(x; ·) has been assigned to each point x
in the spatial domain, accounting for heterogeneity. In this above form,
J(x, y) is the jump rate from x to y, and therefore the heterogeneity factor is
considered at the departure point. This case arises from an Itô interpretation
of a stochastic Poisson jump process, and therefore by analogy with the local
diffusion we may call it nonlocal Itô type diffusion.

To make the above form more meaningful, one may further specify the
function K, for instance by letting

(2.5) K(x; y − x) = m(x)K̃(y − x),

or

(2.6) K(x; y − x) =
1

g(x)N
K̃

(
y − x
g(x)

)
,

where in either cases K̃ denotes a probability density, which we may rescale
without loss of generality so that its absolute first moment is∫

RN
‖z‖K̃(z)dz = 1.

In the former case, the x-dependence appears only in the factor m(x) which
as outlined before stands for the total jump rate from the position x. In the
latter case, one may compute that the total jump rate from x is constant
equal to 1, while the average jump length (or absolute first moment at
position x) is g(x) and now accounts for the heterogeneity. Both of these
forms provide a tractable way to include heterogeneity in the model.

However, depending on the context, one may want to consider a symmet-
rical situation where the jump rate from x to y is the same as the jump
rate from y to x. The reasoning behind that may be that the jump rate
of individuals may only depend on the path of the displacement, and not
necessarily on heterogeneous conditions at the departure point. The above
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examples are ill-suited for such a situation, and leads us to instead consider
the form

(2.7) J(x, y) = K

(
x+ y

2
; y − x

)
.

The symmetry of J(x, y) can then be reformulated as the evenness of the
kernel K(p; ·), for any p ∈ RN . Here p = x+y

2 stands for the point where
heterogeneity dependence is involved: in this framework, heterogeneity is
taken at the middle point of the jump.

The common trait to the above two forms (2.4) and (2.7) is that we
assign a kernel to each position in the space domain. Then the heterogeneity
corresponding to the path (x, y) is determined by environmental conditions
at a single point p, which is then called a deciding factor. Extrapolating on
the above examples, we are led to pick

p = αx+ βy,

with α+ β = 1, in other words as a barycenter of the departure and arrival
points. When α = 1, we find the nonlocal Itô type diffusion where the
influential environmental conditions are those at the starting point x. Let
us notice that this particular case has been considered in [19–22]. When
α = 1

2 we recover the symmetrical case when the jump rates are the same
from both x to y and y to x. A key input of this work is to allow any
barycenter of the starting and arrival points to be a deciding factor. This
will be discussed again in subsection 2.3.

Still, it turns out that a single deciding factor may not be enough to
fully understand the diffusion process, and we provide one last example to
illustrate this. Let us consider, in spatial dimension N = 1, the case

(2.8) J(x, y) =
1

h(y)
K̃

(∫ y

x

1

h(s)
ds

)
,

where, as above, K̃ is a probability density and h is positive. This nonlocal
model arises from a Stratonovich (also referred to as Marcus [5]) integral
of a Poisson jump process [7]. Another way to derive it is to check that
the heterogeneous equation (2.1) with (2.8) reduces to the homogenenous
nonlocal diffusion model (1.2) by the change of variables

x′ =

∫ x

0

1

h(s)
ds.

This is consistent with the property that the Stratonovich integral preserves
the chain rule of standard calculus. From the biological point of view, this
means that the heterogeneity distorts the distances, as in the jump rate the
(Euclidean) distance between x and y is replaced by the integral from x
to y of the inverse of the function h. This integral may be understood as a
distance with respect to a so-called food metric [17].

Due to the integral term in (2.8), one cannot isolate a single deciding point
and it is the whole path which determines the heterogeneity. This partly
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explains why, in the next subsection, we will introduce a general framework
where a kernel is assigned not only to any point (though, as suggested by the
above examples, it is sufficient in some situations) but to any possible path.
Such generality also allows us to consider the case of two deciding factors,
which is convenient to distinguish the effects of heterogeneity on the total
jump rate and on the average jump length.

2.2. Assignment of a kernel to any possible path. In order to en-
compass all the above examples in a very general setting, our idea is the
following: for any possible path, i.e. for any pair of points (x, y), we assign
a dispersal kernel.

Precisely, we assume the form

J(x, y) = K(f(x, y); y − x),

where

K : (p; z) ∈ RM × RN 7→ K(p; z) ∈ R+,

is a family of kernels, from which one is determined on each path (x, y)
through the parametrizing function

f : (x, y) ∈ RN × RN 7→ f(x, y) ∈ RM ,

with M ≥ 1. We will see below that, typically, M ≤ N + 1 ≤ 2N (i.e., there
are less kernels than there are paths), which avoids over-determining issues.
Moreover we assume that, for any (x, y) ∈ RN × RN ,

m(x, y) :=

∫
RN

K(f(x, y); z) dz ∈ (0,+∞),

and

J1(x, y) :=

∫
RN
‖z‖K(f(x, y); z) dz ∈ (0,+∞),

i.e. all kernels have finite mass and absolute first moment.
With the above choice of the jump rate J , the general equation (2.1)

becomes
(2.9)

ut(t, x) =

∫
RN

K(f(y, x);x− y)u(t, y) dy −
∫
RN

K(f(x, y); y − x)u(t, x) dy.

To ensure that the right hand side of the above equation is “meaningful”,
we will also always assume that there exists K ∈ L1(RN ) such that

∀(x, y) ∈ RN × RN ,∀z ∈ RN , K(f(x, y); z) ≤ K(z).

Equations (2.1) and (2.9), together with the above assumptions, provide
a general heterogeneous framework within which all the following sections
will fit. Obviously, the latter equation (2.9) still includes the homogeneous
equation: it naturally arises when we associate the same dispersal kernel
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to all paths, i.e. regardless of the departure and arrival points. It also in-
cludes (2.4) and (2.7) by letting either

f(x, y) = x or f(x, y) =
x+ y

2
,

which is what we will call a deciding factor.

In this new setting, we point out that a natural generalization of exam-
ple (2.5) consists in

(2.10) J(x, y) = K(m(x, y); y − x) = m(x, y)K̃(y − x),

where K̃ is a probability density. In this case, the heterogeneity only appears
in the parametrizing function m(x, y). Since∫

RN
m(x, y)K̃(z)dz = m(x, y),

this can be interpreted as parametrizing the kernels associated with each
path by their mass, while in the meantime they all share the same distribu-

tion K̃. Note that in the homogeneous case, that is if m(x, y) = m is spatially
constant, the value m is also the total jump rate; see (1.2) and (1.3). If, say,
m(x, y) = m(x), then this interpretation still holds and we recover (2.2),
that is m(x) is the total jump rate of individuals that leave position x. In
order to stick with our unified setting, for the rest of this paper, we shall
always call m(x, y) the total jump rate.

Similarly, a natural generalization of example (2.6) consists in

(2.11) J(x, y) = K(g(x, y); y − x) =
1

g(x, y)N
K̃

(
y − x
g(x, y)

)
,

where K̃ is a probability density, rescaled so that its absolute first moment

(2.12)

∫
RN
‖z‖K̃(z) dz = 1,

and the function g : RN × RN → R has positive infimum and supremum.
Moreover, the total jump rate

m(x, y) =

∫
RN

K(g(x, y); z) dz =

∫
RN

K̃(z) dz

is actually spatially constant. However, the heterogeneity appears in the
function g(x, y), which is the relative absolute first moment (i.e. the ra-
tio of the first moment and the mass) of the dispersal kernel K(g(x, y); ·),
see (2.14) below. If g(x, y) = g is spatially constant, then the value g may be
interpreted as an average jump length. In the general case and with a slight
abuse of terminology, we shall still call it the average jump length.

Finally, we may combine (2.10) and (2.11) so that both the total jump rate
and the average jump length are spatially heterogeneous. The heterogeneous
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dispersal kernel can then be written as

(2.13) J(x, y) = K(m(x, y), g(x, y); y − x) =
m(x, y)

g(x, y)N
K̃

(
y − x
g(x, y)

)
,

where K̃ is a probability density, rescaled so that its absolute first moment
is equal to one. When assuming form (2.13), we have

(2.14) m =

∫
RN

K(m, g; z)dz, g =

∫
RN
‖z‖K(m, g; z) dz∫

RN
K(m, g; z) dz

.

2.3. The notion of deciding factors. In Section 3, we will compute the
singular limits of (2.9) with focusing kernels to recover a wide range of local
diffusion equations, including, but not limited to, (1.4). The point of such
focusing kernels is that the average jump length goes to 0 as a singular limit
parameter tends to 0 (see Section 3). In this context, it turns out that it is
mainly sufficient (see subsection 5.3 for possible further developments) that
the distribution kernel depends on a finite number of points. For instance,
in the above example (2.13), one may assume that

g(x, y) = g̃(αx+ βy),

m(x, y) = m̃(α′x+ β′y),

where α+ β = α′ + β′ = 1, so that

J(x, y) =
m̃(α′x+ β′y)

(g̃(αx+ βy))N
K̃

(
y − x

g̃(αx+ βy)

)
.

This means that the total jump rate m of the dispersal kernel corresponding
to the path (x, y) is determined by environmental conditions at the single
point α′x+ β′y, which as outlined before we then call a deciding factor. On
the other hand, the relative absolute first moment of the dispersal kernel
corresponding to the path (x, y), which is also the average jump length
g(x, y), is determined by environmental conditions at the (possibly) distinct
deciding factor αx+ βy. It is left to decide how to choose those two points,
and to observe the consequences in the singular limit depending on that
choice. For instance, one may pick α = 1 and β = 0, so that the average
jump length g(x, y) is decided at the departure point x, while α′ = β′ = 1

2 ,
which means that the total jump rate m(x, y) is decided by the middle
point x+y

2 . We believe that this interpretation, together with the connection
between local and nonlocal diffusion which we next establish, provide a new
perspective on the understanding of heterogeneous diffusion.

Finally, we point out that the framework of subsection 2.2 also includes (2.8)
by taking

(2.15) J(x, y) = K

(
h(y),

∫ 1

0

1

h(x+ s(y − x))
ds; y − x

)
,
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with

K(h1, h2; z) =
1

h1
K̃ (h2z) ,

provided that 0 < infRN h ≤ supRN h < +∞ and K̃ is again a probability
density. In this case the kernel is parametrized by the conditions at the
arrival point, i.e. h(y), as well as conditions on the whole path through the

integral
∫ 1

0
1

h(x+s(y−x))ds which is related to the distance with respect to the

food metric.

3. Singular limits: from nonlocal to local diffusion

In this section, we show how to obtain a large class of local diffusion laws
from heterogeneous jump processes of the type (2.9). Recall that, in the
homogeneous case, one can recover the heat equation (1.1) as the focusing
kernel limit of the integro-differential (1.2). Precisely, assuming that K has
a finite second moment the following holds: as ε → 0, the solution uε of
(1.2), with the kernel K(z) replaced by the focused kernel

Kε(z) :=
1

εN+2
K
(z
ε

)
,

tends (in a sense we do not specify in this exploratory paper) to the solution
of (1.1) with D depending on the second moment of K, starting with the
same initial datum. This can be understood from a simple formal Taylor
expansion that we will indicate below in a much more general setting. Hence,
in some situations, nonlocal dispersal operators can be approximated by the
local diffusion operator. This fact is long known: for instance, in evolutionary
biology models, we refer to [34] and [10, Chapter VI, subsection 6.4]. For a
rigorous proof, one can use the explicit writing of the solution of (1.2) in
the Fourier variable, see [4, Theorem 1.24].

As far as the singular limit of heterogeneous nonlocal diffusion equations
is concerned, we refer to the recent works [38,39,45] for some particular cases
that all fall into our general framework below. Also note the preprint [25]
which starts from a local/nonlocal heterogeneous model.

In view of the very general framework outlined in Section 2, hereafter we
will use the focusing kernels

Kε(f(x, y); z) :=
1

εN+2
K
(
f(x, y);

z

ε

)
.

Thanks to the “additional” variable z (ultimately replaced by y − x in the
diffusion equation), the above form drives the average jump length to 0 as
ε→ 0, while preserving the scale of the heterogeneity in the singular limit.

3.1. The diffusivity matrix. The limiting local equation will involve the
following notion of diffusivity.
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Definition 3.1 (The diffusivity matrix). Define a dispersal kernel K(f(x, y); z)
as in subsection 2.2. For all x ∈ RN , we define a diffusivity matrix by

(3.1) D(x) :=
1

2

∫
RN

z ⊗ zK(f(x, x); z) dz,

where ⊗ stands for the outer product in RN . Alternatively, the diffusivity
matrix D(x) = (dij(x))1≤i,j≤n can be written component-wise as

(3.2) dij(x) =
1

2

∫
RN

zizjK(f(x, x); z) dz.

Notice that in the integral terms of the above definition, we only need to
evaluate K(f(x, y); z) at x = y. The reason is that the local equation arises
in the limit of focusing kernels where the average jump length goes to 0,
hence the departure and arrival point eventually coincide. There is however
no mathematical obstacle to extend the above diffusivity matrix to the case
where x 6= y. Notice also that it is implicitly assumed that the kernel K is
such that dij(x) ∈ R for any x ∈ RN .

In order to illustrate this notion, let us consider the aforementioned ex-
ample (2.13), namely f(x, y) = (m(x, y), g(x, y)) ∈ R2 and

K(f(x, y); z) =
m(x, y)

g(x, y)N
K̃

(
z

g(x, y)

)
,

for which the diffusivity matrix is straightforwardly computed as

D(x) := m(x, x)g(x, x)2D̃.

Here, D̃ is the constant diffusivity matrix associated with the homogeneous

dispersal kernel K̃, while the total jump rate m and the average jump
length g account for the environment’s heterogeneities. Unsurprisingly, the
diffusivity depends monotonically on both the total jump rate and the av-
erage jump length.

3.2. The case of a single deciding factor. As outlined at the end of
Section 2, we consider the nonlocal heterogeneous model (2.9) with

f(x, y) = αx+ βy, J(x, y) = K(αx+ βy; y − x),

where
α+ β = 1.

In other words, the nonlocal dispersal kernel associated with a path (x, y)
is determined by the single point αx+ βy. Notice that we put the deciding
factor αx + βy directly as the output of the parametrizing function f ; this
allows us to handle simultaneously both cases of spatially heterogeneous
jump rate or jump length, and even more general situations where the kernel
distribution may vary.

Then we rewrite (2.9) as
(3.3)

ut(t, x) =

∫
RN

K(αy+βx;x−y)u(t, y) dy−u(t, x)

∫
RN

K(αx+βy; y−x) dy.
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We point out that, when α = 0 and β = 1, the kernel is chosen from the
arrival point and the equation becomes

ut(t, x) =

∫
RN

K(x;x− y)u(t, y) dy − u(t, x)

∫
RN

K(y; y − x) dy.

When α = 1 and β = 0, the kernel is chosen from the departing point and
the equation becomes

ut(t, x) =

∫
RN

K(y;x− y)u(t, y) dy − u(t, x)m(x),

where as before m denotes the integral of K with respect to its last variable.
When α /∈ {0, 1} the dispersal kernel is selected by a nontrivial linear com-
bination of the departure and the arrival points. If we integrate (3.3) over
x ∈ RN and use Fubini’s theorem, we obtain as explained earlier the mass
conservation property:

d

dt

∫
RN

u(t, x) dx = 0.

Here we implicitly assumed the framework introduced in subsection 2.2: the
function K(p; ·) is nonnegative and bounded by some K ∈ L1(RN ) uniformly
with respect to p ∈ RN .

Moreover, we make the additional assumption thatK is symmetric about 0
with respect to its last variable, i.e.

(3.4) ∀(p, z) ∈ RN × RN , K(p;−z) = K(p; z).

We also assume that K is “sufficiently smooth” in the p-variable, and that
its derivatives with respect to the p-variable are “sufficiently z-integrable”
(typically quadratic weights have to be supported). These assumptions play
an important role in the singular limit argument, as will be clear from the
terms appearing in the computations below.

Let us point out that a typical example of such dispersal kernels is

K(p; z) = m(p)K̃(z),

where K̃ is a symmetric probability density, and thus only the mass m(p) of
the dispersal kernel depends on position p. One may also assume that the
relative absolute first moment, or average jump length, is spatially hetero-
geneous by considering

K(p; z) =
m(p)

g(p)N
K̃

(
z

g(p)

)
.

We now formally derive local diffusion equations from the nonlocal dif-
fusion equations (3.3). To do so, we actually take a sequence of focusing
kernels. Denote, for any z ∈ RN ,

(3.5) Kε(p; z) :=
1

εN+2
K
(
p;
z

ε

)
, 0 < ε� 1.
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Notice that these still satisfy our assumptions. However, with obvious nota-
tions, the total jump rate and the average jump length are related through

mε(p) :=

∫
RN

Kε(p; z) dz =
1

ε2
m(p), gε(p) :=

∫
RN
‖z‖Kε(p; z) dz∫

RN
Kε(p; z) dz

= εg(p).

Hence, as ε → 0, the average jump length goes to 0 but, in some sense,
this is compensated by the fact that mε(p) → +∞, i.e. individuals jump
more often. In particular, the corresponding diffusivity matrix Dε of the
focusing kernels is unchanged. This can be understood from the fact that, in
the homogeneous case, the kernels (3.5) naturally arise from the parabolic
scaling, corresponding to the change of variables

t← ε2t , x← εx.

Thus, in our context, focusing kernels can be understood as having the
motion of individuals occur on a smaller scale than the heterogeneity. These
different scales are necessary to recover a local diffusion law while preserving
the spatially heterogeneous feature.

Let us proceed with our computation of the singular limit ε→ 0. First, we
plug the above focusing kernels into (3.3), use a change of variable z = y−x

ε ,
and obtain

ε2ut(t, x) =

∫
RN

K
(
x+ εαz; z

)
u(t, x+ εz)dz−

∫
RN

K
(
x+ εβz; z

)
u(t, x)dz,

where we used the symmetry of the dispersal kernel with respect to its last
variable, namely (3.4). Then

ε2ut(t, x) ≈
∫
RN

(
K(x; z) + εαz · ∇pK(x; z) + ε2 1

2
α2
〈
D2
pK(x; z)z, z

〉 )
×
(
u(t, x) + εz · ∇u(t, x) + ε2 1

2

〈
D2u(t, x)z, z

〉 )
dz

−
∫
RN

(
K(x; z) + εβz · ∇pK(x; z) + ε2 1

2
β2
〈
D2
pK(x; z)z, z

〉 )
u(t, x)dz,

where ∇pK(x; z) and D2
pK(x; z) respectively denote the gradient vector and

the Hessian matrix of the map of dispersal kernels, p 7→ K(p; z). Here 〈·, ·〉
denotes the scalar product in RN .

Clearly the ε0 order terms in the right hand side cancel each other. More-
over, since K(p; z) is symmetric with respect to z, we have∫

RN
z · ∇pK(x; z) dz = 0,

∫
RN

K(x; z)z · v dz = 0,
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for any v ∈ RN . Therefore, the ε1 order terms in the right hand side also
cancel out. As a result, recalling that β = 1−α, we reach the local equation

ut(t, x) ≈ 1

2

∫
RN

K(x; z)〈D2u(t, x)z, z〉 dz

+α

∫
RN

(
z · ∇pK(x; z)

)(
z · ∇u(t, x)

)
dz

+
2α− 1

2

∫
RN
〈D2

pK(x; z)z, z〉u(t, x) dz.

We now define

(3.6) q := 2− 2α (= 2β).

Then, using q and the coefficients dij(p) of the diffusivity matrix from (3.2),
we may rewrite the above diffusion equation as

ut(t, x) ≈
∑
i,j

dij(x)∂xixju(t, x) + (2− q)
∑
i,j

∂pjdij(x)∂xiu(t, x)

+(1− q)
(∑

i,j

∂pipjdij(x)
)
u(t, x).

We pursue and, omitting to write the (t, x)’s, get

ut ≈
∑
i,j

∂xj

(
dij(x)∂xiu

)
+(1− q)

(∑
i,j

∂pjdij(x)∂xiu+
(∑

i,j

∂pipjdij(x)
)
u
)

≈
∑
i,j

∂xj

(
dij(x)∂xiu

)
+ (1− q)

∑
i,j

∂xi

(
∂pjdij(x)u

)
≈

∑
i

∂xi

(∑
j

(dij(x)∂xju+ (1− q)∂pjdij(x)u)
)
,

which is in the so-called divergence form. We finally obtain, in the singular
limit, the (possibly anisotropic) diffusion equation

(3.7) ut =
∑
i

∂xi

(∑
j

(
dqij(x)∂xj

(
d1−q
ij (x)u

)))
,

which is an anisotropic generalization of the form (1.4).
Let us first observe that, if q = 1 in (3.7), we reach Fick’s law:

ut = ∇ · (D(x)∇u). (q = 1, α = 1
2)

This is the case when α = β = 1
2 , meaning that the middle point between

departure and arrival points is used to define the spatial heterogeneity in
the nonlocal model (for instance, in a heterogeneous total jump rate m).

The next case is when q = 0 in (3.7), which yields Chapman’s law:

ut = ∇ · (∇ · (D(x)u)). (q = 0, α = 1)
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Here, ∇· (Du) is the vector that consists of the divergence of the rows of the
matrix Du, that is

∇ · (Du) =
(
∇ · (di1u, ..., diNu)

)
1≤i≤N

.

This is the case when α = 1, β = 0, meaning that only the departure point
is used to define the spatial heterogeneity in the nonlocal model.

For a general q, we may rewrite equation (3.7) as follows. First, observe
that ∑

j

∂xj

(
dij u

)
=
∑
j

dqij∂xj

(
d1−q
ij u

)
+
∑
j

(
∂xj (d

q
ij)d

1−q
ij

)
u.

Let Nq(x) = ((Nq)i(x)) be the vector given by

(3.8) (Nq)i(x) =
(∑

j

∂xj (d
q
ij(x))d1−q

ij (x)
)
.

Then, the component-wise equation (3.7) can be written as

(3.9) ut = ∇ ·
(
∇ · (D(x)u)−Nq(x)u

)
.

Remark 3.2 (Isotropic diffusion). The relation between (3.7) and (1.4)
becomes obvious in the isotropic case, i.e. when radial symmetry is assumed
for the mapping z 7→ K(p; z), which is a stronger assumption than (3.4). In
this case, we obtain D(x) = D(x)I, where I is the identity matrix and

D(x) :=
1

2N

∫
RN
‖z‖2K(f(x, x); z) dz.

The diffusion equation (3.7) then becomes

ut = ∇ ·
(
Dq(x)∇

(
D1−q(x)u

))
,

which is exactly (1.4).

Remark 3.3 (Orthotropic diffusion). Assume the component-wise symme-
try, which is stronger than the symmetry assumption (3.4): for all (p, z) ∈
RN × RN ,

(3.10) K(p;α1z1, ..., αNzN ) = K(p; z) for all (αi) ∈ {±1}N .

Then, the diffusivity matrix D(x) becomes diagonal, which is often called
orthotropic. Under assumption (3.10), equation (3.7) turns into

ut =
∑
i

∂xi

(
dqii(x)∂xi

(
d1−q
ii (x)u

))
.

Furthermore, since the diffusivity matrix D(x) is diagonal, Dq(x) can be
defined element-wise, and the equation becomes

ut = ∇ ·
(
Dq(x)

(
∇ · (D1−q(x)u)

))
.
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3.3. The case of two deciding factors. We now consider the nonlocal
heterogeneous model (2.9) with

(3.11) J(x, y) = ν(α′x+ β′y)K(αx+ βy; y − x),

where
α+ β = α′ + β′ = 1,

and ν, K will be made precise below. This is again a particular case of
subsection 2.2, by choosing f(x, y) = (ν(α′x+ β′y), αx+ βy) ∈ RN+1.

As explained at the end of Section 2, this means that the heterogeneity
in the nonlocal dispersal kernel associated with a path (x, y) is no longer
determined by a single point, but by the two points αx+βy and α′x+β′y. As
in the previous subsection, both points are still chosen as linear combinations
of the departure and arrival points.

Notice that the diffusivity matrix associated with a dispersal kernel of the
form (3.11) remains the same, regardless of whether α = α′ or not, that is
regardless of whether the two deciding factors are actually the same or not.
Therefore one may expect that the limit local equation is also unchanged.
As we will see below, it turns out that this is not the case. In some sense,
the diffusivity matrix does not convey all the information of the motion
in the heterogeneous case. This should become transparent below — see
Example 3.4, Example 3.5, equation (3.19), Remark 3.6, Remark 3.7— but
we refer the impatient reader to the concluding subsection 5.2. This is quite
similar to the observation made by two of the present authors in [33] in the
kinetic model.

The motivation behind such a double heterogeneity is the fact that a
dispersal kernel K can be mostly characterized by its mass (or zero moment)

m :=

∫
RN

K(z) dz,

and its relative absolute first moment

g :=

∫
RN
‖z‖K(z) dz∫

RN
K(z) dz

.

Indeed, as we explained in Section 2, the former can be interpreted as the
total jump rate of individuals, and the latter as the average jump length.
Both notions are crucial in the modelling of diffusion in ecology. It is then
natural to allow these two functions not only to depend on space, but also
to vary independently and be decided at possibly distinct points.

A typical example of dispersal kernel in the form (3.11) is provided by
the following:

(3.12) J(x, y) =
m(α′x+ β′y)

g(αx+ βy)N
K̃

(
y − x

g(αx+ βy)

)
,

where K̃ is a fixed probability density, rescaled so that (2.12) holds.
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We now proceed with the general form (3.11). The nonlocal equation (2.9)
becomes

(3.13)

ut(t, x) =

∫
RN

ν(α′y + β′x)K(αy + βx;x− y)u(t, y) dy

−u(t, x)

∫
RN

ν(α′x+ β′y)K(αx+ βy; y − x) dy.

According to (3.11), it is assumed that the two variables accounting for the
heterogeneity are separable in the dispersal kernel. Moreover, in order to
satisfy the assumptions of Section 2, we take ν : RN → R to have positive
infimum and supremum, and K : RN×RN → R a nonnegative and nontrivial
function. We also assume that K(p; z) ≤ K(z) for some K ∈ L1(RN ). As in
the previous section, we impose the symmetry condition,

∀(p, z) ∈ RN × RN , K(p;−z) = K(p; z),

that both ν(p′) andK(p; z) are “sufficiently smooth”, and that all derivatives
of ν(p′)K(p; ·) in the p, p′-variables are “sufficiently z-integrable”.

We now consider the focusing kernels

(3.14) νε(p
′) :=

1

ε2
ν(p′) Kε(p; z) :=

1

εN
K
(
p;
z

ε

)
, 0 < ε� 1.

Plugging these into equation (3.13), and by a change of variable z = y−x
ε ,

we obtain

ε2ut(t, x) =

∫
RN

ν(x+ εα′z)K(x+ εαz; z)u(t, x+ εz) dz

−
∫
RN

ν(x+ εβ′z)K(x+ εβz; z)u(t, x) dz.

After performing formal asymptotic expansions and using similar arguments
as in subsection 3.2, we reach

ut(t, x) ≈ ν(x)

∫
RN

K(x; z)
1

2
〈D2u(t, x)z, z〉 dz

+αν(x)

∫
RN

(
z · ∇pK(x; z)

)(
z · ∇u(t, x)

)
dz

+α′
∫
RN

(z · ∇ν(x))K(x; z)(z · ∇u(t, x)) dz

+

{
(2α− 1)ν(x)

∫
RN

1

2
〈D2

pK(x; z)z, z〉 dz

+(α+ α′ − 1)

∫
RN

(z · ∇ν(x))(z · ∇pK(x; z)) dz

+(2α′ − 1)

∫
RN

1

2
〈D2ν(x)z, z〉K(x; z) dz

}
u(t, x).
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Denote

q := 2− 2α = 2β, q′ := 2− 2α′ = 2β′.

In the setting (3.11), we observe that the coefficients dij(x) of the diffusivity
matrix D(x) of Definition 3.1 are given by

dij(x) = ν(x)
1

2

∫
RN

zizjK(x; z) dz.

In light of this, proceeding as in subsection 3.2, we can rewrite the above
equation in a conservative form as

(3.15) ut =
∑
i

∂xi

(∑
j

(
νq

′−q(x)dqij(x)∂xj

(
νq−q

′
(x)d1−q

ij (x)u
)))

.

Notice that there are two degrees of freedom, given by q and q′. First,
find that, if q = q′, then (3.15) is written as

(3.16) ut =
∑
i

∂xi

(∑
j

(
dqij(x)∂xj

(
d1−q
ij (x)u

)))
.

In this case, diffusivity in the sense of Definition 3.1 alone decides the diffu-
sion phenomenon. This is exactly the situation considered in subsection 3.2
with “a single deciding factor”. For instance, we reach

ut = ∇ · (∇ · (D(x)u)), (q, q′) = (0, 0)

ut = ∇ · (D(x)∇u). (q, q′) = (1, 1).

However, as seen in (3.15), this is no longer the case when two different
types of heterogeneity are considered.

Example 3.4. Let us return to our previous example (3.12) to better un-
derstand the meaning and the role of ν: when

K(f(x, y); z) =
m(α′x+ β′y)

g(αx+ βy)N
K̃

(
z

g(αx+ βy)

)
,

then ν = m is the total jump rate. Therefore the limiting local equation
(3.15) typically involves not only the diffusivity matrix but also the total
jump rate of the original nonlocal model. Let us also recall that, in this
example, the diffusivity matrix is

D(x) = m(x)g(x)2D̃,

where D̃ = (d̃ij)ij is spatially homogeneous. Then (3.15) becomes

(3.17) ut =
∑
i

∂xi

(
mq′(x)g2q(x)

∑
j

d̃ij∂xj

(
m1−q′(x)g2−2q(x)u

))
.

In this form, one may identify the role of not only the total jump rate m but
also the average jump length g. In particular, the parameters q and (α, β)
correspond to the average jump length g while q′ and (α′, β′) correspond to
the total jump rate m.
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Example 3.5. Let us first consider the case when α′ = 1 and α = 1/2.
In Example 3.4, this means that the total jump rate is determined by the
departure point, while the average jump length is determined by local con-
ditions on the travel path, which can be reasonably simplified by choosing
the middle point. From (3.15), we get

ut = ∇ · (ν−1(x)D(x)∇(ν(x)u)). (q, q′) = (1, 0)

Yet, we may instead consider the opposite case where the average jump
length is determined at the departure point while the total jump rate is
determined at the middle point (for instance, individuals may choose to
go back to the departure point if they see a decline in the environmental
conditions). This corresponds to α′ = 1/2 and α = 1. From (3.15), we get

ut = ∇ · (ν(x)∇ · (ν−1(x)D(x)u)), (q, q′) = (0, 1)

This equation is similar to a local equation derived in [33] from a velocity
jump process. The only difference is that ν here should be µ−1 in [33]. To
make it exactly the same, one needs to choose q = 0, q′ = −1 so that we get

ut = ∇ · (ν−1(x)∇ · (ν(x)D(x)u)). (q, q′) = (0,−1)

Still, from the point of view of the position jump process, the case (q, q′) =
(0, 1) seems more reasonable. Indeed, it is clear that diffusivity here is in-
creasing with respect to ν, which is typically the total jump rate. However,
in the kinetic model of [33] the function µ stands for the turning frequency,
with respect to which the diffusivity was decreasing. Thus, both notions
should not be confused and it is not surprising that positive and negative
exponents are swapped.

For general q and q′, there are many ways to write the limiting local
equation (3.15). We decide to write it as a “perturbation” of the case (q, q′) =
(0, 1) considered in the above example. To do so we write∑

j

ν∂xj

(
ν−1diju

)
=

∑
j

νq
′−qdqij∂xj (ν

q−q′d1−q
ij u)

+
∑
j

∂xj (ν
q′−q−1dqij)ν

1+q−q′d1−q
ij u

=
∑
j

νq
′−qdqij∂xj (ν

q−q′d1−q
ij u)

+νu(Nq,q′)i,

where Nq,q′(x) = ((Nq,q′)i(x)) is a correction vector given by

(3.18) (Nq,q′)i :=
∑
j

∂xj (ν
q′−q−1dqij)ν

q−q′d1−q
ij ,

which vanishes in the case (q, q′) = (0, 1). As a result, the diffusion equation
(3.15) becomes

(3.19) ut = ∇ ·
(
ν(x)∇ · (ν−1(x)D(x)u)− ν(x)Nq,q′(x)u

)
.
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Remark 3.6 (Orthotropic diffusion). Under the assumption (3.10) for or-
thotropic diffusion, equation (3.15) turns into

ut =
∑
i

∂xi

(
νq

′−q(x)dqii(x)∂xi

(
νq−q

′
(x)d1−q

ii (x)u
))
.

Furthermore, since the diffusivity matrix D(x) is diagonal, Dq(x) can be
defined element-wise. Then, we may write it as

(3.20) ut = ∇ ·
(
νq

′−q(x)Dq(x)
(
∇ · (νq−q′(x)D1−q(x)u)

))
.

Remark 3.7 (Isotropic diffusion). If z 7→ K(p; z) is radial symmetric, we
obtain

D(x) = D(x)I, D(x) :=
ν(x)

2N

∫
RN
‖z‖2K(f(x, x); z) dz.

The isotropic diffusion equation is now

(3.21) ut = ∇ ·
(
νq

′−q(x)Dq(x)∇
(
νq−q

′
(x)D1−q(x)u

))
.

For instance, if (q, q′) = (1
2 , 1), we obtain

ut = ∇ ·
(√

ν(x)D(x)∇
(√

ν−1(x)D(x)u
))
.

4. Steady states and numerical simulations

In this section we present some enlightening observations regarding the
steady states of (2.1), when the jump rate is of the form

(4.1) J(x, y) = m(αx+ βy)K(y − x).

This connects with the issue discussed in, e.g., [14,23] and is complemented
by some numerical simulations. Those simulations are performed on a bounded
domain, B(0, R) ⊂ RN , see subsection 4.2 for details.

4.1. Steady states. We consider the case of a single deciding factor with
J(x, y) of the form (4.1). The nonlocal model (2.1) then becomes
(4.2)

ut =

∫
RN

[m(αy + βx)u(t, y)−m(αx+ βy)u(t, x)]K(y−x)dy, α+β = 1.

As seen in subsection 3.2, taking the focusing kernel limit leads, in the
isotropic case, to the local model

(4.3) ut = ∇ ·
(
Dq(x)∇

(
D1−q(x)u

))
, q = 2− 2α,

with D(x) = 1
2m(x)k, where k := 1

N

∫
RN ‖z‖

2K(z)dz. For the rest of this

section, we consider a nonnegative, nontrivial initial data u0 ∈ L1(RN ).
Also, we assume that m is a nonnegative continuous function. Finally, for
numerical simulations and unless otherwise stated, we shall use the Gaussian
kernel

K(z) := CNe
−aN‖z‖2 ,
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where CN > 0, aN > 0 are such that not only
∫
RN K(z)dz = 1 but also∫

RN ‖z‖K(z)dz = 1. In particular C1 = a1 = 1
π .

The case α = 0 (q = 2). In this case, we observe that u(x) ≡ Cm(x) is
a steady state of (4.2) for any constant C ≥ 0. This is consistent with the
local counterpart, that is (4.3), for which u(x) ≡ CD(x) is also a steady
state. In other words, at equilibrium, the population is mainly localized at
positions x where m(x), or equivalently D(x), is large. This is in agreement
with the model since the total jump rate from x to y is given by m(y),
meaning the jump rate is higher for jumps that arrive at high values of m,
and conversely smaller for jumps that arrive at low values of m. Therefore
the solution of (4.2) is expected to converge, at large time, to

(4.4) p(x) := Cm(x), C =

∫
RN u0(x)dx∫
RN m(x)dx

≥ 0,

the value of C ensuring the mass conservation. In particular, if m /∈ L1(RN ),
we expect that p(x) ≡ 0.

We now present some numerical simulations to illustrate the above. Since
these simulations are done on the bounded domain ΩR = B(0, R) ⊂ RN ,
the expected profile is (see subsection 4.2 for details)

(4.5) pR(x) := CRm(x), CR =

∫
ΩR

u0(x)dx∫
ΩR

m(x)dx
> 0,

which is consistent with our simulations, see Figure 1. Moreover, we readily
check that pR → p uniformly on compact sets of RN , and uniformly on
RN for bounded m. However, for general m, this convergence may not be
uniform on RN , as can be seen with N = 1, m(x) = ex, for which ||pR||∞ →∫
R u0(x)dx while p ≡ 0.

The case α = 1 (q = 0). Here, we assume m(x) > 0 for all x. We observe
that u(x) ≡ Cm(x)−1 is a steady state of (4.2) for any constant C ≥ 0.
This is again consistent with the local counterpart, that is (4.3), for which
u ≡ CD(x)−1 is also a steady state (observe that, in the terminology of [46,
subsection 4.2.5], D(x)−1 is referred to as the residence index). The situation
is thus reversed compared to the case α = 0: the population will mainly
concentrate at positions x where m(x) is small. This is, again, in agreement
with the model since the jump rate from x to y is given by m(x), meaning
the jump rate is higher for jumps that depart from high values of m, and
conversely smaller for jumps that depart from low values of m. Therefore
the solution of (4.2) is expected to converge, at large time, to

(4.6) p(x) := Cm(x)−1, C =

∫
RN u0(x)dx∫
RN

1
m(x)dx

≥ 0,

the value of C ensuring the mass conservation. In particular, if m−1 /∈
L1(RN ), we expect that p(x) ≡ 0.
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Figure 1. Here α = 0 and R = 10. In dotted black, the
function m. In blue, the numerical approximation of u at
time t = 4000. In dotted red, the expected profile pR(x).
Notice that the numerical approximation (in blue) and the
expected profile (in dotted red) are superimposed. On the left
m(x) = 1

1+x2
, and on the right m(x) = 1 + 1

100x
2. The out-

come depends only on the initial mass, here
∫

ΩR
u0(x)dx = 4.

Figure 2. Conditions are the same as in Figure 1, except
α = 1.

Similarly to the case α = 0, on the bounded domain ΩR = B(0, R) ⊂ RN ,
the expected profile would be

(4.7) pR(x) := CRm(x)−1, CR =

∫
ΩR

u0(x)dx∫
ΩR

1
m(x)dx

> 0,

which is consistent with our simulations, see Figure 2. As in the case α = 0,
we readily check that pR → p uniformly on compact sets of RN .

The case α = 1
2 (q = 1). In that setting, it is clear that constants are

steady states of both (4.2) and (4.3). Therefore the profile of m plays no
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Figure 3. Conditions are the same as in Figure 1, except
α = 1

2 .

role in the distribution of population at equilibrium. This is again expected
since then

J(x, y) = m

(
x+ y

2

)
K(y − x) = J(y, x),

that is the jump rate from x to y is equal to that from y to x. Therefore the
solution of (4.2) is expected to converge, at large time, to p(x) ≡ 0, due to the
mass conservation. Note that on a bounded domain ΩR = B(0, R) ⊂ RN , we
however expect a convergence towards the constant pR = 1

|ΩR|
∫

ΩR
u0(x)dx,

which is in agreement with our numerics, see Figure 3. Clearly, pR → 0 as
R→ +∞.

Towards general 0 ≤ α ≤ 1. The steady states are thus well-understood
for general functions m in the cases α ∈ {0, 1

2 , 1}. In particular, those steady
states depend only on the total jump rate m, and not on the jump distribu-
tion K. We aim at extending those results for general α. Hence, for a given
α 6∈ {0, 1

2 , 1} and a given nonnegative (and non-constant) m, we look for a
nonnegative u 6≡ 0 such that

(4.8) m(αy + βx)u(y) = m(αx+ βy)u(x), ∀x, y ∈ RN ,

which makes u = u(x) a steady state for (4.2). Notice that such a function u
is not ensured to exist, as can be seen with m(·) = || · ||: in this case, for

x = 0, (4.8) enforces u(y) ≡ β
αu(0) for any y 6= 0; returning to (4.8), this

cannot hold if α 6= 1
2 .

However, there are some profiles m for which such a function u exists
for any 0 ≤ α ≤ 1. Indeed, assuming N = 1, m(x) = eax with a ∈ R, we

see that for each α, the function uα(x) = e(β−α)ax = m(x)β−α solves (4.8).
Because uα /∈ L1(R), we expect the solution of (4.2) to converge towards
pα(x) ≡ 0 due to the mass conservation. However, on the bounded domain
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Figure 4. In dotted black, the function u0(x) = m(x) = eax

with a = ln 2
10 . In solid lines, for various α, the numerical

approximation of u at t = 4000, which all coincide with pαR.

ΩR = [−R,R], the expected profile is

(4.9) pαR(x) := CαRu
α(x), CαR =

∫
ΩR

u0(x)dx∫
ΩR

uα(x)dx
> 0,

which is consistent with our simulations, see Figure 4, for which we have
chosen u0 ≡ m which, obviously, is not in L1(R). Nevertheless, our goal
here is to illustrate the fact that, as α increases, there is a smooth transition
from m (when α = 0) to m−1 (when α = 1), the “switch” precisely occurring

at α = 1
2 . Last, one can extend this example to N ≥ 2 with m(x) = e〈a,x〉

and a ∈ RN , for which u(x) = e(β−α)〈a,x〉 solves (4.8).
Another example with N = 1 is given by the Gaussian profile m(x) =

e−ax
2

with a > 0, for which uα(x) = e−(β2−α2)ax2 solves (4.8). Since uα ∈
L1(R) if and only if α < 1

2 , we expect that the solution of (4.2) converges
towards

pα(x) =

{
Cαuα(x) if α < 1

2 ,

0 if α ≥ 1
2 ,

Cα =

∫
RN u0(x)dx∫
RN u

α(x)dx
> 0.

Meanwhile, on the bounded domain ΩR = [−R,R], since uα ∈ L1(ΩR) for
all α, we expect that the solution converges towards pαR given by (4.9). This
is what we observe numerically, see Figure 5. Note that the above comments
for the exponential profile still apply here. Last, one can extend this example

to N ≥ 2 with m(x) = e−〈a,x
2〉, where a ∈ (0,+∞)N and x2 := (x2

1, . . . , x
2
N ),

for which u(x) = e−(β2−α2)〈a,x2〉 solves (4.8).

Where are the individuals? The role of α. Our above observations and
results can be summarized as follows: when α = 0 (resp. α = 1, resp. α = 1

2),

some steady states are proportional to m (resp. m−1, resp. x 7→ 1). We
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Figure 5. In dotted black, the function u0(x) = m(x) =

e−ax
2

with a = ln 100
100 . In solid lines, for various α, the numer-

ical approximation of u at t = 4000, which all coincide with
pαR.

therefore conjecture that, as α increases, the population should concentrate
at positions x where m(x) is small. This was proved above for the particular
cases of exponential and Gaussian profiles of m. To further support this
conjecture, we investigate the case of a two-patch asymmetric function m,
namely

(4.10) m(x) = γ(x+ 5) + 2γ(x− 5), γ(x) =
1

1 + x2
.

The numerical solutions are displayed in Figure 6, for different values of α.
We observe indeed that, as α increases, the population shifts away from the
positions where m is large and settles in positions where m is small.

The role of the tails of K. In all the above simulations, we always consid-
ered that the probability density K (rescaled so that

∫
RN ||z||K(z)dz = 1)

has Gaussian tail, that is (say N = 1)

K(z) =
1

π
e−

1
π
z2 =: K1(z).

In order to draw a comparison, we also consider the following kernels:

K2(z) :=
1

2
e−|z|, K3(z) :=

1

π

1

1 + z4/4
.

Note that, denoting ki =
∫
R z

2K(z)dz, we have k1 = π
2 and k2 = k3 = 2.

Finally, we consider one last kernel K4 with a heavier tail, namely

K4(z) :=
1

1 + |z|3

(
A

log(2 + |z|)3
− B

log(2 + |z|)5
+

C

log(2 + |z|)7

)
,

where A ≈ 2.32, B ≈ 2.38 and C ≈ 0.62 are numerically selected such that∫
RK4(z)dz = 1,

∫
R |z|K4(z)dz = 1 and k4 = 2. Notice that K4 ≥ 0 does
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Figure 6. In dotted black, the function m given by (4.10).
In solid lines, for various α, the numerical approximation of
u at t = 4000 . The initial data is of mass

∫
ΩR

u0(x)dx = 4.

hold and that K4 is not radially decreasing. In particular, for i ≥ 2, all the
kernels Ki have the same second moment, which means that they all lead
to the same local model in the focusing kernel limit.

Our goal here is to numerically compare the steady states depending on
the chosen kernel. When α ∈ {0, 1

2 , 1}, we do not observe, as expected, any
difference, for various functions m. The situation is quite different when,
say, α = 1

4 , see Figure 7. Indeed, we observe the following: the heavier the
tails of Ki, the more the corresponding solution ui tends to concentrate at
positions where m is large, as can be seen from the first and last zoomed
parts. Knowing that, one may expect that uj − ui changes sign only once
on (0,+∞). It turns out to be the case for (i, j) = (4, 3) but not for (i, j) =
(2, 3), see Figure 8. The latter also indicates that, in a neighbourhood of
x = 0, u3 − u2 is (positive and) very small while u4 and u3 are clearly
distinct.

4.2. Numerical implementation. Since any numerical computation has
to be done on a bounded domain Ω ⊂ RN , the numerical integration of
the right-hand side of (2.1) is not trivial, even for simple cases such as
J(x, y) = K(y−x). Indeed, in order to compute the convolution K ∗u close
to the boundary ∂Ω, one would have to extrapolate u outside of Ω itself. To
circumvent this, we consider the following problem on the bounded domain
Ω ⊂ RN :

(4.11) ut =

∫
Ω

[m(αy + βx)u(t, y)−m(αx+ βy)u(t, x)]K(y − x)dy.

In other words, we assume that any jump that would leave Ω is in fact
omitted. The functions pR and pαR appearing in subsection 4.1 are in fact
steady states of (4.11) with Ω = ΩR = B(0, R) ⊂ RN , and we have checked
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Figure 7. Here α = 1
4 . In dotted black, the function m(x) =

1
1+x2

. In red, the numerical approximation of the solution at

t = 104, corresponding to the kernel K1 (red), K2 (yellow),
K3 (blue) and K4 (purple). Some parts of the first image have
been zoomed in to improve visibility. On the first and second
zooms, the yellow curve almost coincides with the blue one.
The initial data is of mass

∫
ΩR

u0(x)dx = 4. The results are

similar on larger domains.
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Figure 8. Left: u4−u3. Right: u3−u2. Here ui corresponds
to the numerical solution when K = Ki, in the conditions of
Figure 7.

that our numerical solution converge towards them for some large values
of R. As mentioned in subsection 4.1, the steady states pR and pαR typically
converge, as R→ +∞, to a steady state of (4.2), locally uniformly in RN .

5. Summary and perspectives

For the modelling of multi-dimensional nonlocal heterogeneous diffusion,
we have proceeded as follows: to any possible path (x, y) we have assigned
a dispersal kernel K(f(x, y); ·) such that K(f(x, y);−z) = K(f(x, y); z),
where f is a parametrizing function and relevant quantities for this path are

m(x, y) :=

∫
RN

K(f(x, y); z) dz the total jump rate,

and

g(x, y) :=

∫
RN
‖z‖K(f(x, y); z) dz∫

RN
K(f(x, y); z) dz

the average jump length.

Also, for x ∈ RN , we have defined

D(x) :=

(
dij(x) :=

1

2

∫
RN

zizjK(f(x, x); z) dz

)
1≤i,j≤n

the diffusivity matrix.

5.1. A single deciding factor. First we have considered the case

K(f(x, y); z)← K(αx+ βy; z), α+ β = 1,

i.e., f(x, y) = αx + βy is taking values in RN . We have revealed, in the
focusing kernel limit, the connection

Nonlocal model (3.3)
q=2−2α−−−−−→ diffusion equation (3.7), or (3.9),
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which is possibly anisotropic. In the orthotropic case, the diffusivity matrix
is diagonal and the limit diffusion equation becomes

ut = ∇ ·
(
Dq(x)

(
∇ · (D1−q(x)u)

))
.

In the isotropic case, the diffusivity matrix is scalar and the limit diffusion
equation becomes

ut = ∇ ·
(
Dq(x)∇

(
D1−q(x)u

))
.

The following examples recover some standard diffusion laws and are worth
being mentioned.

Deciding factor Limit diffusion equation Limit law

α = 1, departure point ut = ∆(D(x)u) Chapman’s law

α = 3
4 , “close to departure” ut = ∇ ·

(√
D(x)∇(

√
D(x)u)

)
Wereide’s law

α = 1
2 , middle point ut = ∇ · (D(x)∇u) Fick’s law

α = 0, arrival point ut = ∇ ·
(
D2(x)∇

(
u

D(x)

))
Note that the limit diffusion equations may also be written as Fickian diffu-
sion plus an advection term. The inclusion of such an advection term is quite
common to model animal movement up a resource gradient, see [6,11,13,42].
This provides another interpretation for these limit diffusion equations. For
instance, in the α = 0 case, the limit diffusion equation may also be written
ut = ∇ · (D(x)∇u− u∇D(x)) hence the population is attracted to environ-
ments where diffusivity is higher.

Furthermore, in the framework K(αx+βy; z)← m(αx+βy)K(z), we have
investigated the form of the steady state solutions. This revealed that, as α
increases, the population shifts away from the positions where m is large and
settles in positions where m is small. In some situations, the steady states
are fully determined by α and m. Nevertheless, when α /∈ {0, 1

2 , 1}, we have
tested the influence of different kernels K and noticed some subtle differ-
ences on the shape of the steady states. It seems that, the heavier the tails
of K, the more the solution concentrates, which is slightly counter-intuitive.
Understanding how the steady states are determined by the interplay of α,
m and K appears very challenging and deserves further investigations.

5.2. Two deciding factors. Next we have considered the case

K(f(x, y); z)← ν(α′x+ β′y)K(αx+ βy; z), α+ β = α′ + β′ = 1,

i.e., f(x, y) = (ν(α′x + β′y), αx + βy) is taking values in RN+1. We have
revealed, in the focusing kernel limit, the connection

Nonlocal model (3.13)
q=2−2α−−−−−−→
q′=2−2α′

diffusion equation (3.15), or (3.19),
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which is possibly anisotropic. In the orthotropic case, we refer to Remark 3.6.
In the isotropic case, we refer to Remark 3.7 and the following examples are
worth being mentioned (where D.F. means deciding factor).

D.F. for average jump length D.F. for total jump rate Limit diffusion equation

α = 1, departure point α′ = 1
2 , middle point ut = ∇ · (ν(x)∇ · (ν−1(x)D(x)u))

α = 1, departure point α′ = 3
2 , “strange” point ut = ∇ · (ν−1(x)∇ · (ν(x)D(x)u))

α = 1
2 , middle point α′ = 1, departure point ut = ∇ · (ν−1(x)D(x)∇ · (ν(x)u))

α = 3
4 , “close to departure” α′ = 1

2 , middle point ut = ∇ · (
√
νD(x)∇ · (

√
ν−1D(x)u))

In particular this reveals that, in the case of two distinct deciding factors,
the diffusivity matrix is not enough to characterize heterogeneous diffusion.
More precisely, the choice of two deciding factors allows us to recover the
whole range of local diffusion equations that has been derived from kinetic
equations in [33].

5.3. Many or infinitely many deciding factors. The two above sub-
sections suggest that, as the number of deciding factors increase to account
for more general heterogeneity, one may recover new local models through
the singular limit procedure. In particular, it is worth pointing out that
Wereide’s law does not only appear as a limit of a single deciding factor
“close to departure” (see subsection 5.1), but also as the singular limit of
the focusing kernels associated with (2.8) and its equivalent form (2.15).
We did not detail this computation since it proceeds similarly to what we
have presented. In other words, the nonlocal Stratonovich model does con-
verge to the Stratonovich type diffusion, as one may expect. We believe that
generalizations of (2.8), for which the whole path decides, deserve further
investigations.

Acknowledgements. The authors are grateful to the anonymous refer-
ees whose precise comments have improved the presentation of the results.
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[5] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Ad-
vanced Mathematics, Cambridge University Press, 2 ed., 2009.

[6] I. Averill, K.-Y. Lam, and Y. Lou, The role of advection in a two-species compe-
tition model: a bifurcation approach, Mem. Amer. Math. Soc., 245 (2017), pp. v+117.

[7] M. S. Bartlett and A. Porporato, State-dependent jump processes: Itô-
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