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Abstract. In this paper, we formulate SIS reaction-diffusion epidemic models with cognition

and show the impact of movement strategies on disease outbreak and mitigation under a spatially
heterogeneous environment. The cognitive diffusion either takes a Fokker-Planck type diffusion

obtained by Chapman’s diffusion law (called random diffusion) or follows Fick’s diffusion law

(called symmetric diffusion). We derive a variational expression of the basic reproduction number
R0 for both models and prove that the disease-free equilibrium is unique and globally asymp-

totically stable if R0 < 1. Furthermore, if R0 > 1, the model following Fick’s diffusion law
admits at least one endemic equilibrium and the model following Chapman’s diffusion law has

a unique endemic equilibrium. The theoretical results are illustrated by numerical simulations,

which additionally show the segregation phenomenon between susceptible and infected popula-
tions regulated by different movement strategies. Spatial segregation here is natural, not caused

by an isolation policy, and thus is the most important indicator for an infectious disease to spread

or wane in the absence of intervention. The first example shows that a heterogeneous random
diffusion segregates infected and susceptible populations further than an ODE model and thus

reduces the infection size. However, symmetric diffusion never does that. The second example

shows that a heterogeneous random diffusion detriments segregation but still reduces the infec-
tion severity by moving infected individuals to a disease-free region. In a certain situation, a

heterogeneous random diffusion may increase the infection severity as shown in the last example.

Keywords: spatial heterogeneity, cognitive movement, basic reproduction number, disease-free equi-
librium, endemic equilibrium, segregation
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1. Introduction

Mathematical models are powerful tools to study disease transmission and control. The most widely
used models are ordinary differential equation (ODE) compartment models that determine whether an
infectious disease will surge or not by the basic reproduction number R0 compared with one. Population
movement and spatial heterogeneity are obviously significant in disease spread and mitigation. Toward
this aspect, various partial differential equation (PDE) and network models have been proposed in the
literature (see [1, 7, 23,30,31]).

To study the effect of spatial heterogeneity and diffusive population on the disease dynamics, Allen et
al. [1] developed an SIS (susceptible-infected-susceptible) reaction-diffusion epidemic model:

(1.1)

St = dS∆S −
(

β(x)S
S+I

− r(x)
)
I, t > 0, x ∈ Ω,

It = dI∆I +
(

β(x)S
S+I

− r(x)
)
I, t > 0, x ∈ Ω,

∇S · n = ∇I · n = 0, t > 0, x ∈ ∂Ω,
S(x, 0) = S0(x), I(x, 0) = I0(x), t = 0, x ∈ Ω,

where Ω ∈ Rm (m ≥ 1) is a bounded domain with smooth boundary ∂Ω (m > 1) and n is the outward unit
normal vector on ∂Ω. The variables S(t, x) and I(t, x) represent the population densities of susceptible
and infected individuals, respectively, at time t > 0 and location x ∈ Ω. The diffusion rates dS and dI are
positive constants. The spatial functions β(x) and r(x) represent disease transmission rate and recovery

rate at x, and they are Hölder continuous functions on Ω.
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Allen et al. derived a variational expression of the basic reproduction number for the PDE system (1.1)
as follows:

R0 = sup
ϕ∈W1,2(Ω),ϕ ̸=0

{ ∫
Ω
βϕ2dx∫

Ω
dI |∇ϕ|2dx+

∫
Ω
rϕ2dx

}
.

Moreover, they showed the monotone and asymptotic behavior of R0 on the diffusion rate dI . In particular,
the existence and stability of the disease-free equilibrium and the asymptotic behavior of an endemic
equilibrium were investigated mathematically. One can find many follow-up papers [3–5,14, 15,21, 22, 32].
However, all these studies assumed the simplest diffusion terms with constant diffusion rates.

Although the spatial heterogeneity of the model (1.1) was considered in the transmissibility β(x) and the
recovery r(x), the simplest diffusion terms were assumed mimicking particle movement. However, humans
have cognition that is crucial in the mechanistic modeling of any organisms with perception, memory and
learning. To model the cognitive movement, we start with dispersal on a patch system. Let ui be the
population in patch i. Denote cij (ci←j) as the migration or departing rate from patch j to patch i (see
Fig. 1). Then, the rate of change of population ui satisfies

(1.2) u̇i = cii−1ui−1 + cii+1ui+1 − ci−1iui − ci+1iui.

Figure 1. Scheme of dispersal between patches.

If cii+1 = ci+1i, i.e., the dispersal rate of population from patch i to i + 1 is equal to that from patch
i+1 to i, the dispersal is called symmetric (see [12]). If we denote γi+1/2 := cii+1 = ci+1i, (1.2) is rewritten
as

u̇i = γi+1/2(ui+1 − ui)− γi−1/2(ui − ui−1) ∼= γi+1/2u
′
i+1/2 − γi−1/2u

′
i−1/2

∼= (γu′)′i.

In this approximation, the distance between two adjacent patches is one, which is treated as sufficiently
small. In a space with any dimension, this relation is written as a PDE:

(1.3) ut = ∇ · (γ(x)∇u),
which follows Fick’s diffusion law. The physical meaning of this symmetric diffusion is unclear. We are
more interested in the case when ci−1i = ci+1i, i.e., when the dispersal rate from patch i to i− 1 is equal
to the one from patch i to i+ 1. In this case, the probabilities of moving to the right patch or to the left
patch are identical and hence, the dispersal is called random. If we denote γi := ci+1i = ci−1i, (1.2) is
written as

u̇i = γi−1ui−1 + γi+1ui+1 − 2γiui
∼= (γu)′′i .

The corresponding PDE model in any spatial dimension is

(1.4) ut = ∆(γ(x)u),

which follows Chapman’s diffusion law. The physical meaning of this random diffusion is clear. Such a
random diffusion is also called Fokker-Planck type or Ito type. If the dispersal is random and symmetric
at the same time, all of cij coefficients are equal, which leads to the spatially homogeneous diffusion. For
more model formulations on diffusion, readers can refer to [19,24] and references therein.

By considering spatially heterogeneous movements, we propose the following SIS reaction-diffusion
epidemic model with random diffusion (or Fokker-Planck type):

(1.5)

St = ∆(f(x)S)−
(

β(x)S
S+I

− r(x)
)
I, t > 0, x ∈ Ω,

It = ∆(g(x)I) +
(

β(x)S
S+I

− r(x)
)
I, t > 0, x ∈ Ω,

∇(f(x)S) · n = ∇(g(x)I) · n = 0, t > 0, x ∈ ∂Ω,

S(0, x) ≥, ̸≡ 0, I(0, x) ≥, ̸≡ 0, x ∈ Ω,

where f(x) and g(x) are dispersal rates of susceptible and infected groups at x, respectively. For compar-
ison, we investigate the properties of a corresponding model with symmetric diffusion (or Fickian type):

(1.6)

St = ∇ · (f(x)∇S)−
(

β(x)S
S+I

− r(x)
)
I, t > 0, x ∈ Ω,

It = ∇ · (g(x)∇I) +
(

β(x)S
S+I

− r(x)
)
I, t > 0, x ∈ Ω,

∇S · n = ∇I · n = 0, t > 0, x ∈ ∂Ω,

S(0, x) ≥, ̸≡ 0, I(0, x) ≥, ̸≡ 0, x ∈ Ω.



SPATIAL SEGREGATION IN EPIDEMIC PDE MODELS 3

However, the symmetric diffusion shows similar dynamical behaviors as a homogeneous diffusion (see
Section 5). Note that the Fokker-Planck type diffusion is written as

∆(f(x)S) = ∇ · (f(x)∇S) +∇ · (S∇f(x)).

Hence, the advection term ∇ · (S∇f(x)) is the difference between the two diffusion laws.
It is natural to expect that susceptible and infected individuals disperse differently. We assume that

the dispersal rate f of the susceptible population S is an increasing function of the transmission rate β
since the infection probability is the primary concern of healthy people. In other words, when susceptible
people are located in a region with a high transmission rate β(x) (such as indoor playground), they will
leave to avoid infection. On the other hand, we assume that the dispersal rate g of the infected population
I is an increasing function of the reciprocal of the recovery rate r−1. In fact, infected people only care
about recovery (or treatment). For example, if infected people are located in a region with a high recovery
rate r(x) (such as hospital), they will prefer to stay there for faster recovery. As a summary, these two
groups of people have their own dispersal strategies based on their cognition (see [2, 10, 11]). This model
formulation is an application of our cognitive movement modeling efforts [28] in epidemiological modeling.

In the proposed models, we have four functions f , g, β and r. We assume these functions and initial
values satisfy following hypotheses:
(H1) There exist constants m0 and M0 such that

0 < m0 < f, g < M0 <∞,

which is used for the uniform parabolicity of the problem.
(H2) f and g are increasing functions of β and r−1, respectively, i.e.,

f = f(β) and g = g(r−1)

are monotone increasing.
(H3) The set Ω+ := {x ∈ Ω : β(x) > r(x)} is nonempty.

Most studies on infectious disease PDE models mainly focused on asymptotic behaviors for sufficiently
large time. However, few studies have been done on the transient dynamics of epidemiological models
due to lack of appropriate mathematical tools. In this paper, we study the transient dynamics of systems
(1.5), (1.6) and (1.1) through numerical simulations. We will explore the spatial segregation induced by
cognitive diffusion, the use of disease-free region, and negative effects of mixing by diffusion. Biological
segregation is a phenomenon that population groups are separated in certain areas [26]. To measure the
degree of segregation, we define the segregation indices

(1.7) κ(v1, v2) =
∥v1 − v2∥L1(Ω)

∥v1∥L1(Ω) + ∥v2∥L1(Ω)

and

(1.8) χ(v1, v2) = max
x∈Ω

{v1(x)− v2(x)} ·min
x∈Ω

{v1(x)− v2(x)}

for vi(x) ∈ L1(Ω) and ∥vi∥L1(Ω) =
∫
Ω
|vi(x)|dx, i = 1, 2. Obviously 0 ≤ κ(v1, v2) ≤ 1. If κ(v1, v2) is

large and χ(v1, v2) ≤ 0, then the segregation phenomenon between v1 and v2 is more obvious (so called
perfect/strong segregation). If κ(v1, v2) is small and χ(v1, v2) ≤ 0, then the segregation phenomenon is less
obvious (so called weak segregation). If κ(v1, v2) = 0 or χ(v1, v2) > 0, then the segregation phenomenon
disappears.

The main goals of the paper are as follows: (i) The variational characterizations of the basic reproduction
number R0 for systems (1.5) and (1.6) are defined, respectively, and then the monotonic and asymptotic
behaviors of R0 on the diffusion rate g are discussed; (ii) We prove the existence and stability of disease-free
equilibrium (DFE) and endemic equilibrium (EE) of (1.5) and (1.6) respectively, and verify the theoretical
results by numerical simulations; More importantly, (iii) we investigate the segregation phenomena of (1.5),
(1.6) and (1.1) numerically. It is worth mentioning that there are several significant improvements. Firstly,
in modeling we propose two new models with different diffusion mechanisms and assume that the dispersal
rates of susceptible and infected individuals depend on the transmission and recovery rates, respectively.
Secondly, in terms of theory we generalize the results of [1, Lemmas 2.2-2.3] on the monotonicity of R0 for
model (1.6) (see Lemmas 2.1-2.2, 3.2-3.3). Finally, spatial segregation occurs naturally here (not caused
by an isolation policy) and thus is the most important indicator for an infectious disease to spread or wane
in the absence of intervention.

The remaining paper is organized as follows. In sections 2 and 3, we show the existence and stability of
DFE and EE for the models (1.6) and (1.5). In section 4, our theoretical results are verified by numerical
simulations. In section 5, we consider three numerical examples to illustrate the segregation phenomena
of epidemic PDE models and their impact on the disease spread. Section 6 summarizes this paper with a
brief discussion.
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2. The epidemic model with symmetric diffusion

In this section, we prove the existence and stability of DFE and EE for model (1.6) with symmetric
diffusion. We start with the well-posedness result.

Proposition 2.1. The system (1.6) admits a unique positive solution S(t, x) and I(t, x) satisfying

(S(t, x), I(t, x)) ∈ C2,1((0,∞)× Ω)× C2,1((0,∞)× Ω).

Furthermore, there is a constant C > 0 independent of the initial values, and T0 > 0 such that the solution
(S(t, x), I(t, x)) meets

∥S(t, x)∥L∞(Ω) + ∥I(t, x)∥L∞(Ω) ≤ C, for all t > T0.

Proof. (i) According to the regularity theory of parabolic equations [20], the system (1.6) possesses a

unique nonnegative classical solution (S(t, x), I(t, x)) ∈ C2,1((0,∞) × Ω) × C2,1((0,∞) × Ω). Moreover,

applying strong maximum principle [25] yields that S(t, x) and I(t, x) are positive, for any x ∈ Ω and
t > 0.

(ii) Adding two equations of (1.6) and then integrating over Ω, we get∫
Ω

((S(t, x) + I(t, x)))tdx = (f(β(x))∇S + g(r−1(x))∇I)|∂Ω = 0.

which is owing to ∇S · n = ∇I · n = 0 on ∂Ω. Thus, we obtain

(2.1)

∫
Ω

((S(t, x) + I(t, x)))dx = N0,

for some constant N0 > 0. In particular, N0 =
∫
Ω
(S0(x) + I0(x))dx. This means that the L1(Ω) norms of

S(t, ·) and I(t, ·) are bounded. Hence, by [6] (p0 = 1, σ = 1) and the positivity of S(t, ·) and I(t, ·), there
exists a constant C > 0, independent of S0(·) and I0(·), and T0 > 0 such that

∥S(t, x)∥L∞(Ω) + ∥I(t, x)∥L∞(Ω) ≤ C,

for all t > T0. The proof is completed. □

2.1. The disease-free equilibrium. In this subsection, we derive the basic reproduction number of
model (1.6) and discuss the stability of DFE of (1.6).

By direct calculations, the model (1.6) has a unique DFE E0 = (S̃0, 0) := (N0/|Ω|, 0). Linearizing
system (1.6) at E0 gives

(2.2)
St = ∇ · (f(β(x))∇S)− (β(x)− r(x))I, t > 0, x ∈ Ω,

It = ∇ · (g(r−1(x))∇I) + (β(x)− r(x))I, t > 0, x ∈ Ω,

∇S · n = ∇I · n = 0, t > 0, x ∈ ∂Ω,

where

(2.3) S(t, x) = S(t, x)− S̃0 and I(t, x) = I(t, x).

Since S is decoupled, it suffices to consider the following system:

(2.4)
It = ∇ · (g(r−1(x))∇I) + (β(x)− r(x))I, t > 0, x ∈ Ω,

∇I · n = 0, t > 0, x ∈ ∂Ω.

Letting I(t, x) = e−ζtϕ(x) and substituting it into (2.4) results in

(2.5)
∇ · (g(r−1(x))∇ϕ) + (β(x)− r(x))ϕ+ ζϕ = 0, x ∈ Ω,
∇ϕ · n = 0, x ∈ ∂Ω.

Similar to the analysis of [1, (2.2)], the eigenvalue problem (2.5) has at least one eigenvalue ζ∗ corresponding
to the positive eigenfunction ϕ∗, while other eigenvalues do not have a positive eigenfunction. Then (ζ∗, ϕ∗)
satisfies

(2.6)
∇ · (g(r−1(x))∇ϕ∗) + (β(x)− r(x))ϕ∗ + ζ∗ϕ∗ = 0, x ∈ Ω,
∇ϕ∗ · n = 0, x ∈ ∂Ω.

Moreover, ζ∗ is expressed by the following variational characterization:

(2.7) ζ∗ = inf
ϕ∈W1,2(Ω),ϕ̸=0

{∫
Ω
g((r−1))|∇ϕ|2dx+

∫
Ω
(r − β)ϕ2dx∫

Ω
ϕ2dx

}
,

where ζ∗ and ϕ∗ are differentiable with respect to g(·).
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Lemma 2.1. Define ζ∗ by (2.7) and assume g(r−1(·)) = ηg1(r
−1(·)), where η and g1 are a positive

constant and C3(Ω) function, respectively. Then the following properties hold:
(i) If β(x)− r(x) changes sign on Ω, and

g(x)(ϕ∗)2(x) ≤ 0 on ∂Ω, and g′(x) ≥ 0 on Ω,

then ζ∗ is a strictly monotone increasing function with respect to g;
(ii) ζ∗ → minx∈Ω{r(x)− β(x)} < 0, as η → 0, for fixed g1;

(iii) ζ∗ → 1
|Ω|

∫
Ω
(r(x)− β(x))dx, as η → ∞, for fixed g1;

(iv) If
∫
Ω
r(x)dx ≤

∫
Ω
β(x)dx, then ζ∗ < 0 for any g > 0;

(v) If
∫
Ω
r(x)dx >

∫
Ω
β(x)dx, then for fixed g1, ζ

∗(η) = 0 admits a unique root η∗ > 0 such that ζ∗ < 0
when η < η∗, and ζ∗ > 0 when η > η∗.

Proof. (i) By (2.7), it is obvious that ζ∗ is an increasing function of g. Next, it is only necessary to prove
that the monotonicity is strict. Differentiating the first equation of system (2.6) with respect to g, we
obtain

(2.8)
∆ϕ∗ + g∆ϕ∗g + ḡ∇ϕ∗ + g′∇ϕ∗g + (β(x)− r(x))ϕ∗g + ζ∗gϕ

∗ + ζ∗ϕ∗g = 0, x ∈ Ω,
∇ϕ∗ · n = ∇ϕ∗g · n = 0, x ∈ ∂Ω,

where ḡ = g′′/g′, ϕ∗g = dϕ∗/dg and the prime represents the derivative with respect to the spatial variable
x. Multiplying the first equations of (2.8) and (2.6) by ϕ∗ and ϕ∗g respectively and then integrating by
parts over Ω leads to

−
∫
Ω

|∇ϕ∗|2dx−
∫
Ω

g′ϕ∗∇ϕ∗gdx−
∫
Ω

g∇ϕ∗∇ϕ∗gdx+
1

2
(g(ϕ∗)2)|∂Ω − 1

2

∫
Ω

g′(ϕ∗)2dx

+

∫
Ω

g′ϕ∗∇ϕ∗gdx+

∫
Ω

(β(x)− r(x))ϕ∗ϕ∗gdx+ ζ∗g

∫
Ω

(ϕ∗)2dx+ ζ∗
∫
Ω

ϕ∗ϕ∗gdx = 0

and

−
∫
Ω

g′ϕ∗g∇ϕ∗dx−
∫
Ω

g∇ϕ∗g∇ϕ∗dx+

∫
Ω

g′ϕ∗g∇ϕ∗dx+

∫
Ω

(β(x)− r(x))ϕ∗gϕ
∗dx

+ ζ∗
∫
Ω

ϕ∗ϕ∗gdx = 0.

Subtracting the above two equations leads to

(2.9) ζ∗g

∫
Ω

(ϕ∗)2dx =

∫
Ω

|∇ϕ∗|2dx− 1

2
(g(ϕ∗)2)|∂Ω +

1

2

∫
Ω

g′(ϕ∗)2dx.

Case 1. If

g(x)(ϕ∗)2(x) ≤ 0 on ∂Ω and g′(x) > 0 on Ω

or

g(x)(ϕ∗)2(x) < 0 on ∂Ω and g′(x) ≥ 0 on Ω,

then ζ∗g > 0 since ϕ∗ is a positive function on Ω.
Case 2. If

g(x) ≡ 0 on ∂Ω and g′(x) ≡ 0 on Ω,

then g ≡ 0 in Ω. Thus, g′′(x) ≡ 0 on Ω. Furthermore, we have g(x) = C1x + C2 for some constants C1

and C2, x ∈ Ω. In this case, the formula (2.9) is rewritten as

ζ∗g

∫
Ω

(ϕ∗)2dx =

∫
Ω

|∇ϕ∗|2dx,

which indicates that ζ∗g ≥ 0 for any ϕ∗ and ζ∗g = 0 if and only if ϕ∗ is a positive constant. Assuming ϕ∗ is
a positive constant, it follows from (2.6) that

(β(x)− r(x)) + ζ∗ = 0, x ∈ Ω.

This is a contradiction with the fact that β(x)− r(x) changes sign in Ω. Therefore, ζ∗g > 0.
(ii) The conclusion is the direct result of [17, Lemma 3.1].
(iii) In (2.7), we choose ϕ = 1/|Ω|. Then

ζ∗ =
1

|Ω|

∫
Ω

(r(x)− β(x))dx ≤ max
x∈Ω

{r(x)− β(x)}.

According to the definition of ζ∗, one has

ζ∗ ≤ max
x∈Ω

{r(x)− β(x)}, for any ϕ(·) ∈W 1,2(Ω) and η > 0.
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Thus, by (i) and utilizing the monotone bounded convergence theorem, there exists a constant ζ∗∞ < ∞
such that ζ∗ → ζ∗∞ when η tends to ∞. Dividing both sides of equation (2.6) by η yields

∇ · (g1(r−1)∇ϕ∗) + β(x)− r(x) + ζ∗

η
= 0.

According to the elliptic regularity, there is a positive constant ϕ∗∞ such that ϕ∗ converges to ϕ∗∞ in C(Ω)
as η → ∞. Consequently, integrating (2.6) over Ω, we have∫

Ω

(β(x)− r(x))ϕ∗dx+ ζ∗
∫
Ω

ϕ∗dx = 0

which implies that ζ∗ → 1
|Ω|

∫
Ω
(r(x)− β(x))dx as η → ∞.

(iv) From (ii), as g → ∞, we have

ζ∗ → 1

|Ω|

∫
Ω

(r(x)− β(x))dx ≤ 0.

Hence, ζ∗ < 0 for any g > 0 since ζ∗ is a strictly increasing function of g. Moreover, by inspiration of
(i)-(iv), the proof of (v) is obvious and so we omit it. □

Remark 2.1. The conditions in (i) of Lemma 2.1 include the case that the diffusion coefficient is constant
[1]. In fact, when g(r−1) ≡ constant, then

g(x) ≡ 0 on ∂Ω, and g′(x) ≡ 0 on Ω.

Equivalently, Case 2 holds.

In order to explore the stability of DFE, it is necessary to derive the basic reproduction number R0 of
system (1.6). To this end, we analyze the following eigenvalue problem:

(2.10)
∇ · (g(r−1(x))∇ϕ)− r(x)ϕ+ ζβ(x)ϕ = 0, x ∈ Ω,
∇ϕ · n = 0, x ∈ ∂Ω,

and obtain the following results.

Lemma 2.2. Let ζ0 be a positive eigenvalue of (2.10) with a positive eigenfunction and assume g(r−1(·)) =
ηg1(r

−1(·)). Then ζ0 is unique and

(2.11) ζ0 = inf
ϕ∈W1,2(Ω),ϕ ̸=0

{∫
Ω
g((r−1))|∇ϕ|2dx+

∫
Ω
rϕ2dx∫

Ω
βϕ2dx

}
.

Furthermore, the basic reproduction number R0 of (1.6) is defined by

(2.12) R0 = sup
ϕ∈W1,2(Ω),ϕ̸=0

{ ∫
Ω
βϕ2dx∫

Ω
g((r−1))|∇ϕ|2dx+

∫
Ω
rϕ2dx

}
.

Moreover, if β(x)− r(x) changes sign on Ω, then R0 satisfies the following properties:
(i) R0 = 1/ζ0 is monotone decreasing with respect to g;
(ii) R0 → maxx∈Ω{β(x)/r(x)}, as η → 0, for fixed g1(r

−1) > 0;

(iii) R0 →
∫
Ω
β(x)dx/

∫
Ω
r(x)dx, as η → ∞, for fixed g1(r

−1) > 0;
(iv) sign(1−R0) = sign ζ∗;
(v) minx∈Ω{β(x)/r(x)} ≤ R0 ≤ maxx∈Ω{β(x)/r(x)}.

Proof. Multiplying the first equation of (2.10) by ϕ and then integrating by parts over Ω yields

ζ

∫
Ω

β(x)ϕ2dx =

∫
Ω

g(r−1)|∇ϕ|2dx+

∫
Ω

r(x)ϕdx.

Thus, we can obtain (2.11) by the classical Krein-Rutman theorem [13]. Let (ζ0, ϕ) be a solution of the
eigenvalue problem (2.10), where ϕ is the positive eigenfunction corresponding to the eigenvalue ζ0. We

first prove the uniqueness. Assume (ζ̂0, ϕ̂) is the another solution of (2.10). Then one has

(2.13)
∇ · (g(r−1(x))∇ϕ)− r(x)ϕ+ ζ0β(x)ϕ = 0, x ∈ Ω,
∇ϕ · n = 0, x ∈ ∂Ω,

and

(2.14)
∇ · (g(r−1(x))∇ϕ̂)− r(x)ϕ̂+ ζ̂0β(x)ϕ̂ = 0, x ∈ Ω,

∇ϕ̂ · n = 0, x ∈ ∂Ω.

Multiplying the first equations of (2.13) and (2.14) by ϕ̂ and ϕ respectively and then integrating by
parts over Ω leads to

(ζ0 − ζ̂0)

∫
Ω

β(x)ϕϕ̂dx = 0.
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Hence, we have ζ0 = ζ̂0 because β(·), ϕ and ϕ̂ are positive functions. Moreover, it follows from [30, Theorem
3.2] that R0 = 1/ζ0. Similar to the proof of Lemma 2.1, we can prove (i)-(iii).

(iv) By the definition of R0, there exists a positive function ϕ(x) ∈ C2(Ω) such that

(2.15)
∇ · (g(r−1(x))∇ϕ)− r(x)ϕ+ 1

R0
β(x)ϕ = 0, x ∈ Ω,

∇ϕ · n = 0, x ∈ ∂Ω.

Multiplying the first equations of (2.6) and (2.15) by ϕ and by ϕ∗ respectively and integrating by parts
over Ω yields

ζ∗
∫
Ω

ϕ∗ϕdx =
1−R0

R0

∫
Ω

β(x)ϕ∗ϕdx.

Since both ϕ∗ and ϕ are positive functions in Ω, it follows that R0 > 1 if ζ∗ < 0, R0 = 1 if ζ∗ = 0, and
R0 < 1 if ζ∗ > 0.

(v) Integrating the first equation of (2.15) over Ω gives∫
Ω

r(x)

[
R0 −

β(x)

r(x)

]
ϕdx = 0.

Then (v) holds because of the positivity of r(·) and ϕ. This ends the proof. □

Lemma 2.3. If R0 < 1, then the DEF E0 is stable; If R0 > 1, then the DEF E0 is unstable.

Proof. (i) Suppose R0 < 1. We first deal with the linear stability of E0. Let (S(t, x), I(t, x)) = e−ζt(φ, ϕ).
Substituting it into the linear system (2.2), one gets

(2.16)
∇ · (f(β(x))∇φ)− (β(x)− r(x))ϕ+ ζφ = 0, x ∈ Ω,
∇ · (g(r−1(x))∇ϕ) + (β(x)− r(x))ϕ+ ζϕ = 0, x ∈ Ω,
∇φ · n = ∇ϕ · n = 0, x ∈ ∂Ω.

To prove the linear stability of E0, it suffices to show the problem (2.16) possesses a solution (ζ, φ, ϕ) for
which the real part of ζ is positive, and φ or ϕ is not identically zero on Ω. Arguing by contradiction, we
assume the problem (2.16) has a (ζ, φ, ϕ) satisfying the real part of ζ is nonpositive, and φ or ϕ is not
identically zero on Ω. We claim ϕ(x) ̸≡ 0 for all x ∈ Ω. If not, then one has φ(x) ̸≡ 0 on Ω. From the first
equation of (2.16), we have

(2.17)
∇ · (f(β(x))∇φ) + ζφ = 0, x ∈ Ω,
∇φ · n = 0, x ∈ ∂Ω.

Thus, ζ
∫
Ω
φdx = 0 by integrating the above equation over Ω. This implies that ζ = 0 owing to φ ̸≡ 0 on

Ω. By (2.17), we see that φ is a constant, denoted by φ. Combining with (2.1) and (2.3), one gets

(2.18)

∫
Ω

(φ+ ϕ)dx = eζt
∫
Ω

(S(t, x) + I(t, x))dx = eζt
∫
Ω

(S(t, x)− S̃0 + I(t, x))dx = 0.

Since ϕ(·) ≡ 0 on Ω, φ ≡ 0 which contradicts with the fact φ(·) ̸≡ 0 on Ω. Hence, the above claim is
true. Because the operator ∇ · (g(r−1)∇) + β(x)− r(x) is self-adjoint, it follows from the second equation
of (2.16) that ζ is real and nonpositive. By the definition of ζ∗, we obtain ζ∗ ≤ ζ ≤ 0. However, from
Lemma 2.2 (iv), R0 ≥ 1 which is a contradiction. Therefore, the ζ has a positive real part which means
that the DFE is linearly stable. Furthermore, the DFE is stable by applying the theories in [9].

(ii) Suppose R0 > 1. Similar to the case R0 < 1, to cope with the linear instability of DFE, it is only
necessary to prove that there exists a solution (ζ, φ, ϕ) for (2.16) satisfying (2.18), where ζ has a negative
real part and ϕ(x) is positive for all x ∈ Ω. Note that ζ∗ and ϕ∗ satisfy (2.6) and ϕ∗ is positive on Ω.
Substituting (ζ∗, ϕ∗) into the first equation of (2.16), we obtain

∇ · (f(β(x))∇φ)− (β(x)− r(x))ϕ∗ + ζ∗φ = 0, x ∈ Ω,
∇φ · n = ∇ϕ∗ · n = 0, x ∈ ∂Ω.

Since ζ∗ < 0 from Lemma 2.2 (iv), the above system admits a unique solution φ∗. Adding the two equations
of (2.16) with (ζ∗, ϕ∗, φ∗) and integrating the results equation over Ω yields

ζ∗
∫
Ω

(φ∗ + ϕ∗)dx = 0,

which indicates that
∫
Ω
(φ∗ + ϕ∗)dx = 0. To sum up, the system (2.16) has a solution (ζ∗, ϕ∗, φ∗) where

ζ∗ < 0 and ϕ∗ > 0 for all x ∈ Ω. Thus, the DFE is linearly unstable. According to [9], the DFE is unstable.
This finishes the proof. □

Lemma 2.4. If R0 < 1, then the solution (S(t, x), I(t, x)) → (S̃0, 0) in C(Ω) as t→ ∞.
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Proof. By the second equation of system (1.6), we obtain

It ≤ ∇ · (g(r−1(x))∇I) + (β(x)− r(x))I, t > 0, x ∈ Ω,
∇I · n = 0, t > 0, x ∈ ∂Ω,
I(x, 0) = I0(x) ≥ 0, t = 0, x ∈ Ω.

Define a auxiliary function ψ(t, x) := Pe−ζ∗tϕ∗(x), wherein ζ∗ > 0, ϕ∗ > 0 are determined by Lemma 2.1
and P is a sufficiently large constant satisfying ψ(0, x) ≥ I(0, x), for any x ∈ Ω. By direct calculations, we
obtain

ψt = ∇ · (g(r−1(x))∇ψ) + (β(x)− r(x))ψ, t > 0, x ∈ Ω,
∇ψ · n = 0, t > 0, x ∈ ∂Ω,
ψ(0, x) ≥ I(0, x) ≥ 0, t = 0, x ∈ Ω.

By the comparison principle, I(t, x) ≤ ψ(t, x) for all t > 0 and x ∈ Ω. Then I(t, x) converges to zero as t
tends to ∞ owing to the fact that ψ(t, ·) → 0 when t→ ∞ in Ω.

Next, we will show S(t, x) → S̃0 as t → ∞, x ∈ Ω. Combining the above analysis and the facts that
β(x) and r(x) are continuous functions of x, from the first equation of (1.6), there is a constant M1 > 0
such that

|St −∇ · (f(β(x))∇S)| ≤M1e
−ζ∗t,

for t > 0, x ∈ Ω. Then |St − ∇ · (f(β(x))∇S)| → 0 when t → ∞, x ∈ Ω. Thus, by using the boundary
condition ∇S · n = 0 on ∂Ω, one can see that S(t, ·) converges to a positive constant as t→ ∞ in Ω. Set

S(t, x) = u1(t) + u2(t, x),

where u1(t) =
1
|Ω|

∫
Ω
S(t, x)dx. By simple calculations, we obtain

du1(t)

dt
=

1

|Ω|

∫
Ω

(St(t, x)−∇ · (f(β(x))∇S))dx,

which implies that there is a constant M2 > 0 such that |du1(t)/dt| ≤M2e
−ζ∗t, t > 0. Moreover, one has

(u2)t = ∇ · (f(β(x))∇u2) + k(t, x), t > 0, x ∈ Ω,
∇u2 · n = 0, t > 0, x ∈ ∂Ω,

where

k(t, x) =
(
− β(x)S

S + I
+ r(x)

)
I − du1(t)

dt
.

From the above analysis, we obtain

|k(t, x)| ≤M3e
−ζ∗t, for some constant M3 > 0.

Since
∫
Ω
(S(t, x) + I(t, x))dx = N0 and I(t, ·) → 0, t→ ∞, we have

u1(t) =
1

|Ω|

∫
Ω

S(t, x)dx→ N0

|Ω| = S̃0, as t→ ∞.

Choose 0 = ζ0 ≤ ζ1 ≤ ζ2 ≤ · · · representing the eigenvalues of Laplace operator −∆ with homo-
geneous Neumann boundary condition, and the corresponding normalized eigenfunctions {ωl(x) : l =
0, 1, 2, · · · , x ∈ Ω}. Then there exist two sequences of functions bl(t) and kl(t), l = 0, 1, 2, · · · , such that

u2(t, x) =

∞∑
l=0

bl(t)ωl(x) and k(t, x) =

∞∑
l=0

kl(t)ωl(x).

Since |kl(t, x)| ≤ M4e
−ζ∗t, t > 0, x ∈ Ω, for some M4 > 0, it follows that there exists a M5 > 0 such that

|bl(t, x)| ≤ M5e
−ζ∗∗t, t > 0, x ∈ Ω where ζ∗∗ := min{ζ∗, ζ1}. Hence, u2(t, ·) → 0 as t → ∞ on Ω. Thus,

S(t, x) → S̃0 as t→ ∞, x ∈ Ω. This ends the proof. □

Combining with Lemmas 2.2-2.4, we have the following main results.

Theorem 2.2. Assume (H1)-(H3) holds with fixed N0 and β(x) − r(x) changes sign on Ω. Then there

exists a unique DFE E0 = (S̃0, 0). Moreover, if R0 < 1, then the DFE is globally asymptotically stable,
but if R0 > 1, then it is unstable.
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2.2. The endemic equilibrium. In this subsection, we show the existence of the EE for system (1.6)
when R0 > 1. To prove this, the following lemma is needed.

Lemma 2.5. Suppose R0 > 1. Then there exists an ε0 > 0 such that the solution of (1.6) satisfies

(2.19) lim inf
t→∞

∥(S(t, x), I(t, x))− (S̃0, 0)∥L∞(Ω) > ε0

uniformly for x ∈ Ω.

Proof. We apply the persistence theory developed by [18] and [34] to prove this result. Denote

Z0 := {u0 ∈ C(Ω)|I0(x) ̸= 0} and ∂Z0 := {u0 ∈ C(Ω)|I0(x) = 0},
where u0 = (S0, I0). Let Φ(t)u0 := (S(t, ·), I(t, ·)), t > 0 be the unique solution of (1.6). It is obvious to see
that Φ(t) is continuous and compact. According to Proposition 2.1, the map Φ(t) is pointwisely dissipative.
By utilizing [8, Theorem 3.4.8] (or [34, Theorem 1.3.7]), Φ(t) admits a compact global attractor. To end
the proof, it is necessary to prove the following claims with the help of ideas [33]:

Claim 1. Φ(t)Z0 ⊂ Z0. One can easily prove this owing to the strong maximum principle [25].

Let U∂ be the maximum positive invariant set of Φ(t) in ∂Z0, i.e., U∂ := {u0 ∈ C(Ω)|Φ(t)u0 ∈ ∂Z0}.
One can verify that U∂ = ∂Z0. Denote ω(u0) as the omega limit set of u0. Set

U∂ :=
⋃
{u0∈U∂}

ω(u0).

Claim 2. U∂ = {E0}. In fact, for any u0 ∈ U∂ , by the definition of U∂ , one has I(t, x) = 0, for all
x ∈ Ω, t ≥ 0. Thus, substituting it into the system (1.6) gives

St = ∇ · (f(β(x))∇S), t > 0, x ∈ Ω,
∇S · n = 0, t > 0, x ∈ ∂Ω,
S(x, 0) = S0(x) ≥ 0, t = 0, x ∈ Ω.

Since
∫
Ω
((S(t, x) + I(t, x)))dx = N0, it follows that S(t, ·) → S̃0 uniformly in Ω as t → ∞. Hence,

U∂ = {E0}, and then {E0} is an isolated and compact invariant set for Φ(t) restricted in U∂ .

Claim 3. There is an ε1 > 0, independent of initial values, such that

lim sup
t→∞

∥Φ(t)u0 − (S̃0, 0)∥L∞(Ω) > ε1.

For any ε̂1 > 0, by contradiction, there exists a û0 = (Ŝ0(x), Î0(x)) such that

(2.20) lim sup
t→∞

∥Φ(t)û0 − (S̃0, 0)∥L∞(Ω) ≤ ε̂1,

where Φ(t)û0 = (Ŝ(t, ·), Î(t, ·)).
Take a sufficiently small constant ε2 > 0. Let ζ∗(ε2) be the principal eigenvalue of the eigenvalue

problem

∇ · (g(r−1(x))∇ϕ̃∗) +
(
β(x) S̃0−ε2

S̃0
− r(x)

)
ϕ̃∗ + ζ∗(ε2)ϕ̃

∗ = 0, x ∈ Ω,

∇ϕ̃∗ · n = 0, x ∈ ∂Ω.

wherein ϕ̃∗ is the corresponding positive eigenfunction on Ω. Since R0 > 1, it follows from by Lemma 2.2
that ζ∗ < 0, here ζ∗ is the eigenvalue of (2.6). Note that ζ∗(ε2) → ζ∗ < 0 as ε2 tends to zero. Thus,
one can choose a sufficiently small ε2 such that ζ∗(ε2) < 0. By the arbitrariness of ε̂1, we set ε̂1 = ε2.

From (2.20), there exists a t∗0 > 0 such that Ŝ(t, ·) ≥ S̃0 − ε2 and Î(t, ·) ≤ ε2, for any t ≥ t∗0 and x ∈ Ω.
Consequently, we have

ŜÎ

Ŝ + Î
≥ (S̃0 − ε2)

S̃0 − ε2 + Î
Î ≥ (S̃0 − ε2)

S̃0 − ε2 + ε2
Î =

(S̃0 − ε2)

S̃0

Î ,

for all t ≥ t∗0 and x ∈ Ω.
Moreover, by Proposition 2.1 and strong maximum principle, there is a δ0 > 0 small enough such that

Î(t∗0, x) ≥ δ0ϕ̃
∗. It is not difficult to verify that Îh(t, ·) is a supersolution of the following problem

(2.21)

Ĩt = ∇ · (g(r−1(x))∇Ĩ) +
(
β(x) S̃0−ε2

S̃0
− r(x)

)
Ĩ = 0, t > t∗0, x ∈ Ω,

∇Ĩ · n = 0, t > t∗0, x ∈ ∂Ω,

Ĩ(t∗0, x) = δ0ϕ̃
∗, t = t∗0, x ∈= Ω.

Note that δ0e
−ζ∗(ε2)(t−t∗0)ϕ̃∗(·) is a solution of (2.21) and ζ∗(ε2) < 0. Then, one has

Î(t, x) ≥ δ0e
−ζ∗(ε2)(t−t∗0)ϕ̃∗(x) → ∞, as t→ ∞, for any x ∈ Ω,
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which contradicts to (2.20). Therefore, Claim 3 is true which implies that {E0} is an isolated invariant
set for Φ(t), and WS({E0}) ∩ Z0 = ∅, where WS({E0}) is the stable set of {E0} with respect to Φ(t).

Combining with Claims 1-3 and [34, Theorem 1.3.1], Φ(t) is uniformly persistent. Accordingly, the
(2.19) is true. This completes the proof. □

Remark 2.2. Lemma 2.5 indicates that the disease will persist.

In a summary, we have the following main conclusion.

Theorem 2.3. Suppose (H1)-(H3) holds and R0 > 1. Then the system (1.6) has at least one endemic
equilibrium (S∗(x), I∗(x)) satisfying S∗(x), I∗(x) > 0 on Ω.

Proof. By Lemma 2.5, the system (1.6) is uniformly persistent when R0 > 1. Thus, applying [34, Theorem
1.3.7] or [18, Theorem 4.7], the system (1.6) possesses at least one endemic steady state (S∗(x), I∗(x))
satisfying S∗(x), I∗(x) > 0 on Ω. □

3. The epidemic model with random diffusion

The goal of this section is to investigate the existence and stability of DFE and EE for model (1.5) with
random diffusion. Similar to Proposition 2.1, we have the well-posedness of (1.5).

Proposition 3.1. The system (1.5) admits a unique positive solution S(t, x) and I(t, x) satisfying

(S(t, x), I(t, x)) ∈ C2,1((0,∞)× Ω)× C2,1((0,∞)× Ω).

Furthermore, there is a constant Ĉ > 0 independent of the initial values, and T̂0 > 0 such that the solution
(S(t, x), I(t, x)) satisfies

∥S(t, x)∥L∞(Ω) + ∥I(t, x)∥L∞(Ω) ≤ Ĉ, for all t > T̂0.

3.1. The disease-free equilibrium. In this subsection, we explore the existence and stability of the
DFE for system (1.5). Adding the two equations in (1.5) gives

(S + I)t = ∆(f(β(x))S + g(r−1(x))I).

Then, integrating the above equality over Ω yields∫
Ω

(S(t, x) + I(t, x))tdx = 0

because ∇(f(β(x))S) · n = ∇(g(r−1(x))I) · n = 0 on ∂Ω. Hence, for all t ≥ 0,∫
Ω

(S(t, x) + I(t, x))dx = N0, for some constant N0 > 0.

In particular, N0 =
∫
Ω
(S0(x) + I0(x))dx.

Lemma 3.1. System (1.5) has a unique DFE

Ê0 = (Ŝ(x), 0) =

(
N0

f(β(x))
∫
Ω

1
f(β(x))

dx
, 0

)
,

where N0 =
∫
Ω
(S0(x) + I0(x))dx > 0.

Proof. Suppose that (Ŝ(x), 0) is a disease-free equilibrium of system (1.5). Then, from the first equation

of (1.5), we obtain ∆(f(β(x))Ŝ(x)) = 0. From ∇(f(β(x))S(x)) · n = 0, it follows that f(β(x))Ŝ(x) = C

for some constant C. Then, Ŝ(x) = C/f(β(x)). Moreover, according to
∫
Ω
Ŝ(x)dx = N0, we have

C = N0/
∫
Ω
(1/f(β(x)))dx. Thus, one gets

Ŝ(x) =
N0

f(β(x))
∫
Ω

1
f(β(x))

dx
> 0, for all x ∈ Ω,

which completes the proof. □

Lemma 3.2. Define g(r−1(·)) = ηg1(r
−1(·)), where η and g1 are the positive constant and the C3(Ω)

function, respectively, and

λ∗ = inf
Ψ∈W1,2(Ω),Ψ̸=0

{η ∫
Ω
|∇Ψ|2dx+

∫
Ω

r(x)−β(x)

g1(r−1(x))
Ψ2dx∫

Ω
1

g1(r−1(x))
Ψ2dx

}
.

If β(x)− r(x) changes sign on Ω, then
(i) λ∗ is a strictly monotonically increasing function with respect to η;
(ii) λ∗ → minx∈Ω{(r(x)− β(x))g−1

1 (r−1(x))} as η → 0, for fixed g1;

(iii) λ∗ →
∫
Ω
(r(x)− β(x))g−1

1 (r−1(x))dx/
∫
Ω
g−1
1 (r−1(x))dx as η → +∞, for fixed g1;
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(iv) If
∫
Ω
β(x)g−1

1 (r−1(x))dx ≥
∫
Ω
r(x)g−1

1 (r−1(x))dx then λ∗ < 0 for all η > 0;

(v) If
∫
Ω
β(x)g−1

1 (r−1(x))dx <
∫
Ω
r(x)g−1

1 (r−1(x))dx, then the equation λ∗(η) = 0 has a unique positive
root denoted by η̄∗. Furthermore, if η < η̄∗ then λ∗ < 0, and if η > η̄∗ then λ∗ > 0.

Proof. Linearizing the system (1.5) around the DFE (Ŝ(x), 0) yields

ξt = ∆(g(r−1(x))ξ) + (β(x)− r(x))ξ, t > 0, x ∈ Ω,

∇(g(r−1(x))ξ) · n = 0, t > 0, x ∈ ∂Ω.

Suppose that ξ(t, x) = e−λtϑ(x). Then, one obtains

(3.1)
∆(g(r−1(x))ϑ) + (β(x)− r(x))ϑ+ λϑ = 0, x ∈ Ω,

∇(g(r−1(x))ϑ) · n = 0, x ∈ ∂Ω.

Set Ψ(x) = g(r−1(x))ϑ(x). Thus, from g(r−1(·)) := ηg1(r
−1(·)), system (3.1) can be reduced to

(3.2)
η∆Ψ+

(β(x)− r(x))

g1(r−1(x))
Ψ + λ

Ψ

g1(r−1(x))
= 0, x ∈ Ω,

∇Ψ · n = 0, x ∈ ∂Ω.

Similar to the analysis of Lemma 2.1, there exists a unique eigenvalue λ∗ whose corresponding eigen-
function Ψ∗ is positive on Ω. Observe that (λ∗,Ψ∗) satisfies

(3.3)
η∆Ψ∗ +

(β(x)− r(x))

g1(r−1(x))
Ψ∗ + λ∗

Ψ∗

g1(r−1(x))
= 0, x ∈ Ω,

∇Ψ∗ · n = 0, x ∈ ∂Ω.

Therefore, λ∗ is determined by the variational characterization

λ∗ = inf
Ψ∈W1,2(Ω),Ψ̸=0

{η ∫
Ω
|∇Ψ|2dx+

∫
Ω

r(x)−β(x)

g1(r−1(x))
Ψ2dx∫

Ω
1

g1(r−1(x))
Ψ2dx

}
,

after which the proof is similar to Lemma 2.1. □

To analyze the stability of the DFE (Ŝ(x), 0), we characterize the basic reproduction number R0 for
system (1.5). Consider the following eigenvalue problem:

(3.4)
κ

β(x)

g1(r−1(x))
Ψ = −η∆Ψ+

r(x)

g1(r−1(x))
Ψ, x ∈ Ω,

∇Ψ · n = 0, x ∈ ∂Ω.

Lemma 3.3. Let κ0 be the positive eigenvalue of (3.4) with a positive eigenfunction. Then λ0 is unique
and defined by

λ0 = inf
Ψ∈W1,2(Ω),Ψ̸=0

{η ∫
Ω
|∇Ψ|2dx+

∫
Ω

r(x)

g1(r−1(x))
Ψ2dx∫

Ω

β(x)

g1(r−1(x))
Ψ2dx

}
.

Furthermore, the basic reproduction number R0 of (1.5) is defined by

R0 = sup
Ψ∈W1,2(Ω),Ψ ̸=0

{ ∫
Ω

β(x)

g1(r−1(x))
Ψ2dx

η
∫
Ω
|∇Ψ|2dx+

∫
Ω

r(x)

g1(r−1(x))
Ψ2dx

}
.

Moreover, if β(x)− r(x) changes sign on Ω, then R0 satisfies the following properties:
(i) R0 = 1/ζ0 is monotone decreasing with respect to η;
(ii) R0 → maxx∈Ω{β(x)/r(x)} as η → 0, for fixed g1;
(iii) R0 →

∫
Ω
β(x)g−1

1 (r−1(x))dx/
∫
Ω
r(x)g−1

1 (r−1(x))dx as η → +∞, for fixed g1;
(iv) sign(1−R0) = sign λ∗;
(v) minx∈Ω{β(x)/r(x)} ≤ R0 ≤ maxx∈Ω{β(x)/r(x)}.

Proof. The proof follows the same logic as Lemma 2.2. □

Similar to Lemmas 2.3-2.4, we can prove the following results.

Lemma 3.4. If R0 < 1, then the DEF Ê0 is stable; If R0 > 1, then the DEF Ê0 is unstable.

Lemma 3.5. If R0 < 1, then the solution (S(t, x), I(t, x)) → (Ŝ(x), 0) in C(Ω) as t→ ∞.

Combining with Lemmas 3.1-3.5, we have the following main results.

Theorem 3.2. Assume (H1)-(H3) holds with fixed N0 and β(x) − r(x) changes sign on Ω. Then there

exists a unique DFE Ê0 = (Ŝ(x), 0). Furthermore, if R0 < 1, then the DFE is globally asymptotically
stable, but if R0 > 1, then it is unstable.
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3.2. The endemic equilibrium. In this subsection, we explore the existence of the EE for system (1.5)
when R0 > 1. The steady states of (1.5) satisfy

(3.5)

∆(f(β(x))S)−
(

β(x)S
S+I

− r(x)
)
I = 0, x ∈ Ω,

∆(g(r−1(x))I) +
(

β(x)S
S+I

− r(x)
)
I = 0, x ∈ Ω,

∇(f(β(x))S) · n = ∇(g(r−1(x))I) · n = 0, x ∈ ∂Ω.

Then it follows that

(3.6)

f(β(x))S + g(r−1(x))I = µ, x ∈ Ω,

∆(g(r−1(x))I) +

(
β(x)− r(x)− β(x)I

S+I

)
I = 0, x ∈ Ω,

∇(f(β(x))S) · n = ∇(g(r−1(x))I) · n = 0, x ∈ ∂Ω,∫
Ω

(S + I)dx = N0,

for some constant µ > 0. Set

u =
f(β(x))S

µ
and v =

g(r−1(x))I

µ
.

Substituting it into (3.6) gives

(3.7)

u+ v = 1, x ∈ Ω,
∆v +K(x, v)v = 0, x ∈ Ω,
∇v · n = 0, x ∈ ∂Ω,

µ = N0 ·
[ ∫

Ω

(
u

f(β(x))
+

v

g(r−1(x))

)
dx

]−1

,

where

K(x, v) =
1

g(r−1(x))

(
β(x)− r(x)− β(x)f(β(x))v

g(r−1(x))(1− v) + f(β(x))v

)
.

Clearly, if (u, v) is a positive solution of (3.7), then
(

µu
f(β(x))

, µv
g(r−1(x))

)
is the EE of (1.5).

Lemma 3.6. Assume R0 > 1. Then system (3.7) admits a nonnegative solution (u, v) satisfying u(·), v(·) ∈
C2(Ω) and v(·) ̸≡ 0 on Ω. Furthermore, the solution is unique, u(x) > 0, and 0 < v(x) < 1 for all x ∈ Ω.

Proof. Define H(v) := ∆v +K(x, v)v. Then, by (3.7) we obtain

(3.8)
H(v) = 0, x ∈ Ω,
∇v · n = 0, x ∈ ∂Ω.

In the following, we show that there is a sufficiently small constant σ > 0 such that v(x) = σΨ∗(x) and
v(x) ≡ 1 are the sub- and super-solutions of system (3.8), respectively, where Ψ∗ is the eigenfunction of
the corresponding eigenvalue λ∗ of system (3.3). By Lemma 3.3, λ∗ < 0 because of R0 > 1. Denote

K1(x, v) =
f(β(x))v

g(r−1(x))(1− v) + f(β(x))v
.

It is easy to see ∂vK1(x, v) > 0, for any x ∈ Ω. That is, K1(x, v) is an increasing function of v and
K1(·, v) ∈ [0, 1] as v ∈ [0, 1]. According to (3.3) and (3.8), we obtain

H(v) =
σΨ∗

g(r−1(x))
[−λ∗ − β(x)K1(x, σΨ

∗)].

Since K1 is increasing and K1(x, 0) = 0, it follows from the continuity of K1 that there exists a σ > 0
sufficiently small so that β(x)K1(x, σΨ

∗) < −λ∗ owing to the positivity of β(x). Hence, H(v) > 0 for
sufficiently small σ > 0. By ∇v · n = 0 on ∂Ω, we can see that v(x) = σΨ∗(x) is a sub-solution of (3.8).
Moreover, by direct calculations, we have H(v) = −r(x)/g(r−1(x)) < 0, x ∈ Ω and ∇v · n = 0, x ∈ ∂Ω.
This indicates that v(x) ≡ 1 is a super-solution of (3.8). For a sufficiently small σ > 0, v < v holds. By
the definition of sub-and super-solution [27], one has v(x) ≤ v(x) ≤ v(x), x ∈ Ω. Thus, the solutions of
(3.8) satisfy 0 < v(x) ≤ 1 on Ω. To prove v(x) < 1 on Ω, by contradiction, we assume v(x0) = 1 for some
x0 ∈ Ω. Then ∆v(x0) ≤ 0 due to the fact v(x0) = maxx∈Ω v(x). Hence, we have

0 = H(v(x0)) = ∆v(x0)−
r(x)

g(r−1(x))
< 0,

which is a contradiction. Therefore, 0 < v(x) < 1 on Ω.
To cope with the uniqueness of v, we suppose that the system (3.8) has two pairs of solutions, denoted

by (u1, v1) and (u2, v2), satisfying v1 ̸≡ v2. From the first equation of (3.7), one has 0 < v1, v2 ≤ 1, x ∈ Ω.

According to the strong maximum principle [25], 0 < v1, v2 ≤ 1, x ∈ Ω. From the above analysis, we have

v ≤ v1(x), v2(x) ≤ v, x ∈ Ω. Let va(x) and vb(x) be the minimal and maximal solutions of (3.8) satisfying
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va ̸≡ vb. Clearly, σΨ∗ ≤ va, vb ≤ 1, x ∈ Ω. Due to v1 ̸≡ v2, then va ≤ vb with va ̸≡ vb. Applying the
strong maximum principle yields that va(x) < vb(x), x ∈ Ω. Substituting va and vb into (3.8), we obtain

(3.9)
∆va +K(x, va)va = 0, x ∈ Ω,
∇va · n = 0, x ∈ ∂Ω,

and

(3.10)
∆vb +K(x, vb)vb = 0, x ∈ Ω,

∇vb · n = 0, x ∈ ∂Ω.

Multiplying the equations of (3.9) and (3.10) by vb and va, respectively, and integrating by parts over Ω
and then subtracting the resulting equations, one obtains∫

Ω

[K(x, va)−K(x, vb)]vavbdx = 0.

On the other hand, it is not difficult to verify K(·, v) is a decreasing function of v for any x ∈ Ω. Thus,
K(x, va) > K(x, vb) for x ∈ Ω. Therefore,∫

Ω

[K(x, va)−K(x, vb)]vavbdx > 0,

due to va, vb > 0. This is a contradiction. Consequently, system (3.8) admits a unique solution (u, v)
satisfying u(x) > 0 and 0 < v(x) < 1 for all x ∈ Ω. □

By Lemma 3.6, we have the following conclusion.

Theorem 3.3. Suppose R0 > 1. Then system (3.5) admits a nonnegative solution (S∗(x), I∗(x)) satisfying

S∗, I∗ ∈ C2(Ω) and I ̸≡ 0 on Ω. Furthermore, the solution is unique, S∗(x) > 0, and I∗(x) > 0 for x ∈ Ω,
and given by the following formula:

(S∗(x), I∗(x)) =

(
µu(x)

f(β(x))
,

µv(x)

g(r−1(x))

)
,

where u(·) and v(·) are defined in Lemma 3.6.

Remark 3.1. If the diffusion rates f(β) and g(r−1) are constants in the systems (1.5) and (1.6), the
relevant results belong to the special case that was analyzed in [1].

4. Numerical computations for threshold dynamics

We first verify the threshold dynamics on the basic reproduction number R0 by numerical simulations.
Our theoretical results will be verified numerically by choosing functions β(·), r(·), f(β(·)) and g(r−1(·)).
Specifically, (i) we study the threshold dynamics of systems (1.5) and (1.6) by testing two cases with
R0 < 1 and R0 > 1; (ii) in order to discuss how the spatial heterogeneity and the motility of infected
populations affect disease dynamics, we investigate the effects of R0 on the transmission rate β(x) and the
diffusion rate g(x). For convenience, we consider a one-dimensional space.

4.1. Threshold dynamics of system (1.6). In this subsection, we test the variation of basic reproduction
number R0 for system (1.6) on β and g, and explore the dynamics of (1.6). For numerical examples, we
take

(4.1) β(x) = 1.7− c21x, r(x) = 1 + x, f(β(x)) = β(x) and g(r−1(x)) = ηr−1(x),

and compute the basic reproduction number R0 for 0 < c1 < 1 and 0 < η < 10. From Fig. 2(a), it follows
that R0 is a decreasing function of c1 and R0 < 1 when c1 > 0.65, which implies that we should take
necessary isolation measures to make c1 > 0.65 to control the spread of disease. From Fig. 2(b), we see
that R0 is a decreasing function of η. More precisely, R0 → 1.67379 ≈ max0<x<1{β(x)/r(x)} as η → 0

and R0 → 0.803514 ≈
∫ 1

0
β(x)dx/

∫ 1

0
r(x)dx as η → 10, which demonstrate the results in Lemma 2.2.

For the case with c1 = 1 and η = 1, we can easily compute R0 = 0.8322 < 1. By considering one unit
of spatial length as one kilometer, we choose the initial densities S0(x) = 999 and I0(x) = 1, x ∈ (0, 1).
The solution is given in Fig. 3 for the case R0 < 1. The infected population tends to zero globally and the
susceptible population tends to S̃0 = 1000, which is consistent with Theorem 2.2.

Next, we choose β(x) = 3−x with other parameters in (4.1) unchanged. Then, we obtain R0 = 1.7008 >
1 and the solution is given in Fig. 4. The system (1.6) admits an endemic equilibrium when R0 > 1. This
indicates that the disease will persist.
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Figure 2. (a) R0 vs c1 when β(x) = 1.7− c21x, r(x) = 1+x, f(β(x)) = β(x) and
g(r−1(x)) = r−1(x), x ∈ [0, 1]; (b) R0 vs η when β(x) = 1.7 − x, r(x) = 1 + x,
f(β(x)) = β(x) and g(r−1(x)) = ηr−1(x), x ∈ [0, 1].

(a) (b)

Figure 3. The dynamics of susceptible and infected populations when R0 =
0.8322 < 1. (a) S(t, x); (b) I(t, x).

(a) (b)

Figure 4. The dynamics of susceptible and infected populations when R0 =
1.7008 > 1. (a) S(t, x); (b) I(t, x).
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4.2. Threshold dynamics of system (1.5). In this subsection, we test the variation of basic reproduction
number R0 for system (1.5) on β and g, and explore the dynamics of (1.5). For numerical examples, we
take the same parameter values in (4.1).

We sketch the graphs ofR0 for the system (1.5). In this model, we still have thatR0 is a decreasing func-
tion of c1 and η. The main difference in using a different diffusion law is the size of the reproduction number.
Fig. 5(a) shows that R0 < 1 when c1 > 0.54, which is smaller than the critical value c1 = 0.65 of Fickian
case. Fig. 5(b) shows that R0 is a decreasing function of η and R0 → 1.67379 ≈ max0<x<1{β(x)/r(x)}
as η → 0 and R0 → 0.7398 ≈

∫ 1

0
β(x)g−1

1 (r−1(x))dx/
∫ 1

0
r(x)g−1

1 (r−1(x))dx as η → 10 (see Lemma 3.3).
Note that the limit as η → 0 is same as Fickian case and the limit as η → 10 is smaller than Fickian case.
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Figure 5. (a) R0 vs c1 when β(x) = 1.7− c21x, r(x) = 1+x, f(β(x)) = β(x) and
g(r−1(x)) = r−1(x), x ∈ [0, 1]; (b) R0 vs η when β(x) = 1.7 − x, r(x) = 1 + x,
f(β(x)) = β(x) and g(r−1(x)) = ηr−1(x), x ∈ [0, 1].

In the following, we investigate the threshold dynamics for system (1.5). Without loss of generality, we
fix c1 = 1 and η = 1 in (4.1). By direct calculations, we obtain R0 = 0.7667 < 1. Moreover, we assume
the initial densities S0(x) = 999 and I0(x) = 1, x ∈ (0, 1). Therefore, Fig. 6 presents the corresponding
long term behavior of system (1.5) in the case of R0 = 0.746021 < 1. From Fig. 6, one can see that
the number of infectives tends to zero and the number of susceptibles tends to the steady state level

Ŝ(x) = 1000
(1.7−x)(ln 17−ln 7)

, which coincides with Theorem 3.2.

(a) (b)

Figure 6. The dynamics of susceptible and infected populations when R0 =
0.7667 < 1. (a) S(t, x); (b) I(t, x).

In addition, we choose β(x) = 3 − x and other parameter values are the same as Fig. 6. Then, we
have R0 = 1.60408 > 1. Hence, Fig. 7 shows the corresponding long term behavior of system (1.5) when
R0 = 1.60408 > 1. From Fig. 7, system (1.5) admits an endemic equilibrium when R0 > 1. This implies a
disease outbreak.
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(a) (b)

Figure 7. The evolution of susceptible and infected human whenR0 = 1.60408 >
1. (a) The evolution of S(t, x); (b) The evolution of I(t, x).

5. Numerical computations for segregation impacted by cognitive dispersal strategies

Disease spread in an ODE model means an increase in the number of infections under the well-mixed
assumption, but not spatial spread. The PDE model used in the paper is to quantify the spatial spread of
disease, where diffusion models the average spatial movement of individuals. In this section, we consider
three examples of transmission and recovery rates, β(x) and r(x), to numerically test the impact of diffusion
on the spatial spread of an infectious disease. In the first example, we will see that the heterogeneous
random diffusion in the reaction-diffusion system (1.5) may segregate infected and susceptible populations
and reduce the infected population. In the second example, random diffusion may reduce the infected
population by using disease-free regions even if it reduces the segregation indices. In the third example,
we will see that random diffusion may increase the infected population in certain situations. On the other
hand, symmetric diffusion in (1.6) behaves similarly as the homogeneous diffusion with constant diffusivity.

5.1. Example 1 (Segregation by dispersal). It is generally believed that the diffusion mechanism homog-
enizes a mixture of substances and reduces the segregation of substances. The reason for such a belief
is from the nature of symmetric diffusion models. However, heterogeneous random diffusion models may
segregate different substances. In the first example, we will see that an epidemic model with random
diffusion may segregate the susceptible and the infected populations, and reduce the proportion of the
infected population. The infection and the recovery rates of the first example are taken as

β(x) = 6 cosx+ 6.6, r(x) = cosx+ 1.5, x ∈ Ω = (0, 2π).

The graphs of these two rates are given in Fig. 8(a). This is an example that the patterns for β(x) and
r(x) are similar, where the two have critical points at the same location. The diffusion rates are given by
relations

f(x) = β(x) and g(x) = r−1(x),

where their graphs are given in Fig. 8(b). As we observe from the figure, the diffusion rate of the susceptible
population is the highest whereas the diffusion rate of the infected population is the lowest. This situation
may give extra segregation phenomenon caused by the diffusion, which will be observed in the simulations.
We assume the diffusivity of the infected population is considerably smaller than the one of susceptible
population.

To compare the segregation effects of different models, we first consider a model without diffusion:

(5.1)

St = −
(

β(x)S
S+I

− r(x)
)
I, t > 0, x ∈ Ω,

It =
(

β(x)S
S+I

− r(x)
)
I, t > 0, x ∈ Ω,

S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, t = 0, x ∈ Ω.

We will compare steady state solutions by solving the initial value problem for t > 0 large enough starting
from the initial densities:

S0(x) = I0(x) = 500, x ∈ Ω = (0, 2π).

Note that (5.1) is an ODE model and the steady state is decided algebraically by

S(x) =
r(x)

β(x)− r(x)
I(x), S(x) + I(x) = I0(x) + S0(x) = 1000,
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Figure 8. Example 1 at time t = 50. The infection and recovery rates have sim-
ilar patterns in this example. The random diffusion segregates the two population
groups and reduces the infected population.

or I(x) = 0 and S(x) = 1000. The distribution of the steady state is given in Fig. 8(c). In this figure, the

susceptible and infected populations are segregated due to the heterogeneity of the ratio r(x)
β(x)−r(x)

. There

are more susceptibles in a region if the ratio is large in the region and there are fewer otherwise.
Next, we compare the effects of diffusion models. The infected population will increase if the susceptible

and infected populations are mixed and will decrease if the two are segregated. For comparison, we consider
the homogeneous diffusion model:

(5.2)

St = dS∆S + I
(
− β(x)S

S+I
+ r(x)

)
, t > 0, x ∈ Ω,

It = dI∆I + I
(

β(x)S
S+I

− r(x)
)
, t > 0, x ∈ Ω,

dS∇S · n = 0 = dI∇I · n, t > 0, x ∈ ∂Ω,
S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, t = 0, x ∈ Ω,

where the diffusivity coefficients dS and dI are taken as the average diffusivity

dS =
1

|Ω|

∫
Ω

f(x)dx, dI =
1

|Ω|

∫
Ω

g(x)dx.

The distribution of the steady state of the homogeneous diffusion model is given in Fig. 8(d). The sus-
ceptible and infected populations are more mixed. As a result, the infection fraction increases. It is not
surprising that homogeneous diffusion increases infection.

Figs. 8(e)-(f) plot the distribution of the steady state of the two heterogeneous diffusion models (1.6)
and (1.5), respectively. The epidemic model (1.6) with symmetric diffusion shows a similar behavior as the
model (5.2) with the homogeneous diffusion. The difference is in the pointing shape of the distribution of
the susceptible population, but the overall size is quite similar. On the other hand, the model (1.5) with
random diffusion shows a different behavior. We can observe that the segregation index (SI) between the
two populations increases and the size of the infected population decreases.

Table 1. The infection fraction of Example 1 with segregation indices.

Epidemic models
∫ 2π
0 Idx∫ 2π

0 (S+I)dx
at t = 50 SI-κ SI-χ (×105)

ODE model (5.1) 0.6890 0.4860 -4.0474

Homogeneous diffusion (5.2) 0.7563 0.5125 2.1772
Symmetric diffusion (1.6) 0.7523 0.5046 2.0808

Random diffusion (1.5) 0.5439 0.5272 -8.8516

In Table 1, the infection fraction at the steady state of each model is compared with the segregation
indices κ and χ. The two models with homogeneous or symmetric diffusion have positive segregation
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indices χ(S, I), which implies that the two populations are poorly segregated and κ does not mean much
for the two cases. The model with random diffusion and the ODE model have negative segregation indices
χ(S, I). The index κ is larger for the random diffusion model. This implies that the random diffusion
segregates the two population groups. We can also see that the infection fraction is the smallest when
random diffusion is used.

5.2. Example 2 (Dispersal toward disease-free region). Dispersal of infected individuals toward suscep-
tible ones usually increases the infected population. However, if the dispersal is toward a region with a
small basic reproduction number R0, dispersal may help to mitigate the disease. The second example is
for such a case, where the infection and recovery rates are given by

(5.3) β(x) = −4x+ 5, r(x) = 4x+ 1, x ∈ Ω = (0, 1).

The graphs of these two rates are given in Fig. 9(a). This is an example that the two rates β(x) and
r(x) have the opposite monotonicity and intersect at x = 0.5. The diffusion rates are given by relations
f(x) = β(x) and g(x) = r−1(x), where the two diffusion rates have the same monotonicity as we can see
from their graphs given in Fig. 9(b). Hence, the diffusion pushes both populations to the same direction.
The diffusivity of the infected population is considerably smaller than the one of the susceptible population
as we assumed earlier. The random diffusion will not give extra segregation effect since f and g have the
same monotonicity.

The steady states of the four models are given in Fig. 9(c)–(f). We can see that only the populations of
the ODE model are segregated. However, the size of the infected population is the largest in this case.
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Figure 9. Example 2 with (5.3) at time t = 50. The domain x > 0.5 is the
disease-free region for ODE model. The random diffusion pushes both populations
toward the disease-free region and reduces the infected population.

To compare the segregation effects of the previous four models, we compute the steady states for the
four models numerically. Figs. 9(c)–(f) plot the distribution of the steady states of the four models. We
can see that the epidemic model (1.6) with symmetric diffusion shows the same behavior again as the
model (5.2) with homogeneous diffusion. However, the solution of (1.5) shows a different behavior again.
In particular, the size of the infected population is far smaller than the ones of other three models.

Table 2. The infection fraction of Example 2 with segregation indices.

Epidemic models
∫ 1
0 Idx∫ 1

0 (S+I)dx
at t = 50 SI-κ SI-χ (×106)

ODE model (5.1) 0.2355 0.6946 -0.6002

Homogeneous diffusion (5.2) 0.2201 0.5598 0.2805
Symmetric diffusion (1.6) 0.2304 0.5392 0.2735

Random diffusion (1.5) 0.0459 0.9082 1.0311
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To quantitatively compare the difference of the four cases, the infection fractions are given in Table 2
with the two segregation indices. In this example, the three models with diffusion have positive segregation
indices χ(S, I), which means that the three cases are not segregated. Only the ODE model has negative
segregation index χ(S, I). However, the first three models have similar sizes of the infected population and
only the solution of (1.5) with random diffusion has a small size of infections. The reason is that (1.5) is
the only model that takes the advantage of the region x > 0.5 which has the disease-free equilibrium for
ODE model. In conclusion, we claim that segregation is not the only way to reduce the infection but an
appropriate dispersal can reduce the infection depending on the situation.
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Figure 10. Modified Example 2 with (5.4) at time t = 50. If there is no disease-
free region as in this example, the advantage of diffusion models disappears.

To check whether the small infected population size under the random diffusion is caused by the disease-
free region of the ODE model, we modify Example 2 and remove the disease-free region by taking

(5.4) β(x) = −4x+ 9, r(x) = 4x+ 1, x ∈ Ω = (0, 1).

Then, β(x) > r(x) for all x ∈ Ω and the steady state of (5.1) is positive for all x ∈ Ω. Fig. 10 plots the
graphs of the steady states of the four models. The solution patterns are similar to the ones in Fig. 9. The
main difference is the size of the infected population. The ODE model has the smallest infected population
among all models. The homogeneous diffusion model shows a similar solution behavior as the symmetric
diffusion model again.

Table 3. The infection fraction of modified Example 2 with segregation indices.

Epidemic models
∫ 1
0 Idx∫ 1

0 (S+I)dx
at t = 50 SI-κ SI-χ (×105)

ODE model (5.1) 0.5297 0.4423 -7.7078
Homogeneous diffusion (5.2) 0.6089 0.2230 -0.1236
Symmetric diffusion (1.6) 0.6155 0.2419 -0.2303
Random diffusion (1.5) 0.5483 0.1191 -0.1927

The infection fraction and the two segregation indices of the modified Example 2 are given in Table 3.
In this example, the three models with diffusion have negative segregation indices χ(S, I), which is quite
small in magnitude. We claim that the segregation of the two population groups is weak in this case. Only
the ODE model has a meaningful negative segregation index χ(S, I). The sizes of the infected population
of the two models with symmetric and homogeneous diffusions are larger than other two cases.
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5.3. Example 3 (Dispersal toward endemic region). We assume that the susceptible individuals intend
to leave an area with a high transmission rate and the infected individuals intend to stay in an area
with a high recovery rate. Under this assumption, the diffusivity is given by relations f(x) = β(x) and
g(x) = r−1(x). This natural assumption may give a better chance to reduce the infected population.
In fact, in the previous examples, the heterogeneous random diffusion model gives the smallest infection
fraction among all diffusion models. However, such a performance is not guaranteed and, in Example 3,
we will see the heterogeneous random diffusion increases the infected population. We take the infection
and recovery rates as

β(x) = 5e−160(x−0.15)2 + 2, r(x) = 8e−160(x−0.85)2 + 1, x ∈ Ω = (0, 1).

The graphs are given in Fig. 11(a). In this example, β(x) and r(x) have maximum points apart. The
diffusion rates are given by relations f(x) = β(x) and g(x) = r−1(x) and their graphs are given in
Fig. 11(b). In this example, the diffusion rate of the susceptible population is highest at x = 0.15 and the
diffusion rate of the infected population is lowest at x = 0.85.
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Figure 11. Example 3 at time t = 50. The maxima of infection and recovery
rates are placed apart in this example. The segregation of the two populations
does not help to reduce the infected population in this case.

The steady states of the four models are computed numerically and given in Figs. 9(c)–(f). We can
see that the model (1.6) with symmetric diffusion shows the similar behavior as the model (5.2) with
homogeneous diffusion. However, the solution behavior of the random diffusion model (1.5) is different
but partially similar to the one of the ODE model.

Table 4. The infection fraction of of Example 3 with segregation indices.

Epidemic models
∫ 1
0 Idx∫ 1

0 (S+I)dx
at t = 50 SI-κ SI-χ (×105)

ODE model (5.1) 0.4340 0.4048 -7.3444

Homogeneous diffusion (5.2) 0.3421 0.3158 0.8594

Symmetric diffusion (1.6) 0.3697 0.2606 0.6243
Random diffusion (1.5) 0.4901 0.2704 -2.9092

The infection fraction and the two segregation indices of the four models are given in Table 4. In this
example, the two models with symmetric and homogeneous diffusions have positive segregation indices
χ(S, I), which means that these two cases are segregated poorly. However, the sizes of the infected
population of these two cases are smaller than other two cases. On the other hand, the other two cases with
random diffusion and ODE models have negative segregation indices χ. This implies that the segregation
indices mean little in this example.
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6. Concluding remarks

In this paper, we considered two SIS reaction-diffusion epidemic models, (1.6) with a symmetric diffusion
of Fickian diffusion type and (1.5) with a random diffusion of Fokker-Planck diffusion type [19, 24]. We
assumed that the diffusion rate f(x) of the susceptible population is proportional to the transmission rate
β(x) and the diffusion rate g(x) of the infected population is reversely proportional to the recovery rate
r(x). The paper consists of a mathematical analysis part and a numerical computation part.

Analytically, we have shown the well-posedness of (1.5) and (1.6) (Propositions 2.1–3.1), obtained the
basic reproduction number R0 using a variational method, and shown the monotonicity and the asymptotic
behavior of R0 in terms of g (Lemmas 2.2–3.3). Next, we have shown the existence, uniqueness, and
stability of the DFE of (1.6) (Theorem 2.2). Since the diffusion of (1.6) is not homogeneous, we could not
apply the methods in [1] to study the existence and uniqueness of the EE of (1.6). Fortunately, we can
utilize the persistence theory in [34] to show that system (1.6) is persistent when R0 > 1, thus ensuring
that there exists at least one EE (Theorem 2.3). In addition, we have shown the existence, uniqueness, and
stability of DFE and EE for the model (1.5) (Theorems 3.2-3.3). Note that we generalized the relevant
results in [1, Lemmas 2.2-2.3] (see Lemmas 2.1, 2.2, 3.2, and 3.3).

In section 4, we numerically tested the analytical results in sections 2 and 3. In order to see the role
of the spatial heterogeneity and the diffusion models on the disease transmission, we tested the effects of
the infection rate β(x) and the diffusion rate g(r−1(x)) on R0 for models (1.5) and (1.6) (Figs. 2 and 5).
Moreover, we drew the sample solutions for systems (1.5) and (1.6) when R0 > 1 and R0 < 1 respectively
(Figs. 3, 4, 6, and 7). Note that we have obtained the existence of endemic equilibrium for models (1.5)
and (1.6), but the stability of EE is open for future study.

In section 5, three examples are numerically tested to see the effect of heterogeneous diffusion in the
disease spread. It is widely believed that diffusion homogenizes substances. However, in the first example,
we observed that a heterogeneous random diffusion segregates infected and susceptible populations further
than an ODE model and thus reduces the size of the infected population (see Fig. 8 and Table 1). However,
symmetric diffusion never does that. In the second example, the random diffusion decreases segregation
indices but still reduces the size of the infected population by moving infected individuals to a disease-free
region (see Fig. 9 and Table 2; Fig. 10 and Table 3). Usually, the heterogeneous random diffusion model
takes a smaller infected population size since f(x) = β(x) and g(x) = r−1(x). However, depending on
the situation, such a strategy may increase the infected population size. The third example is such a case
(see Fig. 11 and Table 4). We should remember the various effects of heterogeneous random diffusion on
the disease transmission. The numerical tests in section 5 show some interesting effects, which can help
us further understand the transmission mechanism of diseases and provide effective strategies for disease
control.

It should be pointed out that in Theorem 2.3, we only obtain the existence of the endemic equilibrium,
not the uniqueness. The uniqueness is therefore left for future investigation. On the other hand, as we all
know, many infectious diseases have incubation periods, and populations can move randomly during the
period. This means that the infection thereby depends not only on the interaction at the current location
and time, but also on the interaction of all possible locations at previous times [29]. The susceptibility
of a susceptible highly depends on the distance from each adjacent infectious individual. Such a infection
mechanism is often modeled by a nonlocal incidence with a kernel function whose support determines the
effective infection area [16]. Therefore, it seems necessary to incorporate nonlocal effects and/or delay
into epidemic modeling. Future endeavor should explore the influences of nonlocality or delay on the
segregation phenomenon.
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