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Abstract

Traveling wave solutions of reaction-diffusion equations are well-studied for Lipschitz
continuous monostable and bistable reaction functions. These special solutions play a
key role in mathematical biology and in particular in the study of ecological invasions.
However, if there are more than two stable steady states, the invasion phenomenon may
become more intricate and involve intermediate steps, which leads one to consider not
a single but a collection of traveling waves with ordered speeds. In this paper we show
that, if the reaction function is discontinuous at the stable steady states, then such a
collection of traveling waves exists and even provides a special solution which we call a
terrace solution. More precisely, we will address both the existence and uniqueness of the
terrace solution.

1 Introduction

The solution of an initial value problem of ordinary differential equations (or an ODEs for
brevity),

U̇ = F (t, U), U(t0) = U0, t ∈ R,

uniquely exists at least locally in time if the reaction function F (t, U) is Lipschitz continuous
in a neighborhood of (t0, U0). This fundamental ODE theory is the foundations to obtain the
uniqueness and the existence for many problems of partial differential equations (or PDEs),
which is the reason why the Lipschitz continuity is mostly assumed. However, the Lipschitz
continuity also gives some undesirable phenomena. For example, when a solution converges
to a stable steady state, the solution converges to it only asymptotically and never arrives
at it in a finite time (see [2]). By the same reason, traveling wave solutions have infinitely
long tails, which makes the interaction of traveling waves complicate and causes an extra
asymptotic draft of a logarithmic scale.

The purpose of the paper is to develop basic theories for the interaction of traveling wave
solutions of a reaction-diffusion equation,

∂tu = ∂xxu+ f(u), t > 0, x ∈ R, (1.1)

when the reaction function f has several stable steady states and is discontinuous at them.
In ecology and population dynamics, the unknown function u typically stands for a species
density. Discontinuities may come from harvesting terms and make the model more realistic
by providing finite time extinction. Since f is not Lipschitz continuous, the classical theory
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for the existence and the uniqueness fail. However, the non-Lipschitz reaction function f
does not cause too much trouble since it has discontinuity at stable steady states only. On
the other hand, the discontinuity in f produces an interface of traveling wave solutions and
gluing two traveling wave solutions becomes handy. Furthermore, the asymptotic draft of a
logarithmic scale disappears.

We take three hypotheses for the reaction function f . First, we assume that there exists
a finite number of steady states, θi’s for i = 0, 1, · · · , 2I, such that

1 = θ0 > θ1 > · · · > θ2I−2 > θ2I−1 > θ2I = 0,

f(u) > 0 for u < θ2I and θ2i+1 < u < θ2i, i = 0, · · · , I − 1, (1.2)

f(u) < 0 for u > θ0 and θ2i < u < θ2i−1, i = 1, · · · , I.

A diagram of such f(u) is described in Figure 1. We have chosen 0 and 1 as the extremal
steady states for our convenience, which is always possible by rescaling the solution. Under
the assumptions in (1.2), the θ2i’s are stable steady states for i = 0, · · · , I, and the θ2i−1’s
are unstable ones for i = 1, · · · , I.

A solution u(t, x) of (1.1) is called a traveling wave solution connecting 1 to 0 if there
exists a wave profile φ and a wave speed c ∈ R such that

u(t, x) = φ(x− ct), with φ(z)→ 1 as z → −∞, and φ(z)→ 0 as z →∞.

Traveling wave solutions have been intensively studied when f is Lipschitz continuous. In
particular, if I = 1, the nonlinearity is called bistable and there exists a unique traveling
wave speed c ∈ R, and a unique (up to translation) wave profile φ. Furthermore, it is well-
known that these traveling wave solutions describe the large-time dynamics of solutions of the
Cauchy problem for large classes of initial data. In particular they are useful to understand a
large range of propagation phenomena from physics, biology and population dynamics, which
can be modeled by reaction-diffusion equations such as (1.1). We refer to the celebrated
works [1, 5] for more details.

If I > 1, a traveling wave solution connecting 1 to 0 does not exist in general, and
a so-called propagating terrace is considered instead. This notion refers to a collection of
traveling waves that connect steady states sequentially from 1 to 0; we refer again to [5]
where it is introduced under the different name of “minimal decomposition”, to [10] for further
developments in the homogeneous case and to [3, 6] where propagating terraces have been
studied in the context of spatially heterogeneous reaction-diffusion equations. An adaptation
to a discontinuous case will be given below in Definition 2.4. Note that, while the propagating
terrace still dictates the large-time behavior of solutions of the Cauchy problem, it does so
only locally since it is not a single but a family of solutions of (1.1). Concerning this latter
fact, we will obtain a single function that connects the external steady states 1 and 0 in the
discontinuous reaction framework which provides the global picture of solution dynamics.

Next, we assume that f has the regularity of

f ∈ C1(R \ {θ2i | 0 ≤ i ≤ I}) ∩ Lip (R \ {θ2i | 0 ≤ i ≤ I}). (1.3)

Notice that, unlike in the aforementioned works, we do not assume any regularity at the
stable steady states. In fact, we assume f has jumping discontinuities at the stable steady
states such as

lim
u→θ−2i

f(u) > 0 > lim
u→θ+2i

f(u), i = 0, · · · , I. (1.4)
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As a matter of fact, it is such discontinuities that allow a “terrace solution” of (1.1) when f
satisfies (1.2)–(1.4).

We made some of the above assumptions to simplify the presentation. For example, in-
stead of (1.3), we can allow f to have a finite number of discontinuities away from steady
states without any incidence on the results. However, if f is discontinuous at an unstable
steady state θ2i−1, the solution of (1.1) is not unique and one would face well-posedness issues.
Moreover, in (1.4), we assume that the left and the right side limits of f at the stable steady
states θ2i are both nonzero. This is the key assumption of this paper, though one might
actually extend our arguments to reaction functions which are only Hölder continuous at
stable steady states but not Lipschitz continuous. If a Lipschitz continuous reaction function
is given, one might consider the discontinuous nonlinearity in this paper as an approximation
(see Figure 1); yet as we mentioned above, a discontinuous reaction function exhibits more
realistic phenomena in some aspects such as finite time extinction in population dynamics.

Figure 1: (a) An example of a non-Lipschitz multistable reaction function. It is the case of
I = 2. (b) Any Lipschitz continuous reaction function can be approximated by discontinuous
reaction functions.

Under the three assumptions (1.2)–(1.4), we will prove the existence and uniqueness (up
to some shifts) of a terrace solution. Roughly speaking, a terrace solution is a special solution
in which the whole profile is separated by plateaus into several sub-profiles and each sub-
profile moves at its own speed; see Definitions 2.4 and 2.5. By analogy with the case of a
smooth reaction [3, 5], we also expect that these terrace solutions appear in the long-time
asymptotics of solutions of the Cauchy problem; this will be the subject of a future work.

2 Definitions and main results

In this section, we introduce key definitions, basic properties together, and our main results.
In particular, we define some special solutions, namely traveling waves and terraces.

Definition 2.1. A C1 function φ : R → R is called a traveling wave solution of (1.1) if
there exists c ∈ R such that

φ′′ + cφ′ + f(φ) = 0 (2.1)

in the classical sense in the domain {z ∈ R : φ(z) 6= θ2i, 0 ≤ i ≤ I}. We call the constant c a
traveling wave speed. Furthermore, we say that a traveling wave solution φ monotonically
connects two steady states θi and θj with integers 0 ≤ i < j ≤ 2I if it is a decreasing function
such that

lim
z→−∞

φ(z) = θi, lim
z→∞

φ(z) = θj .

One may check that, if φ is a traveling wave solution, then u(t, x) = φ(x − ct) is a weak
solution of (1.1); see [2] for details for the solution notion with the discontinuous reaction of
the paper. We also use the following definition for the solution of (1.1):

Definition 2.2. A function u(t, x) is called a solution of (1.1) if it is C0 with respect to t,
C1 with respect to x, and satisfies (1.1) in the classical sense in the domain

{(t, x) ∈ R+ × R : u(t, x) 6= θ2i, 0 ≤ i ≤ I.}.

3



We call both φ(z) and u(t, x) = φ(x− ct) traveling wave solutions.

Definition 2.3. The support of a function ψ : R→ R is the set of points where ψ is nonzero,
that is

spt (ψ) = {z ∈ R | ψ(z) 6= 0}. (2.2)

(Note that we do not use closed support.) A traveling wave solution φ is called: (i) connected
if the support of φ′ is connected; (ii) compact if the closure of the support of φ′ is compact.

If f satisfies (1.2) and (1.3) only and is Lipschitz continuous, then every monotone and
nontrivial traveling wave solution φ is connected and spt(φ′) = R. Hence, Definition 2.3 is
mostly meant for the case with the discontinuity hypothesis (1.4). In the bistable case I = 1,
the existence and uniqueness of a traveling wave solution that monotonically connects 1 and
0 has been addressed by one of the authors in [8].

Lemma 2.1 (Kim and Pan [8]). Suppose that f satisfies (1.2)–(1.4) with I = 1. Then, a
traveling wave solution of (1.1) that monotonically connects 1 and 0 exists and is unique up
to a translation. Furthermore, this traveling wave solution is connected and compact.

On the other hand, if there are other stable steady states, such a traveling wave connecting
directly 1 and 0 may or may not exist. The notion of a propagating terrace is considered
specifically to handle such a situation.

Definition 2.4. A collection of connected traveling wave solutions {φj : j = 1, · · · , J} is
called a propagating terrace connecting 1 and 0 if each φj monotonically connects two
steady states θij−1 and θij , and these limits and the wave speeds cj corresponding to φj satisfy

1 = θi0 > θi1 > θi2 > · · · > θiJ = 0 and c1 ≤ · · · ≤ cJ .

The steady states θij ’s are called the platforms of the terrace.

Note that if two traveling waves of the terrace are compact and have the same speed,
that is ci = ci+1 for some i, one may take the two traveling fronts φi and φi+1 as a single
traveling front and the propagating terrace would not be unique. However, we have imposed
that the traveling waves in a terrace are connected with the support defined by (2.2). This
implies that we consider all traveling fronts with a same speed as separated traveling fronts
in Definition 2.4.

As we will prove below, the left and right limits of all traveling waves constituting a propa-
gating terrace connecting 1 and 0 must be stable steady states, and due to the discontinuities
of f it will follow that these traveling waves are compact in the sense of Definition 2.3. In
particular, these can be “glued” into a single special solution of (1.1), which leads to the next
definition.

Definition 2.5. Let f satisfy (1.2)–(1.4), {φj : j = 1, · · · , J} be a propagating terrace, and
cj’s be the corresponding wave speeds. For given translation variables ξ ∈ RJ , the summation,

Φ(t, x; ξ) :=
∑

1≤j≤J
(φj(x− ξj − cjt)− θij ),

is called a terrace function. If moreover Φ(·, ·; ξ) solves (1.1) (possibly only for t > T with
T > 0), then we call it a terrace solution.
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If (1.4) fails and f is Lipschitz-continuous, and if J ≥ 2, then the terrace function is not a
solution for any T > 0 and ξ ∈ RJ . On the other hand, if all φj ’s in the terrace are compact,
then one can always find shifts ξ ∈ RJ such that the terrace function is a solution. Hence, the
existence of the terrace solution is the unique property obtained by breaking the Lipschitz
continuity.

Let us now turn to the statement of the main results of the paper. The main theorem
concerns the existence and uniqueness of the propagating terrace.

Theorem 2.1 (Existence and uniqueness of a terrace). Let f satisfy (1.2)–(1.4). There exists
a propagating terrace connecting 1 and 0. It is unique in the sense that the set of platforms
{θij} is unique, and for each j the traveling wave solution φj is unique up to translation.

Furthermore, the propagating terrace satisfies the following properties:

(i) the θij ’s are stable steady states, i.e. ij’s are even integers, for all j = 0, · · · , J ;

(ii) the traveling waves φj are monotone, connected, and compact for j = 1, · · · , J in the
sense of Definition 2.3.

In particular, in the bistable case when I = 1, the propagating terrace consists of a single
traveling wave connecting 1 and 0.

It follows from Theorem 2.1, in particular the property (ii), that there exist terrace solu-
tions of (1.1) in the sense of Definition 2.5. We conjecture that the solution of the Cauchy
problem converges, for a large class of initial data, to such a terrace solution. This would be
consistent with the case of a smooth reaction function [3, 5, 6], where some piecewise (or local)
convergence of the solution toward each of the traveling waves of the propagating terrace was
shown. However, the novelty of our approach using a non-Lipschitz reaction function is that
the global dynamics of a solution is dictated by a single terrace solution, which is a special
solution of (1.1).

Plan of the paper: In Section 3, we prove the existence part of Theorem 2.1 using a phase
plane analysis, which has to be done with extra caution to handle the discontinuities of the
reaction function. Moreover, we will use an iterative method to construct all the traveling
waves of the propagating terrace, starting from the uppermost one. Then, Section 4 is devoted
to the uniqueness of the terrace (up to some shifts) and completes the proof of Theorem 2.1.

3 Existence of terrace

In this section we address the existence of terrace in the multistable case under assumptions
(1.2)–(1.4). In the usual Lipschitz continuous case, there are several proofs for the existence
of traveling waves, drawing on either phase plane analysis [1, 5], dynamical systems [4, 7, 11],
or intersection number arguments [3, 9]. Due to the spatial homogeneity of (1.1) and in spite
of the discontinuities in the reaction function, we adopt the former approach of phase plane
analysis.

A traveling wave solution with speed c satisfies

p′′ + cp′ + f(p) = 0 (3.1)
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together with some appropriate asymptotics as x → ±∞, where c is also an unknown. It is
convenient to rewrite the second order equation as a first-order ODE system:

p′ = q, (3.2)

q′ = −cq − f(p). (3.3)

This system immediately shows that the discontinuity in f does not break the well-posedness
of the problem (3.1) as long as q 6= 0 when p = θ2i, the discontinuity point of f (the solution
can easily be extended by C1-regularity). Yet, as a consequence, solutions of the ODE system
(3.2)–(3.3) are continuous and piecewise C1.

Beforehand, we introduce
M := ‖f‖∞ <∞.

Let pu be a positive stable steady state, i.e.

pu ∈ {θ2i : i ∈ {1, · · · , I}}.

If the reaction function is Lipschitz continuous, you can connect two steady states only asymp-
totically, but you cannot take a steady state as an initial value. Hence, it is impossible to
connect more than two steady states even asymptotically. One of the advantages of taking a
non-Lipschitz reaction function is that you can take a steady state as an initial value and use
the phase plane analysis technique explicitly as you can see in the followings.

For any c ∈ R, there is a solution of (3.1) which is identical to pu on the left half line
and smaller than pu on an interval in the right half line. It is simply obtained by solving the
problem

p̃′′ + cp̃′ + f̃(p̃) = 0, p̃(0) = pu, p̃′(0) = 0, (3.4)

where

f̃(p) =

{
f(p), p < pu,

lims→p−u f(s), p ≥ pu.

Notice that f̃ is Lipschitz continuous in a neighborhood of pu, p̃′′(0) < 0, and hence p̃′(ε) < 0
for small ε > 0. The positive solution of (3.4) may exist as long as p̃′ < 0 and p > 0. Then,
the maximal point of the solution domain is given by

Xc = sup {x > 0 | p̃′(x) < 0 and p̃(x) > 0} ∈ (0,∞].

Since f(p) = f̃(p) for all p < pu and the solution satisfies p(x) < pu for all x ∈ (0, Xc), it is a
positive decreasing solution of (3.1), or equivalently of (3.2)–(3.3), on the interval (−∞, Xc).

Moreover, since the solution p(x) decreases strictly on (0, Xc), we may consider q as a
function of p ∈ (pl, pu) with pl := limx→Xc p(x) and q < 0 on (pl, pu). Then, we have

dq

dp
= −c− f(p)

q
on (pl, pu),

together with q(pu) = 0, and either pl = 0 or q(pl) = 0. As explained above, the solution
is understood as continuous and piecewise C1 function due to the discontinuities of f at the
stable steady states.

We sum up the above in the following definition and proposition:
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Definition 3.1. Let f satisfy (1.2)–(1.4). We say that q = q(p) solves

dq

dp
= −c− f(p)

q
, (3.5)

on an open interval (a, b) if it is negative on (a, b), continuous on the closed interval [a, b],
and satisfies (3.5) in the classical sense except at the discontinuity points of f .

Proposition 3.1. Let f satisfy (1.2)–(1.4) and pu ∈ {θ2i}i=1,··· ,I . For any c ∈ R, there exists
a unique pl ∈ [0, pu) and a unique function q ∈ C0([pl, pu]) that solves (3.5), q(pu) = 0,

q(p) < 0 for all p ∈ (pl, pu), (3.6)

q(pl) = 0 if pl > 0, and q(pl) ≤ 0 if pl = 0.

The proposition implies that the solution trajectory of q = q(p) in the phase plane starts
from p = pu ∈ {θ2i}i=1,··· ,I , stays in the fourth quadrant with p > 0 and q < 0, and is
terminated when it touches one of the two axes p = 0 or q = 0 (see Figure ...). The existence
part of Proposition 3.1 was addressed in the above discussion. As a matter of fact, unique-
ness follows from the same argument, by applying the classical Cauchy-Lipschitz theorem (as
many times as the solution crosses a discontinuity point of the reaction function) to the ODE
p̃′′ + cp̃′ + f̃(p) = 0.

Going back to the original problem, the function q in Proposition 3.1 gives a traveling wave;
conversely, any (connected) traveling wave corresponds to a solution of (3.5). Moreover, if pl
is also a steady state of (1.1) and q(pl) = 0, then this traveling wave monotonically connects
pu and pl with speed c (recall Definition 2.1). We will first consider pu = 1 in order to
construct the uppermost traveling wave of the propagating terrace. Then, at a later stage,
we will make an iterative argument by setting pu as the lower bound of the previous traveling
wave to build up the whole propagating terrace.

The next step is to see the dependency of the solution q in Proposition 3.1 on the wave
speed c.

Theorem 3.2 (Monotonicity with respect to c). Let f satisfy (1.2)–(1.4) and pu ∈ {θ2i}i=1,··· ,I .

(i) Let q1 and q2 be two solutions of (3.5) on an interval (a, b) in the sense of Definition 3.1,
with c replaced by respectively c1 and c2. If c2 < c1 and q2(b) ≤ q1(b) < 0, then
q2(p) < q1(p) for a < p < b.

(ii) Let q1 and q2 be the solutions of (3.5) given in Proposition 3.1, with c replaced by
respectively c1 and c2, and let p1l , p

2
l be the lower bounds of their respective intervals

of definition. If c2 < c1, then p2l ≤ p1l (i.e., pl is an increasing function of c) and
q2(p) < q1(p) for p1l < p < 1.

Proof. We only deal with statement (ii) since the proof of statement (i) is almost identical.
We introduce w := q1 − q2 which is well-defined on the interval (pmaxl , pu), where pmaxl =
max{p2l , p1l }. From equation (3.5), we have on (pmaxl , pu) that

dw

dp
= −(c1 − c2) +

f(p)

q1q2
w.
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Now we define

γ(p) := exp
(
−
∫ p

p0

f(s)

q1(s)q2(s)
ds
)
,

where p0 ∈ (pmaxl , pu). First we check that γ(p) is well-defined for p ∈ [p0, pu]. Let δ > 0 be
such that f(p) > 0 in [pu− δ, pu). Since q1 and q2 are continuous and negative on [p0, pu− δ],
we get that max{q1, q2} < −Cδ for a positive constant Cδ > 0. Thus, recalling the upper
bound |f | ≤ M , we find that γ(p) ≤ exp(M

C2
δ
) for all p ∈ [p0, pu − δ]. On the other hand,

f(p) > 0 and hence γ′(p) ≤ 0 on [pu−δ, pu). Since γ(p) is positive, it admits a limit as p→ pu
and we can extend it by continuity at p = pu. The resulting function γ(p) is well-defined and
bounded on [p0, pu].

Now, we multiply the above equation on w by γ, and find that

d(γw)

dp
= −(c1 − c2)γ.

Taking p ∈ [p0, pu] and integrating from p to pu, we obtain

γ(p)w(p) = γ(pu)w(pu) + (c1 − c2)
∫ pu

p
γ(s)ds.

Since γ(pu)w(pu) ≥ 0, c1 − c2 > 0, and γ(p) > 0 for p0 ≤ p < pu, we infer that w(p) > 0 for
p0 ≤ p < pu. Since we can choose p0 arbitrary close to pmaxl , this implies that q2(p) < q1(p)
for p ∈ (pmaxl , pu). By continuity, we also have q2(p

max
l ) ≤ q1(pmaxl ).

Now assume by contradiction that p2l > p1l . Then pmaxl = p2l > p1l ≥ 0. In particular, from
the definition of p2l , we have q2(p

2
l ) = 0. From the above, q1(p

2
l ) ≥ q2(p2l ) = 0, thus q1(p

2
l ) = 0

which in turn implies that p1l ≥ p2l , a contradiction. This completes the proof.

Theorem 3.3 (Continuity with respect to c). Let f satisfy (1.2)–(1.4) and pu ∈ {θ2i}i=1,··· ,I .
Consider a sequence (cn)n∈N that converges to c ∈ R as n → ∞. We define pl, q from
Proposition 3.1, as well as pl,n, qn from the same proposition with cn instead of c.

(i) If the sequence (cn)n∈N increases, then (pl,n, pu) ⊂ (pl, pu), qn → q locally uniformly on
the interval (pl, pu), and limn→∞ qn(pl,n) = q(pl).

(ii) If the sequence (cn)n∈N decreases, then limn→∞ pl,n = pl, qn → q locally uniformly on
the interval (pl, pu), and limn→∞ qn(pl,n) = q(pl).

Proof. (i) We first consider the case of a increasing sequence. From Theorem 3.2, we have
pl,n ≤ pl for all n ∈ N. Thus, qn and q are well-defined on [pl, pu]. Let us then introduce
wn := q − qn which satisfies

dwn
dp

= −(c− cn) +
f(p)

qqn
w.

As in the proof of Theorem 3.2, we fix p0 ∈ (pl, pu) and define

γn(p) := exp
(
−
∫ p

p0

f(s)

q(s)qn(s)
ds
)
,

which can be extended by continuity to the closed interval [p0, pu]. In particular, the func-
tion γn is bounded on the interval [p0, pu]. Let us now check that it is also uniformly bounded
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with respect to n ∈ N. First, thanks to Theorem 3.2, we have that qn ≤ q < 0 in [p0, pu),
thus

0 ≤ γn(p) ≤ exp
(∫ p

p0

M

|q||qn|
ds
)
≤ exp

(∫ p

p0

M

q2
ds
)
, (3.7)

for some M > 0. Now let δ > 0 be such that f > 0 on [pu − δ, pu). Since q is negative and
continuous in [p0, pu − δ], we get from (3.7) that γn(p) is uniformly bounded with respect to
p ∈ [p0, pu− δ] and n ∈ N. On the other hand, we have that γn(p) is decreasing in [pu− δ, pu].
It easily follows that there exists Mγ > 0 such that

0 ≤ γn(p) ≤Mγ ,

for all p ∈ [p0, pu] and n ∈ N. Next, we multiply the above equation on wn by γn, and find
that

d(γnwn)

dp
= −(c− cn)γn.

Integrating from p0 to pu, we obtain

γn(p0)wn(p0) = γn(pu)wn(pu) + (c− cn)

∫ pu

p0

γn(s)ds.

From its definition, γn(p0) = 1. Since γn(p) ≤Mγ , and wn(pu) = 0, we get

|wn(p0)| ≤ |c− cn|
∫ pu

p0

|γn(s)|ds ≤Mγ |c− cn|

Thus, qn(p0) → q(p0) as n → ∞. Since we chose p0 arbitrarily in (pl, pu), we have proved
pointwise convergence in (pl, pu) (and even in (pl, pu] since qn(pu) = q(pu) = 0 for all n).
Applying Dini’s theorem, the convergence is also locally uniform in the same interval.

Now, we will show that limn→∞ qn(pl) = q(pl). Since the functions q and qn are non-
positive, it is enough to show that limn→∞ q

2
n(pl) = q2(pl). Let us consider the equation

satisfied by q2n, which is obtained by multiplying (3.5) satisfied by qn by qn itself. Define
c = maxn∈N {|c|, |cn|} and notice that, by Theorem 3.2, we have qn(p) > −B for all n and
p ∈ (pl,n, pu) where −B is a lower bound of q0. Recalling also that M is an upper bound for
|f |, we get that ∣∣∣∣dq2ndp

∣∣∣∣ = |−2cnqn − 2f(p)| < 2cB + 2M for p ∈ (pl, pu).

It follows that the functions {q2} ∪ {q2n |n ∈ N} are uniformly Lipschitz continuous on the
interval [pl, pu]. By Arzela-Ascoli’s theorem and the uniqueness of the limit, we get as wanted
that limn→∞ q

2
n(pl) = q2(pl).

(ii) Let us now consider a decreasing sequence (cn)n∈N such that cn → c as n→∞. From
Theorem 3.2, we know that pl,n is a decreasing sequence which is bounded from below by
pl ≥ 0. Thus we can define

p∞ = lim
n→∞

pl,n ∈ [pl, pu).

In particular, for any p ∈ (p∞, pu), we can find N large enough such that p ∈ (pl,N , pu). Then,
for any n2 ≥ n1 > N , qn1(p) and qn2(p) are well defined and

0 > qn1(p) ≥ qn2(p) ≥ q(p).
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Arguing as in the proof of statement (i), we can find that qn → q ≤ 0 locally uniformly in
(p∞, pu].

It remains to show that p∞ = pl and limn→∞ qn(pl,n) = q(pl). We first consider the case
when pl,n = 0 for some n. Then, by Theorem 3.2, we have pl = 0 and pl,n = 0 for any large
n, so that limn→∞ pl,n = pl is satisfied. Moreover, as in the proof of statement (i), we have
that ∣∣∣∣dq2ndp

∣∣∣∣ = |−2cnqn − 2f(p)| < 2cB + 2M for p ∈ (0, pu),

for any n large enough, where c = maxn∈N{|c|, |cn|} and B (resp. M) is an upper bound for |q|
(resp. |f |). Thus the sequence {q2n} is uniformly Lipschitz continuous, hence equicontinuous.
From Arzela-Ascoli’s theorem and uniqueness of the limit, we have that q2n converges to q2

uniformly in [0, pu], and in particular limn→∞ qn(pl,n) = limn→∞ qn(0) = q(0).
Now consider the case when pl,n > 0 for all n. Then, qn(pl,n) = 0 for all n and

limn→∞ qn(pl,n) = 0. It is enough to prove that q(p∞) = 0, so that in particular pl = p∞. To
do this, we again use the fact that∣∣∣∣dq2ndp

∣∣∣∣ = | − 2cnqn − 2f(p)| < 2cB + 2M for p ∈ (pl,n, pu).

Integrating from pl,n to any p ∈ (pl,n, pu) and recalling that qn(pl, n) = 0, we get that

|q2n(p)| = |q2n(p)− q2n(pl,n)| ≤ (2cB + 2M)|p− pl,n|.

Passing to the limit as n→∞, it follows that

|q2(p)| ≤ (2cB + 2M)|p− p∞|,

for all p ∈ (p∞, pu), hence q2(p∞) = 0 by continuity.

We will use a continuity argument to find a c such that the solution in Proposition 3.1
provides a traveling wave solution connecting two stable steady states. To do so, we first
consider the cases when |c| is too large, which is the purpose of the next two results.

Lemma 3.1 (Lower bound of traveling wave speeds). Let f satisfy (1.2)–(1.4) and pu ∈
{θ2i}i=1,··· ,I . There exists C1 ∈ R such that the solution trajectory touches the vertical q-axis
before touching the horizontal p-axis for all c ≤ C1. In other words, pl = 0 and q(0) < 0.

Proof. Assume that pl > 0, so that q(pl) = 0. Multiply (3.5) by q and integrate it from pl
to pu. Then we obtain

q(pu)2 − q(pl)2

2
= −c

∫ pu

pl

qdp−
∫ pu

pl

f(p)dp = 0,

since q(pl) = q(pu) = 0. On the other hand, we have that
∫ pu
pl
qdp < 0, and by Theorem 3.2

this is also an increasing function of the parameter c. In particular,

−c
∫ pu

pl

qdp→ −∞,

as c→ −∞. Thus, the above equality clearly leads to a contradiction if c is small enough.
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Lemma 3.2 (Minimum monostable traveling wave speed). Let f satisfy (1.2)–(1.4) and
pu = θ2i0 for some i0 ∈ {1, · · · , I}. Then, there exists C2 > 0 such that c ≥ C2 if and only if
the solution of (3.5) satisfies that pl = θ2i0−1 > 0, and hence q(pl) = 0.

Proof. Since f(pu) = 0 and f is C1 on [θ2i0−1, pu), we can choose K > 0 large enough so that

f(p) := K(p− θ2i0−1) ≥ f(p),

for all p ∈ [θ2i0−1, pu]. Now we take c = 2
√
K and consider the ODE system

p′ = q,

q′ = −cq − f(p).

Then the trajectory (p, q) starting from (pu,−
√
K(pu − θ2i0−1)) of this ODE system is a

straight line which converges to (θ2i0−1, 0). As before, we can rewrite it as a function q of
p ∈ [θ2i0−1, pu], which satisfies

1

2

dq2

dp
= −cq − f(p), (3.8)

on (θ2i0−1, pu). Now we claim that

∀p ∈ (θ2i0−1, pu], q(p) > q(p). (3.9)

First, we point out that q is indeed well-defined on [θ2i0−1, pu], i.e. pl ≤ θ2i0−1, due to the
fact that f is positive between θ2i0−1 and pu and thus the trajectory of q cannot touch the
horizontal axis in the open interval.

Then, by construction, we have that q(pu) < 0 = q(pu). Let us proceed by contradiction
and assume that there is some p0 > θ2i0−1 such that q(p) < q(p) for all p ∈ (p0, pu] but
q(p0) = q(p0). Multiplying (3.5) by q and substracting it from (3.8), we get the following
equation:

1

2

d(q2 − q2)
dp

= −c(q − q)− (f(p)− f(p)).

Integrating from p0 to pu and recalling that c = 2
√
K, we get

0 <
q2(pu)− q2(pu)

2
= −c

∫ pu

p0

(q − q)dp−
∫ pu

p0

(f(p)− f(p))dp < 0.

This is a contradiction and the claim (3.9) is proved. Finally, since q(θ2i0−1) = 0 and q cannot
take the value 0 in the interval (θ2i0−1, pu), we conclude that pl = θ2i0−1 and q(θ2i0−1) = 0
when c = 2

√
K. Furthermore, we point out that K can be increased without loss of generality

so that the same conclusion holds for all c large enough. Therefore, there exists C > 0 such
that pl = θ2i0−1 for all c > C. By the monotonicity with respect to c, Theorem 3.2, we may
take the smallest such C denoted by C2.

Now we are ready to prove the existence of a traveling wave connecting 1 (or any positive
stable steady state) and some intermediate stable steady state θ2i (i ∈ 0, · · · I−1). The terrace
will be obtained by iterating this argument, which is why we state the following theorem with
any stable steady state pu instead of 1.
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Theorem 3.4 (Minimum bistable traveling wave speed). Let f satisfy (1.2)–(1.4) and pu ∈
{θ2i}i=1,··· ,I . For any c ∈ R, denote by q(p; c) the solution of (3.5), and by pl(c) the lower
bound of the solution domain given by Proposition 3.1. Denote by c∗ the maximal wave speed
with which the solution does not touch the p-axis, i.e.

c∗ := sup {c | pl(c) = 0 and q(pl(c); c) < 0} .

Then, the function q(·; c∗) is a connected traveling wave, which monotonically connects pu
and another stable steady state p∗ with p∗ < pu.

Proof. Notice that c∗ is a well-defined real number thanks to Lemmas 3.1 and 3.2. Let us
now prove the theorem. For simplicity, we denote p∗ = pl(c

∗) in this proof.
Let us first show that p∗ is a steady state, i.e.

either p∗ ∈ {θ2i : i ∈ {0, · · · I}} or f(p∗) = 0. (3.10)

We recall here that, due to the discontinuities of the reaction f at the stable steady states, it
is not necessary to assume that f(θ2i) = 0 for i = 0, · · · , I.

If (3.10) does not hold, then p∗ > 0 and also f(p∗) < 0. Indeed, it is clear from (3.5) that
q(·; c∗) cannot touch the horizontal axis at a point where f is positive. Thus, the function f is
Lipschitz-continuous on a neighborhood of p∗ and we can go back to and understand the ODE
system (3.2)–(3.3) with c = c∗ in the classical sense on some neighborhood of X = (p∗, 0).
In particular, the trajectory corresponding to q(·; c∗) enters the upper half plane {q > 0} by
passing through the point X. By continuity in the standard ODE theory, one can find δ > 0
and ε > 0 small enough such that any trajectory of (3.2)–(3.3), with c = c∗−δ and originating
from (p, q) ∈ Bε(X) the ball of radius ε centered at X, also crosses the horizontal axis. In
terms of (3.5), this provides a solution q̃ of (3.5) with c < c∗ on some interval (p̃, p∗ + ε1)
with ε1 ∈ (0, ε) such that q̃(p̃) = 0 and q̃(p∗ + ε1) < q(p∗ + ε1; c

∗).
Now take an increasing sequence (cn)n∈N such that cn → c∗ as n → ∞. From state-

ment (ii) of Theorem 3.2 and by our choice of c∗, we have that pl(cn) = 0 and q(pl(cn); cn) < 0
for all n ∈ N. By Theorem 3.3, we also have that q(p∗ + ε1; cn) converges to q(p∗ + ε1; c

∗) as
n→∞. Then, applying statement (i) of Theorem 3.2 to q(·; cn) and q̃, we get for any n large
enough that q(·; cn) ≥ q̃ and thus touches the horizontal axis. We have reached a contradiction
and proved (3.10).

The next step is to show that
q(p∗; c∗) = 0. (3.11)

We take a decreasing sequence (cn)n∈N such that cn → c∗ as n → ∞, and by our choice
of c∗, the function q(·; cn) touches the horizontal axis at pl(cn) ≥ 0 for any n. However, from
Theorem 3.3, we get as wanted that

lim
n→∞

q(pl(cn); cn) = q(p∗; c∗) = 0.

From (3.10) and (3.11), we now know that p∗ is a steady state and that q(·; c∗) defines a
traveling wave with speed c∗ monotonically connecting pu and p∗. By construction q(·; c∗) is
negative on the open interval (p∗, pu), thus this traveling wave is also connected in the sense
of Definition 2.3. It only remains to check that p∗ is a stable steady state.
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We proceed again by contradiction, and assume that p∗ is one of the unstable steady states
θ2i+1 with i ∈ {0, · · · , I − 1}. Let us first check that c∗ > 0. Multiplying (3.5) by q(·; c∗) and
integrating from p ∈ [p∗, pu) to pu, one obtains that

c∗
∫ pu

p
q(s, c∗)ds =

q(p, c∗)2

2
−
∫ pu

p
f(s)ds.

Since p∗ is an unstable steady state, it must be positive and thus q(p∗, c∗) = 0; moroever,
by (1.2) the function f is positive in an interval (p∗, p∗ + δ) with δ > 0. It follows that the
right hand term of the above equality is increasing on the same interval (p∗, p∗ + δ). Due to
the negativity of the function q in (pl, pu), there must hold that c∗ > 0.

The argument is now the same as in the first step above. Due to (1.3), the function f is
Lipschitz-continuous on a neighbordhood of p∗. Going back to the original ODE system, the
function (p, q(·; c∗)) defines a solution of (3.2)-(3.3) with c = c∗ which converges to X = (p∗, 0)
at ∞. Since c∗ > 0, the equilibrium point X is also a stable (either node or spiral) point for
any c close enough to c∗. It follows from the standard ODE theory that there exist δ > 0
and ε > 0 small enough so that the solution of (3.2)–(3.3) with c = c∗ − δ, starting from any
(p, q) ∈ Bε(X), also converges to the equilibrium point X while remaining in Bε(X). This
provides ε1 ∈ (0, ε) and a solution q̃ of (3.5) with some c < c∗, on an interval (p̃, p∗+ ε1) with
p̃ > 0, and such that q̃(p̃) = 0 and q̃(p∗ + ε1) < q(p∗ + ε1; c

∗). Notice that p̃ may or may not
be equal to p∗, depending on whether we are in the spiral or node case.

Regardless, we consider an increasing sequence (cn)n∈N such that cn → c∗ as n → ∞, as
well as pl(cn) = 0 and q(pl(cn); cn) < 0 for all n ∈ N. By Theorem 3.3 and statement (i)
of Theorem 3.2, we find that q(·; cn) ≥ q̃ and thus it touches the horizontal axis for n large
enough, a contradiction.

We are almost ready to prove the existence of a propagating terrace. First, we choose
pu = 1 and obtain a traveling wave connecting 1 to another stable steady state p∗ < 1 by
Theorem 3.4. If p∗ = 0, then we have already found a propagating terrace connecting 1 and
0 which consists of a single front. When p∗ > 0, one may apply Theorem 3.4 again with
pu = p∗ to find a second traveling wave, and repeat the process until one reaches the lowest
stable steady state 0. This obviously happens in a finite number of steps since there are finite
number of stable steady states between 1 and 0. However, a key step is missing because the
wave speeds of the obtained traveling waves can be ordered incorrectly. Hence, this sequence
is not a terrace yet. In order to fill this gap, we should clarify the cases with two or more
traveling waves of the same speed c ∈ R. The pl in Proposition 3.1 is the first contact point
pl. If the strict inequality in (3.6) is replaced with non-strict one, other contact points can
be included. Note that, in Theorem 3.3, pl,n converges to pl only when cn decreases to c ∈ R
as n → ∞. If cn increases as n → ∞, the convergence fails in general. In other words, if we
consider pl as a function of wave speed c, it is right continuous, not left continuous. The final
step to obtain the existence of a terrace is to understand the situation that limn→∞ pl,n 6= pl
when cn increases to c as n→∞.

Theorem 3.5 (Continuity beyond pl). Let f satisfy (1.2)–(1.4) and pu ∈ {θ2i}i=1,··· ,I . Let
(cn)n∈N be an increasing sequence such that cn → c ∈ R as n → ∞. Let (pl, q) and (pl,n, qn)
be the ones in Proposition 3.1 when wave speeds are c and cn, respectively. Suppose that
limn→∞ pl,n 6= pl. Then,
(i) This is possible only when pl ∈ {θ2i}i=1,··· ,I−1, i.e., a positive stable steady state.
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(ii) Let The sequence qn converges to a continuous function q∞ which solves (3.5) on some
nontrivial intervals (p̂j+1, p̂j), with p̂M = limn→∞ pl,n and p̂0 = pl for some M ∈ N∗. More-
over, the p̂j ∈ {θ2i}i=0,··· ,I−1 are stable steady states and q∞(p̂j) = 0 for any j = 0, · · · ,M−1.
In particular, the restriction of q∞ to [p̂j+1, p̂j ] is the solution given by Proposition 3.1 with
pu = p̂j.

Proof. First, we already know from Theorem 3.3 that qn converges locally uniformly to q
on the interval (pl, pu). Since pl > limn→∞ pl,n ≥ 0, one can proceed as in the proof of
Theorem 3.4 to find that pl must be a stable steady state; we omit the details. In particular,
one can apply Proposition 3.1 with pu replaced by pl to find a solution q̂0 solving (3.5) with
speed c on some interval (p̂1, pl), together with q̂(pl) = 0 and either q̂(p̂1) = 0 or p̂1 = 0.

Next, it follows from Theorem 3.2 that limn→∞ pl,n ≤ p̂1 and qn ≤ q̂1 on [p̂1, pl]. Indeed,
we have that qn(pl) < 0 = q̂1(pl) for any n ∈ N. Thus, for any n and any δ > 0 small
enough (possibly depending on n), we have qn(pl − δ) < q̂1(pl − δ) < 0. Then statement (i)
of Theorem 3.2 applies and one finds that qn(p) < q̂1(p) for any p ∈ (p̂1, pl − δ), so that in
particular p̂1 ≥ limn→∞ pl,n. Since δ is arbitrarily small, we also infer that qn(p) < q̂1(p) for
any n ∈ N and p ∈ (p̂1, pl), hence qn(p) ≤ q̂1(p) in the closed interval by continuity.

We now know that
q0 ≤ qn ≤ q̂1 < 0 for p ∈ (p̂1, pl),

and also, from Theorem 3.3 and the fact that pl > 0, that limn→∞ qn(pl) = 0. Then,
proceeding again as in the proof of Theorem 3.3, one can check that qn converges to q̂1 locally
uniformly in (p̂l, pl] and that limn→∞ qn(p̂1) = q̂1(p̂1).

If p̂1 = limn→∞ pl,n, then M = 1 and Theorem 3.5 is already proved. In the other case
when p̂1 > limn→∞ pl,n ≥ 0, then one may check that p̂1 is a stable steady state. We again
omit the details since the argument is the same as in the proof of Theorem 3.4. One can
then reiterate the above argument and find that qn converges to the solution provided by
Proposition 3.1 with pu replaced by p̂1, on the interval (p̂2, p̂1) where p̂2 is the lower bound
of the interval of definition of this solution. Again, p̂2 is either equal to limn→∞ pl,n or it
is a stable steady state. We reiterate until we reach p̂M = limn→∞ pl,n for some integer M ,
which happens in a finite number of steps because there are finitely many stable steady states.
Theorem 3.5 is proved.

We are ready to prove the existence part of Theorem 2.1.

Theorem 3.6. There exists at least one propagating terrace for (1.1) connecting 1 and 0, in
the sense of Definition 2.4. Moreover, the terrace satisfies Theorem 2.1 (i) and (ii).

Proof. We first construct the terrace by iteration. We denote, for any c ∈ R, by q(·; c) the
solution from Proposition 3.1 with pu = 1, and by pl(c) the lower bound of its interval of
definition. According to Theorem 3.4, we have that q(·; c∗1) defines a connected traveling wave,
monotonically connecting 1 and some stable steady state pl(c

∗
1) with speed

c∗1 = sup {c | pl(c) = 0} .

If pl(c
∗
1) = 0 then this is also a propagating terrace consisting of only one traveling wave. Now

consider the case when pl(c
∗
1) > 0.

We take an increasing sequence (cn)n∈N such that cn → c∗1 as n→∞. From the definition
of c∗1 we have that limn→∞ pl(cn) = 0 < pl(c

∗
1). Therefore we can apply Theorem 3.5 and we
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get that q(·; cn) converges to a function q∞ which solves (3.5) with speed c = c∗1 on every
subintervals (p̂j+1, p̂j), with 0 = p̂M < · · · < p̂0 = pl(c

∗
1) for some M ∈ N∗. Moreover,

the p̂j ∈ {θ2i}i=0,··· ,I−1 are stable steady states and q∞(p̂j) = 0 for any j = 0, · · · ,M − 1.
If q∞(0) is also equal to 0, then this defines a finite sequence of connected traveling fronts,
monotonically connecting p̂j and p̂j+1, with same speed c∗1. In such a case, we have also found
a propagating terrace connecting 1 and 0.

If instead q∞(0) < 0, then we have obtained a propagating terrace connecting 1 and the
positive stable steady state p̂M−1, whose fronts all have the same speed c∗1. In order to find
the next traveling wave of the propagating terrace, we take pu = p̂M−1 in Theorem 3.4 and get
a traveling wave with speed c∗2 connecting p̂M−1 and some lower stable steady state pl(c

∗
2). It

is given by q̃(·; c∗2) where q̃(·; c) is the solution from Proposition 3.1 with pu = p̂M−1, defined
on an interval (p̃l(c), p̂M−1) and satisfying q̃(p̂M−1; c) = 0 together with either q̃(p̃l(c); c) = 0
or p̃l(c) = 0. Moreover,

c∗2 := sup {c | p̃l(c) = 0 and q̃(pl(c); c) < 0} .

Now recall from Theorem 3.5 that q∞(0) < 0 and that q∞ coincides with q̃(·; c∗1) on (0, p̂M−1).
Therefore

c∗2 > c∗1.

Putting the propagating terrace connecting 1 and p̂M−1 (with speed c∗1) together with the
traveling wave connecting p̂M−1 and p̃l(c

∗
2) (with speed c∗2), we obtain a propagating terrace

connecting 1 and p̃l(c
∗
2).

If again p̃l(c
∗
2) > 0, then one can reiterate the above argument until reaching 0. This

iteration ends in a finite number of steps since there is only finitely many stable steady states.
One finally obtains a propagating terrace connecting 1 and 0.

It now remains to check that this propagating terrace satisfies statements (i) and (ii) of
Theorem 2.1. By construction, the traveling waves of the propagating terrace are associated
with negative solutions of (3.5), and therefore they are decreasing and connected in the sense
of Definition 2.3. Moreover, we have already established that all the platforms are stable
steady states.

Finally, these traveling waves are compact in the sense of Definition 2.3. This follows
from the fact that the platforms are stable steady states, at which the reaction function f
is discontinuous. Indeed, consider any traveling wave φ monotonically connecting two stable
steady states θi and θj with i > j. Let us consider the right limit and prove that there must
exist Z < +∞ such that φ(Z) = θj (the left side can be handled by a symmetrical argument).
If there does not exist such a finite Z, then φ > θj on the whole real line, and in particular
it solves

φ′′ + cφ′ + f̃(φ) = 0,

on a right half-line, together with
lim
z→∞

φ(z) = θ,

where f̃ a C1-function which coincides with f on some interval (θj , θj + δ] with δ > 0 small.
This is impossible because θj is not a zero of f̃ and thus such a solution does not exist. This
concludes the proof of Theorem 2.1.

We briefly highlight the fact that we have constructed a propagating terrace in the sense
of Definition 2.4. As we pointed out in the introduction, the existence of a terrace solution
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in the sense of Definition 2.5 also follows thanks to the fact that this propagating terrace
consists of compact traveling waves.

4 Uniqueness of terrace

We have constructed a propagating terrace in Section 3. In this section, we show the unique-
ness of a terrace and complete the proof of Theorem 2.1. The argument relies on the properties
of solutions of (3.5). First, notice that, according to Definitions 2.1 and 2.3, if φ is a connected
traveling wave monotonically connecting two steady states b > a, then one can use the change
of variable

p = φ−1i (z)

to get a function q solving
dq

dp
= −c− f(p)

q
,

that is (3.5), in the inverval (a, b) together with

q(a) = q(b) = 0.

For convenience, we will refer to this function q as the trajectory of the traveling wave φ,
which is consistent with the fact that the curve of the function q is indeed the trajectory of
the solution φ in the phase plane of the ODE (2.1)

In particular, we may rewrite some of the results in Section 3 in terms of the traveling
waves, which is the purpose of the next two lemmas:

Lemma 4.1. Let b be a stable steady state. Let also φ1 and φ2 be two traveling waves
monotonically connecting respectively b and a1 with speed c1, b and a2 with speed c2.

(i) If c1 ≥ c2, then a1 ≥ a2.

(ii) If
c2 = c∗ = sup {c | pl(c) = 0 and q(pl(c); c) < 0} ,

then c1 ≥ c2 and a1 ≥ a2. Here q(p; c) is the solution of (3.5) from Proposition 3.1 with
pu = b, and pl(c) the lower bound of its interval of definition.

Proof. When c1 = c2, statement (i) simply follows from the uniqueness of the solution in
Proposition 3.1, which insures that φ1 and φ2 have the same trajectory q, thus they must
coincide up to a shift. When c1 > c2, then it instead follows from Proposition 3.1 and
Theorem 3.2, noticing that a1 and a2 must coincide with p1l and p2l . Statement (ii) is also
a consequence of Theorem 3.2, which insures that the solution from Proposition 3.1 always
crosses the vertical axis below the origin when c < c∗, and thus it cannot be the trajectory of
a traveling wave monotonically connecting steady states.

Lemma 4.2. Let φ1 and φ2 be two traveling waves monotonically connecting respectively b1
and a1 with speed c1, b2 and a2 with speed c2. Denote also by q1 and q2 their respective
trajectories.

If moreover c1 ≥ c2 and b1 ∈ (a2, b2), then a1 ≥ a2 and q1 > q2 in the interval (a1, b1).
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Proof. This follows from applying statement (i) of Theorem 3.2 to the trajectories q1 and
q2 on the interval (max{a1, a2}, b1 − δ) with δ > 0 arbitrarily small. Notice indeed that
q1(b1) = 0 > q2(b1) so that the hypotheses of statement (i) of Theorem 3.2 are satisfied for any
small enough δ. We get that q2 < q1 on the interval (max{a1, a2}, b1), which together with the
facts that q1 is negative on (a1, b1) and q2(a2) = 0 in turn insures that max{a1, a2} = a1.

We will also need the next lemma, which as a matter of fact is a byproduct of the proof
of Theorem 3.2.

Lemma 4.3. Let φ1 and φ2 be two connected traveling waves monotonically connecting two
stable steady states b > a, respectively with speeds c1 and c2.

Then c1 = c2 and φ1 ≡ φ2(·+ Z) for some shift Z ∈ R.

Proof. As explained above, according to Definitions 2.1 and 2.3, the functions φ1 and φ2 are
invertible respectively in the supports of φ′1 and φ′2. Using the change of variables p = φ−1i (z)
to rewrite the ODEs satisfied by these traveling waves, one finds functions q1 and q2 solving
respectively

dq1
dp

= −c1 −
f(p)

q1
,

dq2
dp

= −c2 −
f(p)

q2
,

in the sense of Definition 3.1 on the interval (a, b), together with

q1(a) = q2(b) = 0.

As in the proof of Theorem 3.2, we define w = q1− q2 and subtract the above two equations.
Then, we get

dw

dp
− f(p)

q1q2
w = −(c1 − c2). (4.1)

Fix p0 ∈ (a, b) and for p ∈ [a, b], define the integrating factor γ(p) as

γ(p) := exp

(
−
∫ p

p0

f(s)

q1(s)q2(s)
ds

)
.

Note that it is well-defined and continuous on (a, b). It is also decreasing with respect to p
on a left neighborhood of b, and increasing in a right neighborhood of a, due (1.2) and the
fact that a, b ∈ {θ2i}0≤i≤I the set of stable steady states. In particular γ is bounded on the
close interval [a, b].

Next, multiplying (4.1) by γ, one gets that

d(γw)

dp
= −(c1 − c2)γ. (4.2)

Now recall that (γw)(a) = (γw)(b) = 0 by assumption, thus by Rolle’s theorem there exists

p1 ∈ (a, b) such that d(γw)
dp (p1) = 0. Since γ(p1) > 0, we get from (4.2) that c1 = c2. Finally, it

follows from Proposition 3.1 that q1 ≡ q2, which in turn implies that φ1 and φ2 are identical
up to some shift.
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We are now in a position to prove the uniqueness of the propagating terrace. Hereafter we
denote by T the propagating terrace constructed in Section 3, by (φj)1≤j≤J the corresponding
sequence of connected traveling waves with speeds (cj)1≤j≤J , and by (pj)1≤j≤J its platforms,
such that

1 = p0 > p1 > · · · > pJ = 0.

We also let T̂ denote another propagating terrace, (φ̂j)1≤j≤Ĵ be the corresponding traveling

waves with speeds (ĉj)1≤j≤Ĵ , and (p̂j)0≤j≤Ĵ be its platforms.

Our goal is now to show that T̂ actually coincides with T , i.e. that they have the same
platforms and that both families of traveling waves coincide up to some shifts.

Proposition 4.1. The set of platforms of T is included in the set of platforms of T̂ .
In particular, for any j ∈ {1, · · · , J}, there exists ĵ ∈ {1, · · · , Ĵ} such that the traveling

wave φ̂j connects pj−1 = pĵ−1 and pĵ. Furthermore we have that ĉĵ ≥ cj.

Proof. We only show that p1 the uppermost platform (excluding 1) of T belongs to the set
of platforms of T̂ , and that ĉ1 ≥ c1. The result then follows by iteration.

Recall that φ1 connects 1 and p1 with speed c1, and φ̂1 connects 1 and p̂1 with speed ĉ1.
Furthermore, by construction (see Theorems 3.4 and 3.6) and thanks to statement (ii) of
Lemma 4.1, we have that

ĉ1 ≥ c1, p̂1 ≥ p1.

If p1 = p̂1, then it is platform of T . This happens in particular when c1 = ĉ1, as one may
check by applying twice the statement (i) of Lemma 4.1. So consider the remaining case when
c1 < ĉ1 and p1 < p̂1. Then the second traveling of T̂ monotonically connects p̂1 ∈ (p1, p0)
and p̂2 with some speed

ĉ2 ≥ ĉ1 > c1.

Applying Lemma 4.2, one deduces that p̂2 ≥ p1. Reiterating and since there is a finite number
of steps, we end up proving that there exists some integer j such that

p̂j = p1.

In particular, p1 is a platform of the propagating terrace T̂ . This concludes the proof.

Let us now prove that actually the terrace T̂ cannot have more platforms than T :

Proposition 4.2. The propagating terraces T and T̂ share the same set of platforms, i.e.
J = Ĵ and pj = p̂j for any 1 ≤ j ≤ J .

Proof. Let us prove that p1 = p̂1. According to Proposition 4.1, we know that there exists a
positive integer j such that p̂j = p1. Proceed by contradiction and assume that j ≥ 2.

Again from Proposition 4.1, we also get that ĉ1 > c1. Due to the ordering of the speeds
of a propagating terrace, it follows that

ĉj > c1. (4.3)

Now, the trajectories q1 and q̂j of the traveling waves φ1 and φ̂j satisfy the following differential
equations on (p1, p̂j−1):

dq1
dp

= −c1 −
f(p)

q1
,
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dq̂j
dp

= −ĉj −
f(p)

q̂1
,

together with
q1(p1) = q̂j(p1) = q̂j(p̂j−1) = 0 > q1(p̂j−1).

This latest inequality comes from the fact that j ≥ 2 and p̂j−1 ∈ (pj , 1) = (p1, 1). By
substracting the two ODEs, we get

d

dp
(q1 − q̂j) = (ĉj − ci)−

f(p)

q1q̂j
(q̂j − q1).

As a platform of the terrace T constructed in Section 3, the steady state p1 must be stable.
Thus we can choose ε > 0 such that f(p) < 0 on (p1, p1 + ε]. We also choose δ ∈ (0, ε), and
define pε = p1 + ε and pδ = p1 + δ. Now, we integrate the above ODE from pδ to pε and
obtain that

(q1(pε)− q̂j(pε))− (q1(pδ)− q̂j(pδ)) =

∫ pε

pδ

(ĉj − ci)dp−
∫ pε

pδ

f(p)

q1q̂j
(q̂j − q1)dp. (4.4)

Recall that φ1 connects p0 = 1 and p1, while φ̂j connects p̂j−1 ∈ (p1, 1) and p̂j = p1. Therefore
it follows from Lemma 4.2 that

q1 < q̂j in the interval (p1, q̂j−1). (4.5)

In particular, we have that
Kε := q1(pε)− q̂j(pε) < 0,

Since pδ → p1 as δ → 0, we also have q1(pδ) − q̂j(pδ) → 0 as δ → 0. Thus, we can choose
δ > 0 such that q1(pδ)− q̂j(pδ) > Kε. So, for such ε and δ, we get that

(q1(pε)− q̂j(pε))− (q1(pδ)− q̂j(pδ)) < 0,

i.e. the left hand side of (4.4) is negative.
On the other hand, for the right hand side, we have by (4.3) that

∫ pε
pδ

(ĉj − ci)dp > 0.

Using again (4.5), we also have q̂j − q1 ≥ 0. Since q1q̂j > 0 and f(p) < 0 on [pδ, pε], we get

that
∫ pε
pδ

f(p)
q1q̂j

(q̂j − q1)dp ≤ 0, and the right hand side of (4.4) is positive.

We have found a contradiction. We conclude that j = 1 and p̂j = p1 and, by iteration,

one eventually finds that T and T̂ have the same platforms.

We now know that both terraces have the same platforms. It immediatley follows from
Lemma 4.3 that, for each integer j, the traveling waves φj and φ̂j coincide up to some shift.
Putting this uniqueness property together with the results of Section 3, this ends the proof
of Theorem 2.1.
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