BIOLOGICAL INVASION WITH A POROUS MEDIUM TYPE DIFFUSION IN A HETEROGENEOUS SPACE

HYUNJOON PARK AND YONG-JUNG KIM

Abstract

The knowledge of traveling wave solutions is the main tool in the study of wave propagation. However, in a spatially heterogeneous environment, traveling wave solutions do not exist and a different approach is needed. In this paper, we study the generation and the propagation of hyperbolic scale singular limits of a KPP-type reaction-diffusion equation when the carrying capacity is spatially heterogeneous and the diffusion is of a porous medium equation type. We show that the interface propagation speed varies according to the carrying capacity.

1. Introduction

The purpose of this paper is to understand the effect of spatial heterogeneity on the invasion speed in KPP-type reaction-diffusion equations. More specifically, we show the generation of a sharp interface of the solution of the initial value problem,

and then obtain the propagation speed of the interface when $\varepsilon \rightarrow 0$. The solution $U(x, t)$ is the population density of a single species, the domain $D \subset \mathbb{R}^{N}$ is smooth and bounded, and the vector ν is the outward unit normal vector on the boundary of the domain. In this model, we take the nonlinear diffusion with a constant exponent $\ell \geq 2$. The spatial heterogeneity is placed in the carrying capacity, $m=m(x)>0$, which satisfies

$$
\begin{equation*}
m \in C^{2}(D), \quad c_{m} \leq m \text { and } m+|\nabla m|+|\Delta m| \leq C_{m} \tag{2}
\end{equation*}
$$

for some constants $C_{m}, c_{m}>0$.
The problem (1) is obtained after a hyperbolic scaling, $x \rightarrow \varepsilon x$ and $t \rightarrow \varepsilon t$, of a multi-scale problems, where the heterogeneity in $m(x)$ is of macroscopic scale. Evans and Sougandis [6, Eq. (1.1)] considered such hyperbolic multi-scale problem for a general heterogeneous reaction function. However, the reaction function in (1) does not satisfy their assumptions. Since the wave speed of the problem is invariant under the hyperbolic scaling of the problem, this approach provides the wave propagation speed in a heterogeneous environment. Hilhorst et al. [8] considered a homogeneous case with $m(x)=1$ and showed that the solution $U(x, t)$ converges to 0 or $m(x)$ as $\varepsilon \rightarrow 0$ and the interface moves with a constant speed to the normal direction, i.e.,

$$
V_{n}=c_{0},
$$

Figure 1. A diagram for interface propagation of the singular limit.
$\langle f i g 1\rangle$
where V_{n} denotes the speed of the propagating interface in the normal direction and $c_{0}>0$ is the constant wave speed of a traveling wave solution in one space dimension (see Figure 1). The constant speed c_{0} depends on the nonlinearity ℓ, but not on the space dimension $d>0$.

In this paper, we extend the result of the homogeneous case to a heterogeneous one and show that

$$
\begin{equation*}
V_{n}=c_{0} m^{p} \quad \text { for } \quad p:=\frac{\ell-1}{2} \tag{4}
\end{equation*}
$$

where the invasion speed is not constant anymore. There are three interesting observations in this relation. First, even if there is no traveling wave solution in the heterogeneous case, the traveling wave speed c_{0} of the homogeneous case with $m=1$ still plays a key role. Second, if (4) holds for the linear diffusion case $\ell=1$, which is beyond the parameter regime of the paper, the invasion speed is same as the homogeneous case when $\ell=1$. It is related to the well-known fact that the invasion speed is decided by the first order term of the reaction, and the coefficient of the first order term of our model is constant. Third, the relation (4) says that such a well-known fact is true only for the linear diffusion case and the wave speed depends on the second order term for the nonlinear diffusion case.

To obtain the nonconstant invasion speed in a heterogeneous environment, we first transfer the spatial heterogeneity in the reaction function to the diffusion operator and obtain a reaction function that satisfies the hypotheses of Evans and Sougandis $[6,(1.2)-(1.4)]$. To that purpose we rewrite the equation in terms of the ratio

$$
u(x, t):=\frac{U(x, t)}{m(x)}
$$

This ratio is the population per unit resource and has been used as a starvation measure in [9]. Then, (1) becomes
(5) eqn $\quad \begin{cases}u_{t}(x, t)=\frac{\varepsilon}{m} \Delta(m u)^{\ell}+\frac{1}{\varepsilon} u(1-u), & (x, t) \in D \times \mathbb{R}^{+}, \\ \frac{\partial(m u)^{\ell}}{\partial \nu}=0, & (x, t) \in \partial D \times \mathbb{R}^{+}, \\ u(x, 0)=u_{0}(x):=\frac{U_{0}(x)}{m(x)}, & x \in D .\end{cases}$

Here, we assume that the initial value is uniformly bounded by
(6) u 01

$$
0 \leq u_{0}(x) \leq 1
$$

has a smooth and simply connected compact support such that

$$
\begin{equation*}
\Omega_{0}:=\left\{x \in D: u_{0}(x)>0\right\} \subset \subset D \text { and } \Gamma_{0}:=\partial \Omega_{0} \in C^{3+\alpha} \tag{7}
\end{equation*}
$$

for some $0<\alpha<1$, and has smoothness and boundary steepness such that for a constant $C_{0}>0$,
(8) $\lcm{u 032}$

$$
u_{0} \in C^{2}(D) \text { and } \frac{\partial u_{0}}{\partial \nu_{0}}\left(x_{0}\right)<-C_{0} \text { for } x_{0} \in \Gamma_{0}
$$

The vector ν_{0} is the outward unit normal vector on the boundary Γ_{0} of the support of the initial value.

Notice that the support Ω_{0} of the initial value is not assumed to be convex since it does not mean much. For a homogeneous problem case, the interface of the solution moves with constant speed (3) and the convexity of the solution support is preserved. However, for a heterogeneous case, the corresponding flow is (4) and the convexity of the support of the solution may break. Instead of the convexity, the support $\overline{\Omega_{0}}$ is assumed to be simply connected and hence, the boundary $\Gamma_{0}:=\partial \Omega_{0}$ is a simple loop and divides the domain $D \subset \mathbb{R}^{d}$ into two regions. See section 6 for a numerical example of the interface motion (12).

2. Main Results

The main result of the paper consists of two theorems. The first one shows how the interface is created.
${ }^{\langle t h m 1\rangle}$ Theorem 1 (Generation of interface). Let $m(x)$ satisfy (2) and $u_{0}(x)$ satisfy (6)(8). Let $u^{\varepsilon}(x, t)$ be the solution of (5) in a weak sense and let $0<\eta_{g}<1 / 4$. Then there exist positive constants ε_{0}, M_{G} such that for any $\varepsilon \in\left(0, \varepsilon_{0}\right)$ the followings holds.
(i) There exists a positive constant $\eta_{\varepsilon}:=\eta_{\varepsilon}(\varepsilon)$ such that
(ii)
(10) thm12

$$
u^{\varepsilon}\left(x, t^{\varepsilon}\right) \geq 1-\eta_{g} \quad \text { if } \quad u_{0}(x) \geq M_{G} \varepsilon
$$

(iii)
(11)

$$
\operatorname{thm} 13 \quad u^{\varepsilon}\left(x, t^{\varepsilon}\right)=0 \quad \text { if } \operatorname{dist}\left(x, \Omega_{0}\right) \geq M_{G} \varepsilon
$$

$$
\text { where } t^{\varepsilon}:=\varepsilon|\ln \varepsilon|
$$

This theorem provides inner and outer envelopes for the graph of the solution $u^{\varepsilon}\left(\cdot, t^{\varepsilon}\right)$. The estimate (10) with the boundary steepness (8) and the equality (11) imply that a transition layer of thickness $O(\varepsilon)$ is developed along the boundary Γ_{0} of the initial support Ω_{0} at the moment of $t^{\varepsilon}=\varepsilon|\ln \varepsilon|$. If the initial value is larger than $M_{G} \varepsilon$ at a point $x \in \Omega_{0}, u^{\varepsilon}\left(x, t^{\varepsilon}\right)$ is between 1 and $1-\eta_{g}$ by (10). Due to the assumption (8), the layer inside the boundary Γ_{0} is of order $\mathcal{O}(\varepsilon)$. Eq. (11) implies that the solution remains equal to zero $u\left(x, t^{\varepsilon}\right)=0$ on the outside of the layer. Therefore, after taking the limit as $\varepsilon \rightarrow 0, u^{\varepsilon}\left(x, t^{\varepsilon}\right)$ converges to a step function, which is 1 for $x \in \Omega_{0}$ and 0 for $x \notin \Omega_{0}$. The boundary Γ_{0} is the initial interface of discontinuity of this singular limit.

The second theorem is to show that the interface of the step function $u(x, t):=$ $\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}(x, t)$ moves according to the relation (4). To make the statement explicit, we first construct a step function with its interface moving according to (4) and
then show that $u^{\varepsilon}(x, t)$ converges to the constructed step function. The boundary $\Gamma_{0}:=\partial \Omega_{0}$ divides D into two regions, where the bounded region is called inside and the other outside. We consider a collection of interfaces Γ_{t} indexed with the time variable $0 \leq t \leq T$ which is given by the mean curvature flow in heterogeneous field,

$$
\begin{equation*}
V_{n}(x)=c_{0} m^{p}(x) \text { for } x \in \Gamma_{t},\left.\quad \Gamma_{t}\right|_{t=0}=\Gamma_{0} \tag{12}
\end{equation*}
$$

where $V_{n}(x)$ is the speed of the moving interface in the outward normal direction at position $x \in \Gamma_{t}$ and at time $0<t<T$. The coefficient c_{0} is the traveling wave speed for the homogeneous case with $m=1$. Under the regularity of m given in (2), the flow is defined well, see Section 3.

We divide the domain D into two parts

$$
D=\Omega_{t} \cup \Omega_{t}^{c}
$$

where Ω_{t}^{c} is the region bounded by Γ_{t} and ∂D and Ω_{t} is the set inside the interface Γ_{t}. Note that Ω_{0} is the support of the initial value $u(x, 0)=u_{0}(x)$. However, Ω_{t} is not the support of $u(x, t)$. It is simply the interior region bounded by the Γ_{t} and Γ_{t} is given by the heterogeneous curvature-flow (4). Finally, using these two sets, we define a signed distance function $\tilde{d}(x, t)$;
(13) ?tilded?

$$
\begin{cases}\tilde{d}(x, t)=\operatorname{dist}\left(x, \Gamma_{t}\right) & \text { if } x \in \Omega_{t} \\ \tilde{d}(x, t)=-\operatorname{dist}\left(x, \Gamma_{t}\right) & \text { if } x \in \Omega_{t}^{c}\end{cases}
$$

Note that $\tilde{d}(x, t) \leq 0$ if x is in the outer region.
The second theorem is about the propagation of the interface.
${ }^{\langle t h m 2\rangle}$ Theorem 2 (Propagation of interface). Let $0<\eta_{p}<1 / 4$ be arbitrary and $t^{\varepsilon}>0$ be a constant defined in Theorem 1, $m(x)$ satisfy (2), and $u_{0}(x)$ satisfy (6)-(8). Then, for a weak solution $u^{\varepsilon}(x, t)$ of (5), there exist positive constants $\varepsilon_{0}, M_{P} \in \mathbb{R}^{+}$such that, for all $0<\varepsilon<\varepsilon_{0}, x \in D$, and $t^{\varepsilon}<t<T$,
(14) thm21

$$
\begin{cases}0 \leq u^{\varepsilon}(x, t) \leq 1+\eta_{\varepsilon}, & \\ u^{\varepsilon}(x, t) \geq 1-\eta_{g} & \text { if } \tilde{d}(x, t) \geq M_{P} \varepsilon \\ u^{\varepsilon}(x, t)=0 & \text { if } \tilde{d}(x, t) \leq-M_{P} \varepsilon\end{cases}
$$

The result (14) in Theorem 2 implies that the interface is generated and propagated following the motion equation (12), with width of $\mathcal{O}(\varepsilon)$. Moreover, by using the similar proof of Theorem 2, one can also conclude that
thm22

$$
u^{\varepsilon}(x, t) \rightarrow\left\{\begin{array}{ll}
1, & x \in \Omega_{t}, \tag{15}\\
0, & x \in \Omega_{t}^{c},
\end{array} \quad \text { as } \quad \varepsilon \rightarrow 0\right.
$$

see Remark 1 Furthermore, since the boundary $\partial \Omega_{t}$ is defined by the relation (12) from the beginning, we have obtained the claim of the paper that wave moves with the speed as given in (4).

Note that the solution in the theorem exists for a time interval $[0, T]$, which is only a local solution. For a homogeneous case, the solution support is convex if the initial support is also convex. Hence, we may construct a solution until the interface touches the domain boundary ∂D. If the domain is \mathbb{R}^{d}, the solution exists for all $t>0$. However, convexity of the solution support is not preserved for a
heterogeneous case and the method of the paper fails as soon as the interface Γ_{t} touches itself．

3．Preliminaries

$\langle\mathrm{sec} .3\rangle$
In this section we give the solution definition and some preliminaries which is used in the proof of theorems．

3．1．Weak solution．The solution，the super－solution，and the sub－solution of the perturbed problem（5）are defined in a weak sense as follows；

Definition 1．A function $u: D \times[0, T] \rightarrow \mathbb{R}$ is called a super－solution of the singularly perturbed problem（5）if
（i）$m u \in W^{1, \ell}(D \times[0, T])$ ，
（ii）For any nonnegative test function $\phi \in C_{c}^{1}(D \times[0, T]), \phi \geq 0$ ，

$$
\begin{align*}
& \int_{D} u(x, T) \phi(x, T) \geq \int_{D} u(x, 0) \phi(x, 0) \tag{16}\\
& +\int_{0}^{\text {eqn_porous_supersub }} \int_{D}^{T}\left(u \phi_{t}-\varepsilon \nabla(m u)^{\ell} \cdot \nabla \frac{\phi}{m}+\frac{1}{\varepsilon} u(1-u) \phi\right) .
\end{align*}
$$

If（16）is satisfied with the opposite inequality，u is called a sub－solution．The function u is called a solution if u is super－solution and sub－solution at the same time．

Note that the product $m u$ is in $W^{1, \ell}$ ，not the solution u ．Next，we introduce two basic lemmas．The first lemma is a classical comparison principle（see［10］）．

〈lemma1〉 Lemma 1 （Comparison principle）．Let \bar{u} and \underline{u} be super－and sub－solution of（5）， respectively．If $\bar{u}(x, 0) \geq \underline{u}(x, 0)$ for all $x \in D$ ．Then

$$
\bar{u}(x, t) \geq \underline{u}(x, t), \quad(x, t) \in D \times[0, T]
$$

For the estimate in the following sections，we construct smooth super－and sub－ solutions．The second lemma is to give sufficient conditions for u to be a super－or a sub－solution．Denote

$$
\mathcal{L} u:=u_{t}-\frac{\varepsilon}{m} \Delta(m u)^{\ell}-\frac{1}{\varepsilon} u(1-u) .
$$

〈lem＿supersub〉 Lemma 2．Let m satisfy the conditions in（2）and u be a differentiable nonnegative function defined on $D \times[0, T]$ ．Let $D_{t}^{+}:=\{x \in D: u(x, t)>0\}$ ，n_{t} be the outward normal vector on ∂D_{t}^{+}，and the surface $\cup_{t \in[0, T]} \partial D_{t}^{+} \times\{t\} \subset D \times[0, T]$ be smooth enough．Suppose u satisfies the following three conditions；（i）$u^{\ell} \in C^{1}(D \times[0, T])$ ， （ii）$\frac{\partial(m u)^{\ell}}{\partial n_{t}} \geq 0$ on ∂D_{t}^{+}，and（iii） $\mathcal{L}(u) \geq 0$ in D_{t}^{+}．Then，u is a super－solution． If the inequalities in（ii）and（iii）hold in the opposite direction，u is a sub－solution．

Proof．We will prove the theorem only for a super－solution case．The sub－solution case can be proved similarly．For a nonnegative test function $\phi \in C_{c}^{1}(D \times[0, T])$ ，we
have

$$
\begin{aligned}
\frac{d}{d t}\left(\int_{D} u \phi\right)=\frac{d}{d t}\left(\int_{D_{t}^{+}} u \phi\right)=\int_{D_{t}^{+}}\left(u \phi_{t}\right. & \left.+u_{t} \phi\right)+\int_{\partial D_{t}^{+}} u \phi V_{t} \\
& =\int_{D_{t}^{+}}\left(u \phi_{t}+u_{t} \phi\right)
\end{aligned}
$$

where V_{t} is the speed of the propagating interface ∂D_{t}^{+}in the outward normal direction. The last equality holds since $u=0$ on ∂D_{t}^{+}. Integrating both sides over [$0, T]$ gives

$$
\int_{0}^{T} \int_{D_{t}^{+}} u \phi_{t}=-\int_{0}^{T} \int_{D_{t}^{+}} u_{t} \phi+\int_{D} u(T) \phi(T)-\int_{D} u(0) \phi(0)
$$

Then,

$$
\begin{aligned}
& \int_{D} u(T) \phi(T)=\int_{D} u_{0} \phi(0)+\int_{0}^{T} \int_{D_{t}^{+}} u \phi_{t}+\int_{0}^{T} \int_{D_{t}^{+}} u_{t} \phi \\
& \geq \int_{D} u_{0} \phi(0)+\int_{0}^{T} \int_{D_{t}^{+}} u \phi_{t}+\int_{0}^{T} \int_{D_{t}^{+}}\left(\frac{\varepsilon}{m} \Delta(m u)^{\ell}+\frac{1}{\varepsilon} u(1-u)\right) \phi \\
&= \int_{D} u_{0} \phi(0)+\int_{0}^{T} \int_{D_{t}^{+}} u \phi_{t}+\left.\int_{0}^{T} \varepsilon \frac{\phi}{m} \nabla(m u)^{\ell} \cdot n_{t}\right|_{\partial D_{t}^{+}} \\
& \quad-\int_{0}^{t} \int_{D_{t}^{+}} \varepsilon \nabla \frac{\phi}{m} \cdot \nabla(m u)^{\ell}+\int_{0}^{T} \int_{D_{t}^{+}} \frac{1}{\varepsilon} u(1-u) \phi \\
& \geq \int_{D} u_{0} \phi(0)+\int_{0}^{T} \int_{D}\left(u \phi_{t}-\varepsilon \nabla(m u)^{\ell} \cdot \nabla \frac{\phi}{m}+\frac{1}{\varepsilon} u(1-u) \phi\right)
\end{aligned}
$$

Therefore, u is a super-solution in the weak sense.
3.2. Traveling wave solution. The traveling wave solution for a homogeneous case still plays a key role for a heterogeneous case. Consider a homogeneous reactiondiffusion equation in one space dimension,

$$
v_{t}=\left(v^{\ell}\right)_{x x}+v(1-v) .
$$

Let $v(x, t)=U\left(x+c_{0} t\right)$ be a traveling wave solution with the minimum speed $c_{0}>0$. Here, the traveling wave moves from right to left. There exists a traveling wave solution for each $c \geq c_{0}$ which is unique upto a translation. The support of the traveling wave solution is the whole real line \mathbb{R} if $c>c_{0}$. However, for the traveling wave solution with the minimum speed c_{0}, the support is a half line $\left[x_{0}, \infty\right)$ for some $x_{0} \in \mathbb{R}$ and we may set $x_{0}=0$ after a translation. Let $z=x+c_{0} t$. Then, the traveling wave solution satisfies
(17) ? eqn_tw?

$$
\left\{\begin{array}{l}
U_{z z}^{\ell}(z)-c_{0} U_{z}(z)+U(1-U)=0 \\
\lim _{z \rightarrow \infty} U(z)=1 \\
U(z)>0 \quad \text { for } z>0 \\
U(z)=0 \quad \text { for } z \leq 0
\end{array}\right.
$$

Consider a two parameters family of perturbations of the traveling wave solution U given by

$$
\begin{equation*}
V(z ; \delta, \zeta):=(1+\delta) U\left((1+\delta)^{1-\frac{\ell}{2}} \zeta z\right) \tag{18}
\end{equation*}
$$

where the parameters are bounded by $-\frac{1}{2}<\delta<\frac{1}{2}$ and $\min _{x \in D} \frac{1}{m^{p}(x)} \leq \zeta \leq$ $\max _{x \in D} \frac{1}{m^{p}(x)}$. Then, the perturbed wave V satisfies
(19) eqn_tw_V $\left\{\begin{array}{l}V_{z z}^{\ell}-c(\delta, \zeta) V_{z}+\zeta^{2} V(1+\delta-V)=0 \text { for } z \in \mathbb{R}, \\ \lim _{z \rightarrow \infty} V(z ; \delta, \zeta)=1+\delta, \\ V(z ; \delta, \zeta)>0 \quad \text { for } z>0, \\ V(z ; \delta, \zeta)=0 \quad \text { for } z \leq 0,\end{array}\right.$
where

$$
c(\delta, \zeta)=c_{0}(1+\delta)^{\frac{\ell}{2}} \zeta
$$

The perturbed waves are used to construct super- and sub-solutions in the proof of Theorem 2. The following lemma consists of the properties of the perturbed wave V which will be used in the proof.
$\left\langle{ }^{\langle\mathrm{em}}{ }^{\mathrm{tw}}{ }^{\mathrm{t}}\right\rangle$ Lemma 3. The perturbed wave has the regularity $V \in C^{2}\left(\mathbb{R}^{+}\right) \cap C(\mathbb{R})$ and satisfies
(20) lem_tw_i $^{\text {l }}$

$$
\begin{aligned}
& V_{\zeta}=\frac{z}{\zeta} V_{z}, \quad V_{\zeta \zeta}=\left(\frac{z}{\zeta}\right)^{2} V_{z z}, \quad V_{z \zeta}=\frac{1}{\zeta} V_{z}+\frac{z}{\zeta} V_{z z} \\
& V_{\delta}=\frac{V}{1+\delta}+\frac{2-\ell}{2(1+\delta)} z V_{z}, \quad V_{z}>0 \quad \text { for } z>0
\end{aligned}
$$

(21) lem_tw_iii

There exists a generic constant $C_{V}>0$ independent of δ and ζ such that

$$
\begin{array}{ll}
(22) \text { lem_tw_ii } & |c(0, \zeta)-c(\delta, \zeta)| \leq C_{V}|\delta \zeta| \\
(23) \text { lem_tw_iv } & 0<1+\delta-V \leq C_{V} e^{-\beta z} \\
(24) \text { lem_tw_v } & V_{z}^{\ell} \leq C_{V} V \\
(25) \text { lem_tw_vii } & \left|z V_{z}\right|+\left|V_{z z}^{\ell}\right|+\left|z V_{z z}^{\ell}\right| \leq C_{V}\left(V+V_{z}\right)
\end{array}
$$

for $z>0$.
Proof. The relations in (20) and (21) are directly obtained from the formula in (18). The estimate (22) is from definition of $c(\delta, \zeta)$. We will show the rest for the case with $\delta=0$ only and the general case is obtained by the continuous dependence of $c(\delta, \zeta)$ and by taking the generic constant C_{V} larger. Estimates in (23) and (24) can be found in [8]. And in the same reference we know that

$$
\left|z V_{z}\right| \leq C_{V} V
$$

for $z \geq 1$ and some positive constant C_{V}. And since

$$
\left|z V_{z}\right| \leq C_{V} V_{z}
$$

for $0<z<1$, thus we obtain (25) for $\left|z V_{z}\right|$ since $V, V_{z} \geq 0$. Also, by (19) one can also obtain (25) for $\left|V_{z z}\right|$. Also, by (23) we have

$$
z(1+\delta-V) \leq C
$$

for some positive constant C since $z e^{-\beta z} \leq \beta^{-1}$ for $z>0$. This implies that

$$
\left|z V_{z z}^{\ell}\right| \leq c\left|z V_{z}\right|+|z(1+\delta-V)| V \leq C_{V}\left(V+V_{z}\right)
$$

Also, since $\left|V_{z z}^{\ell}\right| \leq c V_{z}+\left|\zeta^{2}(1+\delta-V)\right| V$, the inequality also holds for $V_{z z}^{\ell}$ as well.
3.3. Signed distance function. In this section we consider properties of the signed distance function $\tilde{d}(x, t)$ in a neighborhood of the surface that consists of the interfaces Γ_{t} for $t \in[0, T]$ in $D \times[0, T]$ space. Denote

$$
N(r, \tau):=\{(x, t) \in D \times[0, \tau]:|\tilde{d}(x, t)| \leq r\}
$$

Then, clearly, $\cup_{t \in[0, \tau]} \Gamma_{t} \times\{t\} \subset N(r, \tau)$ for all $r>0$, i.e., $N(r, \tau)$ is a neighborhood of the surface that consists of interface Γ_{t}.
${ }^{\left\langle l e m _d\right\rangle}$ Lemma 4. There exist positive constants d_{0}, T, C_{d} such that for all $(x, t) \in N\left(2 d_{0}, T\right)$ the following holds;
(26) $\xlongequal[\text { lem_d } \tilde{d}_{\mathrm{i}}]{ } \in C^{2,1}\left(N\left(2 d_{0}, T\right)\right), \quad|\nabla \tilde{d}|=1, \quad\left|\tilde{d}_{t}(x, t)-c_{0} m^{p}(x, t)\right| \leq C_{d}|\tilde{d}|$.

Proof. Under the assumption $\Gamma_{0} \in C^{3+\alpha}$ in (7), we can follow the construction of the interface motion equation in [4] and rewrite the interface flow (12) in terms of a partial differential equation for \tilde{d},
\qquad

$$
\begin{equation*}
\tilde{d}_{t}(x, t)=c_{0} m^{p}(y(x, t)) \tag{27}
\end{equation*}
$$

in a neighborhood of $\Gamma_{t} \times\{t\}$. In this formula, the heterogeneity in m is taken from $y(x, t) \in \Gamma_{t}$ that satisfies

$$
\operatorname{dist}(y(x, t), x)=|\tilde{d}(x, t)|
$$

Such a point $y(x, t)$ exists uniquely if the interface is smooth enough and satisfies

$$
y(x, t)=x-\tilde{d} \nabla \tilde{d}
$$

(see [7, Section 14.6]). Thus we obtain a partial differential equation for \tilde{d},
(28) eqn_IM_signed_pde $\tilde{d}_{t}(x, t)=c_{0} m^{p}(x-\tilde{d}(x, t) \nabla \tilde{d}(x, t))$.

The conditions in (2) and (8), and Theorem 2 in [5, Section 3.2] imply the existence of the solution (28) in a set $N\left(2 d_{0}, T\right)$ for some positive constants d_{0}, T with the regularity $\tilde{d} \in C^{2,1}\left(N\left(2 d_{0}, T\right)\right)$.

Note that, since the initial interface is smooth enough, $\Gamma_{0} \in C^{3+\alpha}$, we have $|\nabla \tilde{d}(x, 0)|=1$ for $x \in\left\{x \in D:|\tilde{d}| \leq 2 d_{0}\right\}$ by taking smaller d_{0} if needed. Let

$$
\begin{aligned}
& w(x, t):=|\nabla \tilde{d}|^{2}-1 \text {. Using (28) we obtain } \\
& w_{t}=2 \nabla \tilde{d} \cdot \nabla \tilde{d}_{t}=\sum_{i=1}^{N} 2 \partial_{x_{i}} \tilde{d} c_{0} \nabla m^{p} \cdot\left(1^{i}-\partial_{x_{i}} \tilde{d} \nabla \tilde{d}-\tilde{d} \partial_{x_{i}} \nabla \tilde{d}\right) \\
& =2 c_{0} \sum_{i=1}^{N} \partial_{x_{i}} \tilde{d} \partial_{x_{i}} m^{p}-2 c_{0} \nabla m^{p} \cdot \nabla \tilde{d} \sum_{i=1}^{N} \partial_{x_{i}} \tilde{d}^{2} \\
& -2 c_{0} \tilde{d} \sum_{i=1}^{N} \partial_{x_{i}} \tilde{d} \nabla m^{p} \cdot \partial_{x_{i}} \nabla \tilde{d} \\
& =2 c_{0} \nabla m^{p} \cdot \nabla \tilde{d}\left(1-|\nabla \tilde{d}|^{2}\right)-2 c_{0} \tilde{d} \sum_{i=1}^{N} \sum_{j=1}^{N} \partial_{x_{i}} \tilde{d} \partial_{x_{j}} m^{p} \partial_{x_{i}} \partial_{x_{j}} \tilde{d} \\
& =-2 c_{0} \nabla m^{p} \cdot \nabla \tilde{d} w-c_{0} \tilde{d} \sum_{i=1}^{N} \sum_{j=1}^{N} \partial_{x_{j}} m^{p} \partial_{x_{j}}\left(\partial_{x_{i}} \tilde{d}^{2}\right) \\
& =-2 c_{0} \nabla m^{p} \cdot \nabla \tilde{d} w-c_{0} \tilde{d} \sum_{j=1}^{N} \partial_{x_{j}} m^{p} \partial_{x_{j}}|\nabla \tilde{d}|^{2} \\
& =-2 c_{0} \nabla m^{p} \cdot \nabla \tilde{d} w-c_{0} \tilde{d} \nabla m^{p} \cdot \nabla w,
\end{aligned}
$$

which is a first order partial differential equation of w. By the characteristic technique with the initial value $w(x, 0)=0$, we obtain $w(x, t)=0$ on $N\left(2 d_{0}, T\right)$.

Using the relation (27), we have

$$
\left|\tilde{d}_{t}(x, t)-c_{0} m^{p}(x)\right|=c_{0}\left|m^{p}(y(x, t))-m^{p}(x)\right| .
$$

As m^{p} is Lipschitz continuous, there exists a constant $C_{d}>0$ such that

$$
\left|\tilde{d}_{t}(x, t)-c_{0} m^{p}(x)\right| \leq C_{d} \operatorname{dist}(y(x, t), x)=C_{d}|\tilde{d}(x, t)|,
$$

which is the third inequality in (26).
Next, we construct a cut-off distance function. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a $C^{2}(\mathbb{R})$ function that satisfies

$$
h(s)=\left\{\begin{aligned}
s & \text { if }|s| \leq d_{0} \\
2 d_{0} & \text { if } s \geq 2 d_{0} \\
-2 d_{0} & \text { if } s \leq-2 d_{0} .
\end{aligned}\right.
$$

The cut-off distance $d: D \times[0, T] \rightarrow \mathbb{R}$ is defined by

$$
d(x, t):=h(\tilde{d}(x, t)) .
$$

Then, by Lemma 4, we have, the cut-off distance function satisfies

$$
\text { (29) eqn_disitanddf duhtitioncad }|d|, \quad\left|d_{t}-c_{0} m^{p}\right| \leq C_{d}|d|, \quad|\nabla d|+|\Delta d| \leq C_{d}
$$

by choosing $C_{d}>0$ large enough if necessary.

4. Generation of the interface

In this section we prove the generation of the interface stated in Theorem 1. The uniform estimate (9) is obtained by the comparison principle in Lemma (1) and the initial condition (6). The other two estimates, (10) and (11), are obtained by comparison principle after constructing appropriate super- and sub-solutions. Note that the reaction term in (5) dominates the dynamics in the first stage of interface generation and hence it is natural we construct the super- and sub-solutions using the solution of the ordinary differential equation with the reaction terms,

$$
\left\{\begin{array}{l}
\frac{d}{d \tau} Y(\tau, \xi ; \delta)=Y(1-Y+\delta) \\
Y(0, \xi ; \delta)=\xi
\end{array}\right.
$$

where $|\delta|<\frac{1}{2}$. The spatial heterogeneity of the original problem (1) in the reaction term has been moved to the diffusion term as in (5). Hence, the obtain solution Y which is similar to to the one in [1]. The property of the solution Y is from this paper.
$\left\langle\right.$ lem_ODE_Y ${ }^{\text {Y }}$ Lemma 5. Let $0<\eta_{g}<\frac{1}{2}$. Then there exists a positive constant $C_{Y}=C_{Y}\left(\eta_{g}\right)$ that satisfies the following estimates for all $|\delta|<\frac{1}{2}$.
(i) For $\xi>0$ and $\tau>0$, we have $0<Y_{\xi}(\tau, \xi ; \delta) \leq C_{Y} e^{(1+\delta) \tau}$.
(ii) For $\xi>0$ and $\tau>0$, we have $\left|\frac{Y_{\xi \xi}(\tau, \xi ; \delta)}{Y_{\xi}(\tau, \xi ; \delta)}\right| \leq C_{Y}\left(e^{(1+\delta) \tau}-1\right)$.
(iii) For all $\tau>0$ we have $Y(\tau, \xi ; \delta) \leq 1+\delta$ if $\xi \leq 1+\delta$ and $Y(\tau, \xi ; \delta) \leq 0$ if $\xi \leq 0$
(iv) There exists a positive constant ε_{Y} such that for all $\varepsilon \in\left(0, \varepsilon_{Y}\right)$ we have $Y(|\ln \varepsilon|, \xi ; \delta) \geq 1+\delta-\eta_{g}$ if $\xi \geq C_{Y} \varepsilon,|\delta| \leq \varepsilon$.

Now we prove the generation of interface in Theorem 1.
Proof. (of Theorem 1). In the proof we choose a constant $0<\varepsilon_{0}<\min \left\{\varepsilon_{Y}, e^{-1}\right\}$ so that

$$
\varepsilon_{0} \max _{x \in D} \frac{\left|\Delta(m(x))^{\ell}\right|}{m(x)}\left(\frac{3}{2}\right)^{\ell-1}<\frac{\eta_{g}}{2}
$$

We first prove (9). The inequality $0 \leq u^{\varepsilon}$ is easily obtained since the function $w^{-}(x, t) \equiv 0$ is a sub-solution of u^{ε}. Let $w^{+}(x, t) \equiv 1+\eta_{\varepsilon}$ where

$$
\eta_{\varepsilon}=\varepsilon^{2} \max _{x \in D} \frac{\left|\Delta(m(x))^{\ell}\right|}{m(x)}\left(\frac{3}{2}\right)^{\ell-1}<\frac{\eta_{g}}{2}
$$

Direct computations of $\mathcal{L} w^{+}$give

$$
\begin{aligned}
\mathcal{L} w^{+} & =-\frac{\varepsilon}{m}\left(1+\eta_{\varepsilon}\right)^{\ell} \Delta(m)^{\ell}+\frac{1}{\varepsilon}\left(1+\eta_{\varepsilon}\right) \eta_{\varepsilon} \\
& =\frac{1+\eta_{\varepsilon}}{\varepsilon}\left(\eta_{\varepsilon}-\frac{\Delta m}{m} \varepsilon^{2}\left(1+\eta_{\varepsilon}\right)^{\ell-1}\right) \\
& \geq \frac{1+\eta_{\varepsilon}}{\varepsilon}\left(\eta_{\varepsilon}-\frac{\Delta m}{m} \varepsilon^{2}\left(\frac{3}{2}\right)^{\ell-1}\right) .
\end{aligned}
$$

Thus, by the definition of $\eta_{\varepsilon}, w^{+}$is a super solution which implies (9).

Next, we prove (10) and (11). First, we extend the initial value u_{0} to a C^{2} function $\bar{u}_{0}: D \rightarrow \mathbb{R}$, which is available by Whitney extension theorem. Moreover, by condition (8) we can find a positive constant $\bar{d}<\min \left\{d_{0}, 1\right\}$ such that

$$
\bar{u}_{0} \leq \bar{d} d(x, 0) \text { if }-\bar{d}<d(x, 0)<0
$$

Then, we let $\sigma: D \rightarrow[0,1]$ be a smooth function satisfying

$$
\sigma(x) \in \begin{cases}1 & \text { if } d(x, 0)>-\frac{\bar{d}}{2} \\ (0,1) & \text { if }-\bar{d}<d(x, 0) \leq-\frac{\bar{d}}{2} \\ 0 & \text { if } d(x, 0) \leq-\bar{d}\end{cases}
$$

With these functions in hand, we define $\tilde{u}_{0}: D \rightarrow \mathbb{R}$ as follows

$$
\tilde{u}_{0}(x):=\sigma(x) \bar{u}_{0}-(1-\sigma(x)) .
$$

Then we obtain
(30) eqn_u0_extension $\bar{u}_{0}(x) \leq \max \{\bar{c} d(x, 0),-2 \bar{c} \bar{d}\}$ if $d(x, 0)<0$.

With this extended function we construct functions $w^{ \pm}(x, t)$ as

$$
w^{ \pm}(x, t)=Y\left(\frac{t}{\varepsilon}, \max \left(\tilde{u}_{0} \pm \varepsilon^{2} P(t), 0\right) ; \pm \varepsilon\right), P(t)=K\left(e^{t / \varepsilon}-1\right)
$$

where K is a positive constant. We will show that if K is chosen appropriately, we have

$$
\begin{equation*}
w^{-}(x, t) \leq u^{\varepsilon}(x, t) \leq w^{+}(x, t) \tag{31}
\end{equation*}
$$

for the solution u^{ε} of (5). First, the initial values of the two functions are

$$
w^{ \pm}(x, 0)=\max \left(\tilde{u}_{0}, 0\right)=u_{0}(x)
$$

i.e., $w^{ \pm}$and u share the same initial value of the solution u^{ε}. Therefore, if we show w^{+}is a super-solution and w^{-}is a sub-solution, the claim (31) is obtained. We first show w^{+}is a super-solution.

The conditions (i) and $(i i)$ of Lemma 2 follows from the definitions of Y and \tilde{u}_{0}. Direct computations of $\mathcal{L} w^{+}$on the support of w^{+}give

$$
\begin{aligned}
\mathcal{L} w^{+}(x, t)= & \left(\frac{1}{\varepsilon} Y_{\tau}+K^{\prime} \varepsilon e^{t / \varepsilon} Y_{\xi}\right)-\frac{1}{\varepsilon} Y(1-Y) \\
& -\frac{\varepsilon}{m}\left(\left(w^{+}\right)^{\ell} \Delta m^{\ell}+2 \nabla m^{\ell} \cdot \nabla\left(w^{+}\right)^{\ell}+m^{\ell} \Delta\left(w^{+}\right)^{\ell}\right) \\
= & K \varepsilon e^{t / \varepsilon} Y_{\xi}+Y-\frac{\varepsilon}{m}\left(Y^{\ell} \Delta m^{\ell}+2 \nabla m^{\ell} \cdot\left(\ell Y^{\ell-1} Y_{\xi} \nabla \tilde{u}_{0}\right)\right. \\
& \left.+m^{\ell}\left[\ell(\ell-1) Y^{\ell-2} Y_{\xi}^{2}\left|\nabla \tilde{u}_{0}\right|^{2}+\ell Y^{\ell-1}\left(Y_{\xi \xi}\left|\nabla \tilde{u}_{0}\right|^{2}+Y_{\xi} \Delta \tilde{u}_{0}\right)\right]\right) \\
\geq & \varepsilon Y_{\xi}\left(K^{\prime} e^{t / \varepsilon}-\frac{\ell Y^{\ell-2}}{m}\left(\left[\left|\frac{Y_{\xi \xi}}{Y_{\xi}}\right| Y+(\ell-1) Y_{\xi}\right]\left|\nabla \tilde{u}_{0}\right|^{2}\right.\right. \\
& \left.\left.+Y\left|\Delta \tilde{u}_{0}\right|+Y\left|\nabla m^{\ell} \cdot \nabla \tilde{u}_{0}\right|\right)\right)+Y\left(1-\varepsilon \frac{\Delta m^{\ell}}{m} Y^{\ell-1}\right)
\end{aligned}
$$

The last term in the inequality becomes by the choice of ε_{0}. Moreover, since we choose $\varepsilon_{0}<e^{-1}$, for $0<\tau<t^{\varepsilon}$ we obtain

$$
e^{(1+\varepsilon) \tau / \varepsilon} \leq C e^{\tau / \varepsilon}
$$

for some positive constant C. Then by conditions (2), (8) for the m and u_{0} and Lemma 5, we can choose K large enough such that

$$
\mathcal{L} w^{+} \geq 0
$$

for $0<t \leq \varepsilon|\ln \varepsilon|$. Therefore, w^{+}is a super-solution. We can similarly show that w^{-}is a sub-solution.

Next, we take $M_{G}<\bar{d}^{-1}\left(C_{Y}+K\right)$ and choose ε_{0} smaller enough such that $\left(C_{Y}+K\right) \varepsilon_{0}<1$. For any point $x \in D$ satisfying $u_{0}(x) \geq M_{G} \varepsilon$ we have

$$
\tilde{u}_{0}(x)-\varepsilon^{2} P\left(t^{\varepsilon}\right) \geq M_{G} \varepsilon-K \varepsilon(1-\varepsilon) \geq C_{Y} \varepsilon
$$

where the last inequality holds since $M_{G}<\bar{d}^{-1}\left(C_{Y}+K\right)<C_{Y}+K$. Thus, by Lemma 5 we obtain

$$
u\left(x, t^{\varepsilon}\right) \geq Y\left(|\ln \varepsilon|, \tilde{u}_{0}(x)-K \varepsilon(1-\varepsilon) ;-\varepsilon\right) \geq 1-\eta_{g}
$$

And by (30), for any $x \in D$ satisfying $d(x, 0) \leq-M_{G} \varepsilon$ we have

$$
\begin{aligned}
\tilde{u}_{0}(x)+\varepsilon^{2} P\left(t^{\varepsilon}\right) & \leq \max \{\bar{d} d(x, 0),-1\}+K \varepsilon(1-\varepsilon) \\
& \leq \max \left\{-\bar{d} M_{G} \varepsilon,-1\right\}+K \varepsilon(1-\varepsilon) \leq-C_{Y} \varepsilon \leq 0
\end{aligned}
$$

Thus, by Lemma 5 we obtain

$$
u^{\varepsilon}\left(x, t^{\varepsilon}\right) \leq w^{+}\left(x, t^{\varepsilon}\right)=0
$$

5. Propagation of the interface

We prove Theorem 2 in this section. We construct a pair of functions $u^{ \pm}$superand sub-solutions as

$$
u^{ \pm}(x, t)=V\left(\frac{d(x, t) \pm \varepsilon p(t)}{\varepsilon} ; \pm q(t), \frac{1}{m^{p}(x)}\right)
$$

where

$$
p(t)=-\frac{C_{V} C_{m}^{p}+1}{\sigma} e^{-\sigma t / \varepsilon}+K_{1} e^{L t}, q(t)=\frac{\eta_{p}}{4} e^{-\sigma t / \varepsilon}+K_{2} \varepsilon
$$

Here C_{m} is the constant defined in (2), C_{V} is the constant appeared in Lemma 3, K_{1}, K_{2}, σ are some positive constants and $0<\eta_{p}<1 / 4$. And we choose $\sigma \in(0,1)$ small enough such that

$$
\begin{equation*}
\sigma\left(1+\frac{2-\ell}{2} C_{V}\right)<1, \quad \frac{2-\ell}{8} \sigma C_{V}<1 \tag{32}
\end{equation*}
$$

We make the following additional assumptions on $K_{1}, K_{2}, \varepsilon_{0}$ that
cond_e0

$$
\left(\frac{C_{V} C_{m}^{p}+1}{\sigma}+K_{1} e^{L T}\right) \varepsilon_{0}<d_{0}, K_{2} \varepsilon_{0}<\frac{\eta_{p}}{4}
$$

which can be obtained by choosing $\varepsilon_{0}>0$ small enough. Then these implies that
(34) cond_pq

$$
\varepsilon_{0}|p(t)| \leq d_{0}, \quad q(t) \leq \frac{\eta_{p}}{2}
$$

Note that, if $\ell>2$ we have $2-\ell<0$ which means that (32) holds for any $\sigma \in(0,1)$. We first prove that $u^{ \pm}$are a pair of sub- and super-solutions.
propagation_supersub \rangle Proposition 1. Let $K_{1}>1$. Then there exist positive constants $K_{2}, L, \varepsilon_{0}$ such that for any $0<\varepsilon<\varepsilon_{0},(x, t) \in D \times\left[0, T-t^{\varepsilon}\right]$ we have
(35) eqn_propagation_supersubL $\mathcal{L} u^{-}(x, t) \leq 0 \leq \mathcal{L} u^{+}(x, t)$.

Proof. To show (35) we check the conditions (i) - (iii) of Lemma 2 holds. The support of $u^{ \pm}$is equal to $\{(x, t) \in D \times[0, T], d \pm \varepsilon p(t)>0\}$, so its boundary in $D \times[0, T]$ is smooth by Lemma 4. With this, and by lemmas 4 and 3 we can see conditions (i) and (ii) holds. For (iii), we only show for u^{+}; one can use the same method for u^{-}to show the condition (iii). For simplicity, we define $z_{d}=$ $d(x, t)+\varepsilon p(t)$. Direct computation gives

$$
\begin{aligned}
u_{t}^{+} & =\left(\frac{d_{t}}{\varepsilon}+p^{\prime}(t)\right) V_{z}+q^{\prime}(t) V_{z} \\
\nabla V^{\ell} & =\frac{\nabla d}{\varepsilon} V_{z}^{\ell}+\nabla \frac{1}{m^{p}} V_{\zeta}^{\ell}=\left[\frac{\nabla d}{\varepsilon}+\frac{z_{d}}{\varepsilon} \nabla \frac{1}{m^{p}}\right] V_{z}^{\ell} \\
\Delta V^{\ell} & =\left|\frac{\nabla d}{\varepsilon}\right|^{2} V_{z z}^{\ell}+2 \frac{\nabla d}{\varepsilon} \cdot \nabla \frac{1}{m^{p}} V_{z \zeta}^{\ell}+\left|\nabla \frac{1}{m^{p}}\right|^{2} V_{\zeta \zeta}^{\ell} \\
& +\nabla \cdot\left[\frac{\nabla d}{\varepsilon}+\frac{z_{d}}{\varepsilon} \nabla \frac{1}{m^{p}}\right] V_{z}^{\ell} \\
& =\left[\frac{\nabla d}{\varepsilon}+\frac{z_{d}}{\varepsilon} \nabla \frac{1}{m^{p}}\right]^{2} V_{z z}^{\ell}+\nabla \cdot\left[\frac{\nabla d}{\varepsilon}+\frac{z_{d}}{\varepsilon} \nabla \frac{1}{m^{p}}\right] V_{z}^{\ell} \\
& +2 m^{p} \frac{\nabla d}{\varepsilon} \cdot \nabla \frac{1}{m^{p}} V_{z}^{\ell}
\end{aligned}
$$

where the equality holds by (20). This implies that

$$
\begin{aligned}
\mathcal{L} u^{+}(x, t) & =\frac{d_{t}+\varepsilon p^{\prime}}{\varepsilon} V_{z}+q^{\prime} V_{\delta} \\
& -\frac{\varepsilon}{m}\left(m^{\ell} \Delta V^{\ell}+2 \nabla m^{\ell} \cdot \nabla V^{\ell}+\Delta m^{\ell} V^{\ell}\right)-\frac{1}{\varepsilon} V(1-V) \\
& =\frac{d_{t}+\varepsilon p^{\prime}}{\varepsilon} V_{z}+q^{\prime} V_{\delta} \pm \frac{c_{\varepsilon} m^{2 p}}{\varepsilon} V_{z}-\frac{1}{\varepsilon} V(1-V) \pm \frac{q}{\varepsilon} V \\
& -\frac{\varepsilon}{m}\left(m^{\ell}\left[\frac{\nabla d}{\varepsilon}+\frac{m^{p} z_{d}}{\varepsilon} \nabla \frac{1}{m^{p}}\right]^{2} V_{z z}^{\ell}+m^{\ell} \nabla \cdot\left[\frac{\nabla d}{\varepsilon}+\frac{m^{p} z_{d}}{\varepsilon} \nabla \frac{1}{m^{p}}\right] V_{z}^{\ell}\right. \\
& \left.+2 m^{p+\ell} \frac{\nabla d}{\varepsilon} \cdot \nabla \frac{1}{m^{p}} V_{z}^{\ell}+2 \nabla m^{\ell} \cdot\left[\frac{\nabla d}{\varepsilon}+\frac{m^{p} z_{d}}{\varepsilon} \nabla \frac{1}{m^{p}}\right] V_{z}^{\ell}+\Delta m^{\ell} V^{\ell}\right) \\
& =\frac{d_{t}-c_{\varepsilon} m^{2 p}}{\varepsilon} V_{z}+p^{\prime} V_{z}+\frac{c_{\varepsilon} m^{2 p}}{\varepsilon} V_{z}-\frac{1}{\varepsilon} V(1+q-V)+\frac{q}{\varepsilon} V+q^{\prime} V_{\delta} \\
& -\frac{\varepsilon}{m} m^{\ell} \frac{|\nabla d|^{2}}{\varepsilon^{2}} V_{z z}^{\ell}-\frac{\varepsilon}{m} m^{\ell} \frac{m^{p} z_{d}}{\varepsilon} \nabla \frac{1}{m^{p}} \cdot\left[2 \frac{\nabla d}{\varepsilon}+\frac{m^{p} z_{d}}{\varepsilon} \nabla \frac{1}{m^{p}}\right] V_{z z}^{\ell} \\
& -\frac{\varepsilon}{m}\left(m^{\ell} \nabla\left[\frac{\nabla d}{\varepsilon}+\frac{m^{p} z_{d}}{\varepsilon} \nabla^{\frac{1}{m^{p}}}\right] V_{z}^{\ell}+2 m^{p+\ell} \nabla \frac{d}{\varepsilon} \cdot \nabla \frac{1}{m^{p}} V_{z}^{\ell}\right. \\
& \left.+2 \nabla m^{\ell} \cdot\left[\frac{\nabla d}{\varepsilon}+\frac{m^{p} z_{d}}{\varepsilon} \nabla \frac{1}{m^{p}}\right] V_{z}^{\ell}+\Delta m^{\ell} V^{\ell}\right),
\end{aligned}
$$

where $c_{\varepsilon}:=c\left(q(t), \frac{1}{m^{p}}\right)$. Using (19) and the fact that $\ell-1=2 p$ we can rewrite $\mathcal{L} u^{+}=E_{1}+E_{2}+E_{3}$, where

$$
\begin{aligned}
E_{1} & =p^{\prime}(t) V_{z}+\frac{c_{0} m^{p}-c_{\varepsilon} m^{2 p}}{\varepsilon} V_{z}+q^{\prime}(t) V_{\delta}+\frac{q(t)}{\varepsilon} V \\
E_{2} & =\frac{d_{t}-c_{0} m^{p}}{\varepsilon} V_{z}+\frac{1-|\nabla d|^{2}}{\varepsilon} m^{2 p} V_{z z}^{\ell}-\frac{\varepsilon}{m} \Delta m^{\ell} V^{\ell} \\
E_{3} & =-m^{3 p} \nabla \frac{1}{m^{p}} \cdot\left[2 \nabla d+m^{p} z_{d} \nabla \frac{1}{m^{p}}\right] \frac{z_{d}}{\varepsilon} V_{z z}^{\ell}-2 m^{3 p} \nabla d \cdot \nabla \frac{1}{m^{p}} V_{z}^{\ell} \\
& -\frac{1}{m}\left(m^{\ell} \nabla\left[\nabla d+m^{p} z_{d} \nabla \frac{1}{m^{p}}\right] V_{z}^{\ell}+2 \nabla m^{\ell} \cdot\left[\nabla d+m^{p} z_{d} \nabla \frac{1}{m^{p}}\right] V_{z}^{\ell}\right) .
\end{aligned}
$$

(i) Estimates of E_{1}

Since $K_{1}>1$, direct computation gives
(36)
eqn_E1_1

$$
p^{\prime}(t) V_{z} \geq\left(\frac{C_{V} C_{m}^{p}+1}{\varepsilon} e^{-\sigma t / \varepsilon}+L e^{L t}\right) V_{z}
$$

By (21) we have

$$
\begin{aligned}
\frac{q(t)}{\varepsilon} V+q^{\prime}(t) V_{\delta}= & K_{2} V+\frac{\eta_{p} e^{-\sigma t / \varepsilon}}{4 \varepsilon} V \\
& -\sigma \frac{\eta_{p} e^{-\sigma t / \varepsilon}}{4 \varepsilon}\left(\frac{V}{1+q(t)}+\frac{2-\ell}{2(1+q(t))} \frac{z_{d}}{\varepsilon} V_{z}\right)
\end{aligned}
$$

By (25) and (32) we obtain

$$
\frac{q(t)}{\varepsilon} V+q^{\prime}(t) V_{\delta} \geq K_{2} V
$$

$$
+\frac{\eta_{p} e^{-\sigma t / \varepsilon}}{4 \varepsilon}\left(V-\sigma\left(V+\frac{2-\ell}{2} C_{V}\left(V+V_{z}\right)\right)\right)
$$

$$
\geq K_{2} V-\frac{\eta_{p} e^{-\sigma t / \varepsilon}}{\varepsilon} \frac{2-\ell}{8} \sigma C_{V} V_{z}
$$

(37)
eqn_E1_2 $\geq K_{2} V-\frac{e^{-\sigma t / \varepsilon}}{\varepsilon} V_{z}$.

And by (22) we have
(38) eqn_E1_3

$$
\begin{aligned}
\frac{V_{z}}{\varepsilon}\left(c_{0} m^{p}-c_{\varepsilon} m^{2 p}\right) & \geq-C_{V} \frac{q(t)}{\varepsilon} m^{p} V_{z} \\
& \geq-C_{V} C_{m}^{p}\left(\frac{\eta_{p}}{4 \varepsilon} e^{-\sigma t / \varepsilon}+K_{2}\right) V_{z} \\
& \geq-C_{V} C_{m}^{p}\left(\frac{e^{-\sigma t / \varepsilon}}{\varepsilon} e^{-\sigma t / \varepsilon}+K_{2}\right) V_{z}
\end{aligned}
$$

Thus the inequalities $(36),(37)$ and (38) implies
(39) eqn_E1

$$
E_{1} \geq K_{2} V+\left(L-C_{1} K_{2}\right) V_{z}
$$

for some positive constant C_{1}.
(ii) Estimates of E_{2}

By (29) we obtain

$$
\begin{aligned}
\frac{V_{z}}{\varepsilon}\left(d_{t}-c_{0} m^{p}\right)+\frac{1-|\nabla d|^{2}}{\varepsilon} m^{2 p} V_{z z}^{\ell} \geq & -C_{d} \frac{|d|}{\varepsilon}\left(V_{z}+C_{m}^{p}\left|V_{z z}^{\ell}\right|\right) \\
\geq & -C_{d} \frac{z_{d}}{\varepsilon}\left(V_{z}+C_{m}^{p}\left|V_{z z}^{\ell}\right|\right) \\
& -C_{d} p(t)\left(V_{z}+C_{m}^{p}\left|V_{z z}^{\ell}\right|\right)
\end{aligned}
$$

Thus by (25) we have following inequality
(40) eqn_E2

$$
E_{2} \geq-C_{2}\left(V+V_{z}\right)
$$

for some positive constant C_{2}.
(iii) Estimates of E_{3}

Note that $z_{d} \leq|d|+|p(t)| \leq 2 d_{0}$ by (34). By (2), (25) and (29) we obtain (41) eqn_E3

$$
E_{3} \geq-C_{3}\left(V+V_{z}\right)
$$

for some positive constant C_{3}.
We now show $\mathcal{L} u^{+} \geq 0$. By (39),(40) and (41) we have

$$
\mathcal{L} u^{+} \geq\left(K_{2}-\tilde{C}\right) V+\left(L-C_{1} K_{2}-\tilde{C}\right) V_{z}
$$

where $\tilde{C}=C_{2}+C_{3}$. Thus, by choosing L and K_{2} large enough we have $\mathcal{L} u^{+} \geq 0$.

Proof of Theorem 2.
The first inequality of (14) can be obtained by letting $w^{-} \equiv 0, w^{+} \equiv 1+\eta_{\varepsilon}$ as suband super- solutions, where η_{ε} is a constant introduced in Theorem 1. We prove the rest of the results with $u^{ \pm}$.

For $\eta_{g} \in\left(0, \eta_{p} / 2\right)$ let ε_{0}, M_{G} be constants satisfying Theorem 1. By (8) we can find $C>0$ such that

$$
\begin{aligned}
\text { if } d(x, 0) \geq C \varepsilon \text { then } u_{0}(x) & \geq M_{G} \varepsilon \\
\text { if } d(x, 0) \leq-C \varepsilon \text { then } u_{0}(x) & =0
\end{aligned}
$$

With this, and by Theorem 1 we have

$$
\begin{aligned}
& u^{\varepsilon}\left(x, t^{\varepsilon}\right) \leq H^{+}(x):= \begin{cases}1+\eta_{\varepsilon} & \text { if } d(x, 0) \geq-C \varepsilon \\
0 & \text { if } d(x, 0)<-C \varepsilon\end{cases} \\
& u^{\varepsilon}\left(x, t^{\varepsilon}\right) \geq H^{-}(x):= \begin{cases}1-\eta_{g} & \text { if } d(x, 0) \geq C \varepsilon \\
0 & \text { if } d(x, 0)<C \varepsilon\end{cases}
\end{aligned}
$$

Equations (23) and (34) imply

$$
V\left(z ; q(0), \frac{1}{m^{p}(x)}\right) \geq 0, V\left(z ;-q(0), \frac{1}{m^{p}(x)}\right) \leq 1-\frac{\eta_{p}}{2}<1-\eta_{g}
$$

for $x \in D, z \in \mathbb{R}$, where the last inequality holds by the choice of η_{g}. Moreover, we can fix $K_{1}>0$ large enough such that

$$
V\left(\left(-C+K_{1}\right) ; q(0), \frac{1}{m^{p}}\right) \geq 1+\eta_{\varepsilon}, V\left(C-K_{1} ;-q(0), \frac{1}{m^{p}}\right)=0
$$

And these inequalities imply that

$$
u^{+}(x, 0) \geq H^{+}(x), \quad u^{-}(x, 0) \leq H^{-}(x)
$$

Thus, by Proposition 1 and Lemma 2 we have

$$
\text { (42) eqn_prop_(comptar_soñ }\left(x, t+t^{\varepsilon}\right) \leq u^{+}(x, t) \quad \text { for } \quad x \in D, t \in\left[0, T-t^{\varepsilon}\right] \text {. }
$$

By (23) and (33), we can choose $M_{P}>0$ satisfying

$$
\begin{aligned}
& V\left(\left(M_{P}-p(t)\right) ;-q(t), \frac{1}{m^{p}}\right) \geq 1-\eta_{p} \\
& V\left(\left(-M_{P}+p(t)\right) ; q(t), \frac{1}{m^{p}}\right)=0
\end{aligned}
$$

for any $(x, t) \in D \times\left[0, T-t^{\varepsilon}\right]$. With this, and by (42) we have

$$
\begin{aligned}
\text { if } d(x, t) \geq M_{P} \varepsilon \rightarrow u^{\varepsilon}\left(x, t+t^{\varepsilon}\right) & \geq 1-\eta_{p} \\
\text { if } d(x, t) \leq-M_{P} \varepsilon \rightarrow u^{\varepsilon}\left(x, t+t^{\varepsilon}\right) & =0
\end{aligned}
$$

Therefore Theorem 2 holds.
${ }^{\langle r m k}{ }^{1}{ }^{1\rangle}$ Remark 1. By using the same sub-and super-solution $u^{ \pm}$, we can also prove the convergence result (15). Indeed, by (23) we have

$$
V\left(\beta^{-1}|\ln \varepsilon| ;-q(t), \frac{1}{m^{p}(x)}\right) \geq 1-C_{V} \varepsilon-q(t)
$$

Moreover, we have $q(t) \leq\left(\eta_{p}+K_{2}\right) \varepsilon$ for $t \geq t^{\varepsilon}=\varepsilon|\ln \varepsilon|$. Thus we can fix $C>0$ large enough such that for any small enough $\varepsilon>0$ we have
(43) rmk_11

$$
u^{\varepsilon}\left(x, t+t^{\varepsilon}\right) \geq 1-C \varepsilon \text { for } d(x, t) \geq C \varepsilon|\ln \varepsilon|, t \geq t^{\varepsilon}
$$

where we used (42). With this, (14) and the fact that $t^{\varepsilon} \downarrow 0$ as $\varepsilon \downarrow 0$ implies (15).
This result gives different description of the solution u^{ε}. In view of (14), we expect the interface is generated and propagated with width $\mathcal{O}(\varepsilon)$, which seems natural since the equation is obtained by the hyperbolic scaling. In view of (43), even though the result may not seems related to the hyperbolic scaling, it gives much finer expectation of u^{ε} which allows to see the convergence result (15).

6. Numerical simulation

〈sect.contacts〉 In this section we give a numerical simulation of the solution of (1) and (4). Here we consider $\ell=2$. Note that $c_{0}=1$ is knwon for $\ell=2$; see [2]. With such idea, the numerical simulation of (1) and (4) for 1 and 2 dimensional space is given in figures 2 and 3 . As we can see in the results, the support of the function $\frac{U}{m}$ can be approximated with the interface following the motion equation (4). The interesting feature of the motion (4) can be observed in Figure 3, especially in $t=5,6$. As mentioned in the introduction we no longer expect the interface to be convex, where the non-convexity comes from the heterogeneity of the speed. This expectation can be seen not only in the interface following (4)(the red line in Figure 3) but also to the support of the function U in the numerical simulation.

Figure 2. Numerical simulation of (1) and (4) for $\ell=2$. Figure (a) is a graph of the function m, which is given as a smooth approximation of $x+2$. Figure (b) is a numerical simulation of generation of interface. Here we let $\varepsilon=0.1$ and the initial condition as a step function with 0.5 as maximum value(purple line). Other graphs indicates the function u^{ε} at time $t=0.2,0.4,0.6$ (blue, orange, yellow). Figures (c) and (d) are numerical simulation to see the propagation of u^{ε} for $\varepsilon=0.1,0.3,0.5$ (blue, orange, yellow) and the interface Γ_{t} (purple). Figure (c) represents the boundary of support u^{ε} and Γ_{t} from $t=0$ to $t=4$. Figure (d) plots the graphs u^{ε} at time $t=4$ and a step function with boundary Γ_{t}.
〈fig_2_d1simul〉

References

ADH2008 [1] Matthieu Alfaro, Danielle Hilhorst, Hiroshi Matano, The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system, Journal of Differential Equations, Volume 245, Issue 2, (2008) .
ARR1981 [2] C. Atkinson, G. E. H. Reuter, C. J. Ridler-Rowe, Traveling Wave Solution for Some Nonlinear Diffusion Equations, SIAM Journal on Mathematical Analysis, Volume 12, Issue 6, (1981).
?BZ2002? [3] Z. Biró, Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type (2002).

(A) Heterogeneous function m

(c) $t=1$

(E) $t=3$

(G) $t=5$

(B) Initial conditions

(D) $t=2$

(F) $t=4$

(н) $t=6$

Figure 3. Numerical simulation of (1) and (4) for $\ell=2$ and $\varepsilon=0.1$.
The color red indicates the interface that moves according to (4) and

CF1992 [4] Xinfu Chen, Fernando Reitich, Local existence and uniqueness of solutions of the Stefan Problem with surface tension and kinetic undercooling. (1992).
EL2015 [5] Evans, Lawrence C., Partial differential equation. American Mathematical Society, reprinted with corrections 2015.
Evans1989 [6] L.C. Evans, P.E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations. Indiana Univ. Math. J. 38 (1989), no. 1, 141-172.
GT2015 [7] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer (2015).

DREM2008 [8] D. Hilhorst, R. Kersner, E. Logak, M. Mimura, Interface dynamics of the Fisher equation with degenerate diffusion. (2018).
KimKwon2016 [9] Y.-J. Kim and O. Kwon, Evolution of dispersal with starvation measure and coexistence, Bull. Math. Biol. 78 (2016), 254-279
JV2007 [10] J.L. Vazquez , The Porous Medium Equation: Mathematical Theory (2007).
(Hyunjoon Park)
Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea

Email address: hyunjoonps@gmail.com
(Yong-Jung Kim)
Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-Gu, Daejeon 34141, Korea

Email address: yongkim@kaist.edu

