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Abstract. The knowledge of traveling wave solutions is the main tool in the
study of wave propagation. However, in a spatially heterogeneous environment,
traveling wave solutions do not exist and a different approach is needed. In this
paper, we study the generation and the propagation of hyperbolic scale singular
limits of a KPP-type reaction-diffusion equation when the carrying capacity is
spatially heterogeneous and the diffusion is of a porous medium equation type.
We show that the interface propagation speed varies according to the carrying
capacity.

1. Introduction

The purpose of this paper is to understand the effect of spatial heterogeneity on
the invasion speed in KPP-type reaction-diffusion equations. More specifically, we
show the generation of a sharp interface of the solution of the initial value problem,

Ut(x, t) = ε∆U ` + 1
εU
(
1− U

m

)
, (x, t) ∈ D × R+,

∂U
∂ν = 0, (x, t) ∈ ∂D × R+,

U(x, 0) = U0(x) ≥ 0, x ∈ D,
(1) EqnU

and then obtain the propagation speed of the interface when ε → 0. The solution
U(x, t) is the population density of a single species, the domain D ⊂ RN is smooth
and bounded, and the vector ν is the outward unit normal vector on the boundary of
the domain. In this model, we take the nonlinear diffusion with a constant exponent
` ≥ 2. The spatial heterogeneity is placed in the carrying capacity, m = m(x) > 0,
which satisfies

m ∈ C2(D), cm ≤ m and m+ |∇m|+ |∆m| ≤ Cm(2) m1

for some constants Cm, cm > 0.
The problem (1) is obtained after a hyperbolic scaling, x → εx and t → εt, of a

multi-scale problems, where the heterogeneity in m(x) is of macroscopic scale. Evans
and Sougandis [6, Eq. (1.1)] considered such hyperbolic multi-scale problem for a
general heterogeneous reaction function. However, the reaction function in (1) does
not satisfy their assumptions. Since the wave speed of the problem is invariant under
the hyperbolic scaling of the problem, this approach provides the wave propagation
speed in a heterogeneous environment. Hilhorst et al. [8] considered a homogeneous
case with m(x) = 1 and showed that the solution U(x, t) converges to 0 or m(x) as
ε→ 0 and the interface moves with a constant speed to the normal direction, i.e.,

(3) Vn0 Vn = c0,
1
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Figure 1. A diagram for interface propagation of the singular limit.
〈fig1〉

where Vn denotes the speed of the propagating interface in the normal direction and
c0 > 0 is the constant wave speed of a traveling wave solution in one space dimension
(see Figure 1). The constant speed c0 depends on the nonlinearity `, but not on the
space dimension d > 0.

In this paper, we extend the result of the homogeneous case to a heterogeneous
one and show that

(4) Vn Vn = c0m
p for p :=

`− 1

2
,

where the invasion speed is not constant anymore. There are three interesting ob-
servations in this relation. First, even if there is no traveling wave solution in the
heterogeneous case, the traveling wave speed c0 of the homogeneous case with m = 1
still plays a key role. Second, if (4) holds for the linear diffusion case ` = 1, which
is beyond the parameter regime of the paper, the invasion speed is same as the ho-
mogeneous case when ` = 1. It is related to the well-known fact that the invasion
speed is decided by the first order term of the reaction, and the coefficient of the
first order term of our model is constant. Third, the relation (4) says that such a
well-known fact is true only for the linear diffusion case and the wave speed depends
on the second order term for the nonlinear diffusion case.

To obtain the nonconstant invasion speed in a heterogeneous environment, we first
transfer the spatial heterogeneity in the reaction function to the diffusion operator
and obtain a reaction function that satisfies the hypotheses of Evans and Sougandis
[6, (1.2)–(1.4)]. To that purpose we rewrite the equation in terms of the ratio

u(x, t) :=
U(x, t)

m(x)
.

This ratio is the population per unit resource and has been used as a starvation
measure in [9]. Then, (1) becomes

ut(x, t) = ε
m∆(mu)` + 1

εu(1− u), (x, t) ∈ D × R+,
∂(mu)`

∂ν = 0, (x, t) ∈ ∂D × R+,

u(x, 0) = u0(x) := U0(x)
m(x) , x ∈ D.

(5) eqn

Here, we assume that the initial value is uniformly bounded by

(6) u01 0 ≤ u0(x) ≤ 1,

has a smooth and simply connected compact support such that

(7) u02 Ω0 := {x ∈ D : u0(x) > 0} ⊂⊂ D and Γ0 := ∂Ω0 ∈ C3+α
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for some 0 < α < 1, and has smoothness and boundary steepness such that for a
constant C0 > 0,

(8) u032 u0 ∈ C2(D) and
∂u0
∂ν0

(x0) < −C0 for x0 ∈ Γ0.

The vector ν0 is the outward unit normal vector on the boundary Γ0 of the support
of the initial value.

Notice that the support Ω0 of the initial value is not assumed to be convex since it
does not mean much. For a homogeneous problem case, the interface of the solution
moves with constant speed (3) and the convexity of the solution support is preserved.
However, for a heterogeneous case, the corresponding flow is (4) and the convexity
of the support of the solution may break. Instead of the convexity, the support Ω0

is assumed to be simply connected and hence, the boundary Γ0 := ∂Ω0 is a simple
loop and divides the domain D ⊂ Rd into two regions. See section 6 for a numerical
example of the interface motion (12).

2. Main results

The main result of the paper consists of two theorems. The first one shows how
the interface is created.

〈thm1〉
Theorem 1 (Generation of interface). Let m(x) satisfy (2) and u0(x) satisfy (6)–
(8). Let uε(x, t) be the solution of (5) in a weak sense and let 0 < ηg < 1/4. Then
there exist positive constants ε0,MG such that for any ε ∈ (0, ε0) the followings
holds.

(i) There exists a positive constant ηε := ηε(ε) such that

(9) thm11 0 ≤ uε(x, t) ≤ 1+ηε, ηε ↓ 0 as ε ↓ 0.

(ii)

(10) thm12 uε(x, tε) ≥ 1− ηg if u0(x) ≥MGε,

(iii)

uε(x, tε) = 0 if dist(x,Ω0) ≥MGε.(11) thm13

where tε := ε| ln ε|.

This theorem provides inner and outer envelopes for the graph of the solution
uε(·, tε). The estimate (10) with the boundary steepness (8) and the equality (11)
imply that a transition layer of thickness O(ε) is developed along the boundary Γ0

of the initial support Ω0 at the moment of tε = ε| ln ε|. If the initial value is larger
than MGε at a point x ∈ Ω0, u

ε(x, tε) is between 1 and 1− ηg by (10). Due to the
assumption (8), the layer inside the boundary Γ0 is of order O(ε). Eq. (11) implies
that the solution remains equal to zero u(x, tε) = 0 on the outside of the layer.
Therefore, after taking the limit as ε → 0, uε(x, tε) converges to a step function,
which is 1 for x ∈ Ω0 and 0 for x /∈ Ω0. The boundary Γ0 is the initial interface of
discontinuity of this singular limit.

The second theorem is to show that the interface of the step function u(x, t) :=
limε→0 u

ε(x, t) moves according to the relation (4). To make the statement explicit,
we first construct a step function with its interface moving according to (4) and



4 HYUNJOON PARK AND YONG-JUNG KIM

then show that uε(x, t) converges to the constructed step function. The boundary
Γ0 := ∂Ω0 divides D into two regions, where the bounded region is called inside and
the other outside. We consider a collection of interfaces Γt indexed with the time
variable 0 ≤ t ≤ T which is given by the mean curvature flow in heterogeneous field,

Vn(x) = c0m
p(x) for x ∈ Γt, Γt|t=0 = Γ0,(12) IM

where Vn(x) is the speed of the moving interface in the outward normal direction at
position x ∈ Γt and at time 0 < t < T . The coefficient c0 is the traveling wave speed
for the homogeneous case with m = 1. Under the regularity of m given in (2), the
flow is defined well, see Section 3.

We divide the domain D into two parts

D = Ωt ∪ Ωc
t ,

where Ωc
t is the region bounded by Γt and ∂D and Ωt is the set inside the interface

Γt. Note that Ω0 is the support of the initial value u(x, 0) = u0(x). However, Ωt is
not the support of u(x, t). It is simply the interior region bounded by the Γt and Γt
is given by the heterogeneous curvature-flow (4). Finally, using these two sets, we

define a signed distance function d̃(x, t);{
d̃(x, t) = dist(x,Γt) if x ∈ Ωt,

d̃(x, t) = −dist(x,Γt) if x ∈ Ωc
t .

(13) ?tilded?

Note that d̃(x, t) ≤ 0 if x is in the outer region.
The second theorem is about the propagation of the interface.

〈thm2〉Theorem 2 (Propagation of interface). Let 0 < ηp < 1/4 be arbitrary and tε > 0 be
a constant defined in Theorem 1, m(x) satisfy (2), and u0(x) satisfy (6)–(8). Then,
for a weak solution uε(x, t) of (5), there exist positive constants ε0,MP ∈ R+ such
that, for all 0 < ε < ε0, x ∈ D, and tε < t < T ,

0 ≤ uε(x, t) ≤ 1+ηε,

uε(x, t) ≥ 1− ηg if d̃(x, t) ≥ MP ε,

uε(x, t) = 0 if d̃(x, t) ≤ −MP ε.

(14) thm21

The result (14) in Theorem 2 implies that the interface is generated and propa-
gated following the motion equation (12), with width of O(ε). Moreover, by using
the similar proof of Theorem 2, one can also conclude that

uε(x, t)→
{

1, x ∈ Ωt,
0, x ∈ Ωc

t ,
as ε→ 0,(15) thm22

see Remark 1 Furthermore, since the boundary ∂Ωt is defined by the relation (12)
from the beginning, we have obtained the claim of the paper that wave moves with
the speed as given in (4).

Note that the solution in the theorem exists for a time interval [0, T ], which is
only a local solution. For a homogeneous case, the solution support is convex if
the initial support is also convex. Hence, we may construct a solution until the
interface touches the domain boundary ∂D. If the domain is Rd, the solution exists
for all t > 0. However, convexity of the solution support is not preserved for a
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heterogeneous case and the method of the paper fails as soon as the interface Γt
touches itself.

3. Preliminaries
〈sec.3〉

In this section we give the solution definition and some preliminaries which is used
in the proof of theorems.

3.1. Weak solution. The solution, the super-solution, and the sub-solution of the
perturbed problem (5) are defined in a weak sense as follows;

Definition 1. A function u : D × [0, T ] → R is called a super-solution of the
singularly perturbed problem (5) if

(i) mu ∈W 1,`(D × [0, T ]),
(ii) For any nonnegative test function φ ∈ C1

c (D × [0, T ]), φ ≥ 0,

(16) eqn_porous_supersub

∫
D
u(x, T )φ(x, T ) ≥

∫
D
u(x, 0)φ(x, 0)

+

∫ T

0

∫
D

(
uφt − ε∇(mu)` · ∇ φ

m
+

1

ε
u(1− u)φ

)
.

If (16) is satisfied with the opposite inequality, u is called a sub-solution. The
function u is called a solution if u is super-solution and sub-solution at the same
time.

Note that the product mu is in W 1,`, not the solution u. Next, we introduce two
basic lemmas. The first lemma is a classical comparison principle (see [10]).

〈lemma1〉Lemma 1 (Comparison principle). Let u and u be super- and sub-solution of (5),
respectively. If u(x, 0) ≥ u(x, 0) for all x ∈ D.Then

u(x, t) ≥ u(x, t), (x, t) ∈ D × [0, T ]

For the estimate in the following sections, we construct smooth super- and sub-
solutions. The second lemma is to give sufficient conditions for u to be a super- or
a sub- solution. Denote

Lu := ut −
ε

m
∆(mu)` − 1

ε
u(1− u).

〈lem_supersub〉Lemma 2. Let m satisfy the conditions in (2) and u be a differentiable nonnegative
function defined on D × [0, T ]. Let D+

t := {x ∈ D : u(x, t) > 0}, nt be the outward
normal vector on ∂D+

t , and the surface ∪t∈[0,T ]∂D+
t × {t} ⊂ D × [0, T ] be smooth

enough. Suppose u satisfies the following three conditions; (i) u` ∈ C1(D × [0, T ]),

(ii)
∂(mu)`

∂nt
≥ 0 on ∂D+

t , and (iii) L(u) ≥ 0 in D+
t . Then, u is a super-solution.

If the inequalities in (ii) and (iii) hold in the opposite direction, u is a sub-solution.

Proof. We will prove the theorem only for a super-solution case. The sub-solution
case can be proved similarly. For a nonnegative test function φ ∈ C1

c (D× [0, T ]), we



6 HYUNJOON PARK AND YONG-JUNG KIM

have

d

dt

(∫
D
uφ

)
=

d

dt

(∫
D+
t

uφ

)
=

∫
D+
t

(uφt + utφ) +

∫
∂D+

t

uφVt

=

∫
D+
t

(uφt + utφ),

where Vt is the speed of the propagating interface ∂D+
t in the outward normal

direction. The last equality holds since u = 0 on ∂D+
t . Integrating both sides over

[0, T ] gives ∫ T

0

∫
D+
t

uφt = −
∫ T

0

∫
D+
t

utφ+

∫
D
u(T )φ(T )−

∫
D
u(0)φ(0).

Then,∫
D
u(T )φ(T ) =

∫
D
u0φ(0) +

∫ T

0

∫
D+
t

uφt +

∫ T

0

∫
D+
t

utφ

≥
∫
D
u0φ(0) +

∫ T

0

∫
D+
t

uφt +

∫ T

0

∫
D+
t

(
ε

m
∆(mu)` +

1

ε
u(1− u)

)
φ

=

∫
D
u0φ(0) +

∫ T

0

∫
D+
t

uφt +

∫ T

0
ε
φ

m
∇(mu)` · nt

∣∣∣∣
∂D+

t

−
∫ t

0

∫
D+
t

ε∇ φ

m
· ∇(mu)` +

∫ T

0

∫
D+
t

1

ε
u(1− u)φ

≥
∫
D
u0φ(0) +

∫ T

0

∫
D

(
uφt − ε∇(mu)` · ∇ φ

m
+

1

ε
u(1− u)φ

)
.

Therefore, u is a super-solution in the weak sense. �

3.2. Traveling wave solution. The traveling wave solution for a homogeneous case
still plays a key role for a heterogeneous case. Consider a homogeneous reaction-
diffusion equation in one space dimension,

vt = (v`)xx + v(1− v).

Let v(x, t) = U(x + c0t) be a traveling wave solution with the minimum speed
c0 > 0. Here, the traveling wave moves from right to left. There exists a traveling
wave solution for each c ≥ c0 which is unique upto a translation. The support of the
traveling wave solution is the whole real line R if c > c0. However, for the traveling
wave solution with the minimum speed c0, the support is a half line [x0,∞) for
some x0 ∈ R and we may set x0 = 0 after a translation. Let z = x+ c0t. Then, the
traveling wave solution satisfies

(17) ?eqn_tw?


U `zz(z)− c0Uz(z) + U(1− U) = 0,

limz→∞ U(z) = 1,

U(z) > 0 for z > 0,

U(z) = 0 for z ≤ 0.
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Consider a two parameters family of perturbations of the traveling wave solution U
given by

V (z; δ, ζ) := (1 + δ)U
(
(1 + δ)1−

`
2 ζz
)
,(18) V

where the parameters are bounded by −1
2 < δ < 1

2 and minx∈D
1

mp(x) ≤ ζ ≤
maxx∈D

1
mp(x) . Then, the perturbed wave V satisfies

(19) eqn_tw_V


V `
zz − c(δ, ζ)Vz + ζ2V (1 + δ − V ) = 0 for z ∈ R,

limz→∞ V (z; δ, ζ) = 1 + δ,

V (z; δ, ζ) > 0 for z > 0,

V (z; δ, ζ) = 0 for z ≤ 0,

where

c(δ, ζ) = c0(1 + δ)
`
2 ζ.

The perturbed waves are used to construct super- and sub-solutions in the proof of
Theorem 2. The following lemma consists of the properties of the perturbed wave
V which will be used in the proof.

〈lem_tw〉Lemma 3. The perturbed wave has the regularity V ∈ C2(R+)∩C(R) and satisfies

Vζ =
z

ζ
Vz, Vζζ =

(
z

ζ

)2

Vzz, Vzζ =
1

ζ
Vz +

z

ζ
Vzz(20) lem_tw_i

Vδ =
V

1 + δ
+

2− `
2(1 + δ)

zVz, Vz > 0 for z > 0(21) lem_tw_iii

There exists a generic constant CV > 0 independent of δ and ζ such that

|c(0, ζ)− c(δ, ζ)| ≤ CV |δζ|(22) lem_tw_ii

0 < 1 + δ − V ≤ CV e−βz(23) lem_tw_iv

V `
z ≤ CV V(24) lem_tw_v

|zVz|+ |V `
zz|+ |zV `

zz| ≤ CV (V + Vz)(25) lem_tw_vii

for z > 0.

Proof. The relations in (20) and (21) are directly obtained from the formula in (18).
The estimate (22) is from definition of c(δ, ζ). We will show the rest for the case
with δ = 0 only and the general case is obtained by the continuous dependence of
c(δ, ζ) and by taking the generic constant CV larger. Estimates in (23) and (24) can
be found in [8]. And in the same reference we know that

|zVz| ≤ CV V
for z ≥ 1 and some positive constant CV . And since

|zVz| ≤ CV Vz
for 0 < z < 1, thus we obtain (25) for |zVz| since V, Vz ≥ 0. Also, by (19) one can
also obtain (25) for |Vzz|. Also, by (23) we have

z(1 + δ − V ) ≤ C
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for some positive constant C since ze−βz ≤ β−1 for z > 0. This implies that

|zV `
zz| ≤ c|zVz|+ |z(1 + δ − V )|V ≤ CV (V + Vz).

Also, since |V `
zz| ≤ cVz+|ζ2(1+δ−V )|V , the inequality also holds for V `

zz as well. �

3.3. Signed distance function. In this section we consider properties of the signed
distance function d̃(x, t) in a neighborhood of the surface that consists of the inter-
faces Γt for t ∈ [0, T ] in D × [0, T ] space. Denote

N(r, τ) := {(x, t) ∈ D × [0, τ ] : |d̃(x, t)| ≤ r}.

Then, clearly, ∪t∈[0,τ ]Γt × {t} ⊂ N(r, τ) for all r > 0, i.e., N(r, τ) is a neighborhood
of the surface that consists of interface Γt.

〈lem_d〉Lemma 4. There exist positive constants d0, T, Cd such that for all (x, t) ∈ N(2d0, T )
the following holds;

d̃ ∈ C2,1(N(2d0, T )), |∇d̃| = 1, |d̃t(x, t)− c0mp(x, t)| ≤ Cd|d̃|.(26) lem_d_i

Proof. Under the assumption Γ0 ∈ C3+α in (7), we can follow the construction of
the interface motion equation in [4] and rewrite the interface flow (12) in terms of a

partial differential equation for d̃,

d̃t(x, t) = c0m
p(y(x, t)),(27) Eq17

in a neighborhood of Γt×{t}. In this formula, the heterogeneity in m is taken from
y(x, t) ∈ Γt that satisfies

dist(y(x, t), x) = |d̃(x, t)|.

Such a point y(x, t) exists uniquely if the interface is smooth enough and satisfies

y(x, t) = x− d̃∇d̃

(see [7, Section 14.6]). Thus we obtain a partial differential equation for d̃,

d̃t(x, t) = c0m
p
(
x− d̃(x, t)∇d̃(x, t)

)
.(28) eqn_IM_signed_pde

The conditions in (2) and (8), and Theorem 2 in [5, Section 3.2] imply the existence
of the solution (28) in a set N(2d0, T ) for some positive constants d0, T with the

regularity d̃ ∈ C2,1(N(2d0, T )).
Note that, since the initial interface is smooth enough, Γ0 ∈ C3+α, we have

|∇d̃(x, 0)| = 1 for x ∈ {x ∈ D : |d̃| ≤ 2d0} by taking smaller d0 if needed. Let
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w(x, t) := |∇d̃|2 − 1. Using (28) we obtain

wt = 2∇d̃ · ∇d̃t =
N∑
i=1

2∂xi d̃ c0∇mp · (1i − ∂xi d̃∇d̃− d̃∂xi∇d̃)

= 2c0

N∑
i=1

∂xi d̃∂xim
p − 2c0∇mp · ∇d̃

N∑
i=1

∂xi d̃
2

− 2c0d̃

N∑
i=1

∂xi d̃∇mp · ∂xi∇d̃

= 2c0∇mp · ∇d̃ (1− |∇d̃|2)− 2c0d̃

N∑
i=1

N∑
j=1

∂xi d̃∂xjm
p∂xi∂xj d̃

= −2c0∇mp · ∇d̃ w − c0d̃
N∑
i=1

N∑
j=1

∂xjm
p∂xj (∂xi d̃

2)

= −2c0∇mp · ∇d̃ w − c0d̃
N∑
j=1

∂xjm
p∂xj |∇d̃|2

= −2c0∇mp · ∇d̃ w − c0d̃∇mp · ∇w,

which is a first order partial differential equation of w. By the characteristic tech-
nique with the initial value w(x, 0) = 0, we obtain w(x, t) = 0 on N(2d0, T ).

Using the relation (27), we have

|d̃t(x, t)− c0mp(x)| = c0|mp(y(x, t))−mp(x)|.

As mp is Lipschitz continuous, there exists a constant Cd > 0 such that

|d̃t(x, t)− c0mp(x)| ≤ Cd dist(y(x, t), x) = Cd|d̃(x, t)|,

which is the third inequality in (26). �

Next, we construct a cut-off distance function. Let h : R→ R be a C2(R) function
that satisfies

h(s) =


s if |s| ≤ d0,
2d0 if s ≥ 2d0,

−2d0 if s ≤ −2d0.

The cut-off distance d : D × [0, T ]→ R is defined by

d(x, t) := h(d̃(x, t)).

Then, by Lemma 4, we have, the cut-off distance function satisfies

(29) eqn_distancefunction_d|1− |∇d|2| ≤ Cd|d|, |dt − c0mp| ≤ Cd|d|, |∇d|+ |∆d| ≤ Cd

by choosing Cd > 0 large enough if necessary.
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4. Generation of the interface

In this section we prove the generation of the interface stated in Theorem 1. The
uniform estimate (9) is obtained by the comparison principle in Lemma (1) and
the initial condition (6). The other two estimates, (10) and (11), are obtained by
comparison principle after constructing appropriate super- and sub-solutions. Note
that the reaction term in (5) dominates the dynamics in the first stage of interface
generation and hence it is natural we construct the super- and sub-solutions using
the solution of the ordinary differential equation with the reaction terms,{

d
dτ Y (τ, ξ; δ) = Y (1− Y + δ),

Y (0, ξ; δ) = ξ,

where |δ| < 1
2 . The spatial heterogeneity of the original problem (1) in the reaction

term has been moved to the diffusion term as in (5). Hence, the obtain solution Y
which is similar to to the one in [1]. The property of the solution Y is from this
paper.

〈lem_ODE_Y〉Lemma 5. Let 0 < ηg <
1
2 . Then there exists a positive constant CY = CY (ηg) that

satisfies the following estimates for all |δ| < 1
2 .

(i) For ξ > 0 and τ > 0, we have 0 < Yξ(τ, ξ; δ) ≤ CY e(1+δ)τ .

(ii) For ξ > 0 and τ > 0, we have
∣∣∣Yξξ(τ,ξ;δ)Yξ(τ,ξ;δ)

∣∣∣ ≤ CY (e(1+δ)τ − 1
)
.

(iii) For all τ > 0 we have Y (τ, ξ; δ) ≤ 1 + δ if ξ ≤ 1 + δ and Y (τ, ξ; δ) ≤ 0 if
ξ ≤ 0

(iv) There exists a positive constant εY such that for all ε ∈ (0, εY ) we have
Y (| ln ε|, ξ; δ) ≥ 1 + δ − ηg if ξ ≥ CY ε, |δ| ≤ ε.

Now we prove the generation of interface in Theorem 1.

Proof. (of Theorem 1). In the proof we choose a constant 0 < ε0 < min{εY , e−1} so
that

ε0 max
x∈D

|∆(m(x))`|
m(x)

(
3

2

)`−1
<
ηg
2
.

We first prove (9). The inequality 0 ≤ uε is easily obtained since the function
w−(x, t) ≡ 0 is a sub-solution of uε. Let w+(x, t) ≡ 1 + ηε where

ηε = ε2 max
x∈D

|∆(m(x))`|
m(x)

(
3

2

)`−1
<
ηg
2

Direct computations of Lw+ give

Lw+ = − ε

m
(1 + ηε)

`∆(m)` +
1

ε
(1 + ηε)ηε

=
1 + ηε
ε

(
ηε −

∆m

m
ε2(1 + ηε)

`−1
)

≥ 1 + ηε
ε

(
ηε −

∆m

m
ε2
(

3

2

)`−1)
.

Thus, by the definition of ηε, w
+ is a super solution which implies (9).
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Next, we prove (10) and (11). First, we extend the initial value u0 to a C2

function u0 : D → R, which is available by Whitney extension theorem. Moreover,
by condition (8) we can find a positive constant d < min{d0, 1} such that

u0 ≤ dd(x, 0) if − d < d(x, 0) < 0.

Then, we let σ : D → [0, 1] be a smooth function satisfying

σ(x) ∈


1 if d(x, 0) > −d

2

(0, 1) if − d < d(x, 0) ≤ −d
2

0 if d(x, 0) ≤ −d.

With these functions in hand, we define ũ0 : D → R as follows

ũ0(x) := σ(x)u0 − (1− σ(x)).

Then we obtain

ũ0(x) ≤ max{cd(x, 0),−2cd} if d(x, 0) < 0.(30) eqn_u0_extension

With this extended function we construct functions w±(x, t) as

w±(x, t) = Y

(
t

ε
,max(ũ0 ± ε2P (t), 0);±ε

)
, P (t) = K(et/ε − 1)

where K is a positive constant. We will show that if K is chosen appropriately, we
have

w−(x, t) ≤ uε(x, t) ≤ w+(x, t)(31) wuw

for the solution uε of (5). First, the initial values of the two functions are

w±(x, 0) = max(ũ0, 0) = u0(x),

i.e., w± and u share the same initial value of the solution uε. Therefore, if we show
w+ is a super-solution and w− is a sub-solution, the claim (31) is obtained. We first
show w+ is a super-solution.

The conditions (i) and (ii) of Lemma 2 follows from the definitions of Y and ũ0.
Direct computations of Lw+ on the support of w+ give

Lw+(x, t) =

(
1

ε
Yτ +K ′εet/εYξ

)
− 1

ε
Y (1− Y )

− ε

m

(
(w+)`∆m` + 2∇m` · ∇(w+)` +m`∆(w+)`

)
= Kεet/εYξ + Y − ε

m

(
Y `∆m` + 2∇m` · (`Y `−1Yξ∇ũ0)

+m`[`(`− 1)Y `−2Y 2
ξ |∇ũ0|2 + `Y `−1(Yξξ|∇ũ0|2 + Yξ∆ũ0)]

)
≥ εYξ

(
K ′et/ε − `Y `−2

m

([∣∣∣∣YξξYξ
∣∣∣∣Y + (`− 1)Yξ

]
|∇ũ0|2

+Y |∆ũ0|+ Y |∇m` · ∇ũ0|
))

+ Y

(
1− ε∆m`

m
Y `−1

)
.
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The last term in the inequality becomes by the choice of ε0. Moreover, since we
choose ε0 < e−1, for 0 < τ < tε we obtain

e(1+ε)τ/ε ≤ Ceτ/ε,

for some positive constant C. Then by conditions (2), (8) for the m and u0 and
Lemma 5, we can choose K large enough such that

Lw+ ≥ 0

for 0 < t ≤ ε| ln ε|. Therefore, w+ is a super-solution. We can similarly show that
w− is a sub-solution.

Next, we take MG < d
−1

(CY + K) and choose ε0 smaller enough such that
(CY +K)ε0 < 1. For any point x ∈ D satisfying u0(x) ≥MGε we have

ũ0(x)− ε2P (tε) ≥MGε−Kε(1− ε) ≥ CY ε,

where the last inequality holds since MG < d
−1

(CY + K) < CY + K. Thus, by
Lemma 5 we obtain

u(x, tε) ≥ Y (| ln ε|, ũ0(x)−Kε(1− ε);−ε) ≥ 1− ηg.

And by (30), for any x ∈ D satisfying d(x, 0) ≤ −MGε we have

ũ0(x) + ε2P (tε) ≤ max{dd(x, 0),−1}+Kε(1− ε)
≤ max{−dMGε,−1}+Kε(1− ε) ≤ −CY ε ≤ 0.

Thus, by Lemma 5 we obtain

uε(x, tε) ≤ w+(x, tε) = 0.

�

5. Propagation of the interface

We prove Theorem 2 in this section. We construct a pair of functions u±super-
and sub-solutions as

u±(x, t) = V

(
d(x, t)± εp(t)

ε
;±q(t), 1

mp(x)

)
,

where

p(t) = −CV C
p
m + 1

σ
e−σt/ε +K1e

Lt, q(t) =
ηp
4
e−σt/ε +K2ε.

Here Cm is the constant defined in (2), CV is the constant appeared in Lemma 3,
K1,K2, σ are some positive constants and 0 < ηp < 1/4. And we choose σ ∈ (0, 1)
small enough such that

σ

(
1 +

2− `
2

CV

)
< 1,

2− `
8

σCV < 1(32) cond_sigma

We make the following additional assumptions on K1,K2, ε0 that(
CV C

p
m + 1

σ
+K1e

LT

)
ε0 < d0, K2ε0 <

ηp
4

(33) cond_e0
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which can be obtained by choosing ε0 > 0 small enough. Then these implies that

ε0|p(t)| ≤ d0, q(t) ≤ ηp
2
.(34) cond_pq

Note that, if ` > 2 we have 2− ` < 0 which means that (32) holds for any σ ∈ (0, 1).
We first prove that u± are a pair of sub- and super-solutions.

〈prop_propagation_supersub〉Proposition 1. Let K1 > 1. Then there exist positive constants K2, L, ε0 such that
for any 0 < ε < ε0, (x, t) ∈ D × [0, T − tε] we have

Lu−(x, t) ≤ 0 ≤ Lu+(x, t).(35) eqn_propagation_supersub

Proof. To show (35) we check the conditions (i) − (iii) of Lemma 2 holds. The
support of u± is equal to {(x, t) ∈ D × [0, T ], d ± εp(t) > 0}, so its boundary
in D × [0, T ] is smooth by Lemma 4. With this, and by lemmas 4 and 3 we can
see conditions (i) and (ii) holds. For (iii), we only show for u+; one can use the
same method for u− to show the condition (iii). For simplicity, we define zd =
d(x, t) + εp(t). Direct computation gives

u+t =

(
dt
ε

+ p′(t)

)
Vz + q′(t)Vz

∇V ` =
∇d
ε
V `
z +∇ 1

mp
V `
ζ =

[
∇d
ε

+
zd
ε
∇ 1

mp

]
V `
z

∆V ` =

∣∣∣∣∇dε
∣∣∣∣2 V `

zz + 2
∇d
ε
· ∇ 1

mp
V `
zζ +

∣∣∣∣∇ 1

mp

∣∣∣∣2 V `
ζζ

+∇ ·
[
∇d
ε

+
zd
ε
∇ 1

mp

]
V `
z

=

[
∇d
ε

+
zd
ε
∇ 1

mp

]2
V `
zz +∇ ·

[
∇d
ε

+
zd
ε
∇ 1

mp

]
V `
z

+ 2mp∇d
ε
· ∇ 1

mp
V `
z
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where the equality holds by (20). This implies that

Lu+(x, t) =
dt + εp′

ε
Vz + q′Vδ

− ε

m

(
m`∆V ` + 2∇m` · ∇V ` + ∆m`V `

)
− 1

ε
V (1− V )

=
dt + εp′

ε
Vz + q′Vδ ±

cεm
2p

ε
Vz −

1

ε
V (1− V )± q

ε
V

− ε

m

(
m`

[
∇d
ε

+
mpzd
ε
∇ 1

mp

]2
V `
zz +m`∇ ·

[
∇d
ε

+
mpzd
ε
∇ 1

mp

]
V `
z

+2mp+`∇d
ε
· ∇ 1

mp
V `
z + 2∇m` ·

[
∇d
ε

+
mpzd
ε
∇ 1

mp

]
V `
z + ∆m`V `

)
=
dt − cεm2p

ε
Vz + p′Vz +

cεm
2p

ε
Vz −

1

ε
V (1 + q − V ) +

q

ε
V + q′Vδ

− ε

m
m` |∇d|2

ε2
V `
zz −

ε

m
m`m

pzd
ε
∇ 1

mp
·
[
2
∇d
ε

+
mpzd
ε
∇ 1

mp

]
V `
zz

− ε

m

(
m`∇

[
∇d
ε

+
mpzd
ε
∇ 1

mp

]
V `
z + 2mp+`∇d

ε
· ∇ 1

mp
V `
z

+2∇m` ·
[
∇d
ε

+
mpzd
ε
∇ 1

mp

]
V `
z + ∆m`V `

)
,

where cε := c

(
q(t),

1

mp

)
. Using (19) and the fact that ` − 1 = 2p we can rewrite

Lu+ = E1 + E2 + E3, where

E1 = p′(t)Vz +
c0m

p − cεm2p

ε
Vz + q′(t)Vδ +

q(t)

ε
V,

E2 =
dt − c0mp

ε
Vz +

1− |∇d|2

ε
m2pV `

zz −
ε

m
∆m`V `,

E3 = −m3p∇ 1

mp
·
[
2∇d+mpzd∇

1

mp

]
zd
ε
V `
zz − 2m3p∇d · ∇ 1

mp
V `
z

− 1

m

(
m`∇

[
∇d+mpzd∇

1

mp

]
V `
z + 2∇m` ·

[
∇d+mpzd∇

1

mp

]
V `
z

)
.

(i) Estimates of E1

Since K1 > 1, direct computation gives

p′(t)Vz ≥
(
CV C

p
m + 1

ε
e−σt/ε + LeLt

)
Vz.(36) eqn_E1_1

By (21) we have

q(t)

ε
V + q′(t)Vδ =K2V +

ηpe
−σt/ε

4ε
V

− σηpe
−σt/ε

4ε

(
V

1 + q(t)
+

2− `
2(1 + q(t))

zd
ε
Vz

)
.
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By (25) and (32) we obtain

q(t)

ε
V + q′(t)Vδ ≥ K2V

+
ηpe
−σt/ε

4ε

(
V − σ

(
V +

2− `
2

CV (V + Vz)

))
≥ K2V −

ηpe
−σt/ε

ε

2− `
8

σCV Vz

≥ K2V −
e−σt/ε

ε
Vz.(37) eqn_E1_2

And by (22) we have

Vz
ε

(c0m
p − cεm2p) ≥ −CV

q(t)

ε
mpVz

≥ −CV Cpm
(ηp

4ε
e−σt/ε +K2

)
Vz

≥ −CV Cpm

(
e−σt/ε

ε
e−σt/ε +K2

)
Vz(38) eqn_E1_3

Thus the inequalities (36), (37) and (38) implies

E1 ≥ K2V + (L− C1K2)Vz(39) eqn_E1

for some positive constant C1.
(ii) Estimates of E2

By (29) we obtain

Vz
ε

(dt − c0mp) +
1− |∇d|2

ε
m2pV `

zz ≥− Cd
|d|
ε

(Vz + Cpm|V `
zz|)

≥− Cd
zd
ε

(Vz + Cpm|V `
zz|)

− Cdp(t)(Vz + Cpm|V `
zz|)

Thus by (25) we have following inequality

E2 ≥ −C2(V + Vz)(40) eqn_E2

for some positive constant C2.
(iii) Estimates of E3

Note that zd ≤ |d|+ |p(t)| ≤ 2d0 by (34). By (2), (25) and (29) we obtain

E3 ≥ −C3(V + Vz)(41) eqn_E3

for some positive constant C3.

We now show Lu+ ≥ 0. By (39),(40) and (41) we have

Lu+ ≥
(
K2 − C̃

)
V + (L− C1K2 − C̃)Vz,

where C̃ = C2 + C3. Thus, by choosing L and K2 large enough we have Lu+ ≥ 0.
�
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Proof of Theorem 2.
The first inequality of (14) can be obtained by letting w− ≡ 0, w+ ≡ 1+ηε as sub-

and super- solutions, where ηε is a constant introduced in Theorem 1. We prove the
rest of the results with u±.

For ηg ∈ (0, ηp/2) let ε0,MG be constants satisfying Theorem 1. By (8) we can
find C > 0 such that

if d(x, 0) ≥ Cε then u0(x) ≥MGε,

if d(x, 0) ≤ −Cε then u0(x) = 0.

With this, and by Theorem 1 we have

uε(x, tε) ≤ H+(x) :=

{
1 + ηε if d(x, 0) ≥ −Cε
0 if d(x, 0) < −Cε

,

uε(x, tε) ≥ H−(x) :=

{
1− ηg if d(x, 0) ≥ Cε
0 if d(x, 0) < Cε

.

Equations (23) and (34) imply

V

(
z; q(0),

1

mp(x)

)
≥ 0, V

(
z;−q(0),

1

mp(x)

)
≤ 1− ηp

2
< 1− ηg,

for x ∈ D, z ∈ R, where the last inequality holds by the choice of ηg. Moreover, we
can fix K1 > 0 large enough such that

V

(
(−C +K1); q(0),

1

mp

)
≥ 1 + ηε, V

(
C −K1;−q(0),

1

mp

)
= 0.

And these inequalities imply that

u+(x, 0) ≥ H+(x), u−(x, 0) ≤ H−(x).

Thus, by Proposition 1 and Lemma 2 we have

u−(x, t) ≤ uε(x, t+ tε) ≤ u+(x, t) for x ∈ D, t ∈ [0, T − tε].(42) eqn_prop_comparison

By (23) and (33), we can choose MP > 0 satisfying

V

(
(MP − p(t)); −q(t),

1

mp

)
≥ 1− ηp

V

(
(−MP + p(t)); q(t),

1

mp

)
= 0

for any (x, t) ∈ D × [0, T − tε]. With this, and by (42) we have

if d(x, t) ≥MP ε→ uε(x, t+ tε) ≥ 1− ηp
if d(x, t) ≤ −MP ε→ uε(x, t+ tε) = 0.

Therefore Theorem 2 holds. �
〈rmk_1〉

Remark 1. By using the same sub- and super-solution u±, we can also prove the
convergence result (15). Indeed, by (23) we have

V

(
β−1| ln ε|;−q(t), 1

mp(x)

)
≥ 1− CV ε− q(t).
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Moreover, we have q(t) ≤ (ηp + K2)ε for t ≥ tε = ε| ln ε|. Thus we can fix C > 0
large enough such that for any small enough ε > 0 we have

uε(x, t+ tε) ≥ 1− Cε for d(x, t) ≥ Cε| ln ε|, t ≥ tε(43) rmk_11

where we used (42). With this, (14) and the fact that tε ↓ 0 as ε ↓ 0 implies (15).
This result gives different description of the solution uε. In view of (14), we expect

the interface is generated and propagated with width O(ε), which seems natural since
the equation is obtained by the hyperbolic scaling. In view of (43), even though the
result may not seems related to the hyperbolic scaling, it gives much finer expectation
of uε which allows to see the convergence result (15).

6. Numerical simulation
〈sect.contacts〉

In this section we give a numerical simulation of the solution of (1) and (4). Here
we consider ` = 2. Note that c0 = 1 is knwon for ` = 2; see [2]. With such idea,
the numerical simulation of (1) and (4) for 1 and 2 dimensional space is given in
figures 2 and 3. As we can see in the results, the support of the function U

m can be
approximated with the interface following the motion equation (4). The interesting
feature of the motion (4) can be observed in Figure 3, especially in t = 5, 6. As
mentioned in the introduction we no longer expect the interface to be convex, where
the non-convexity comes from the heterogeneity of the speed. This expectation can
be seen not only in the interface following (4)(the red line in Figure 3) but also to
the support of the function U in the numerical simulation.
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(a) Heterogeneous function m (b) Generation of interface

(c) Movement of support boundary (d) t = 4 result for ε = 0.1, 0.3, 0.5

Figure 2. Numerical simulation of (1) and (4) for ` = 2. Figure (a)
is a graph of the function m, which is given as a smooth approxima-
tion of x + 2. Figure (b) is a numerical simulation of generation of
interface. Here we let ε = 0.1 and the initial condition as a step func-
tion with 0.5 as maximum value(purple line). Other graphs indicates
the function uε at time t = 0.2, 0.4, 0.6(blue, orange, yellow). Figures
(c) and (d) are numerical simulation to see the propagation of uε for
ε = 0.1, 0.3, 0.5(blue, orange, yellow) and the interface Γt(purple).
Figure (c) represents the boundary of support uε and Γt from t = 0
to t = 4. Figure (d) plots the graphs uε at time t = 4 and a step
function with boundary Γt.

〈fig_2_d1simul〉
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