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Abstract. There have been discussions and debates on the correct
di�usion law for a long time when di�usivity varies in space. We con-
sider heterogeneous random walk system in the paper and show that the
heterogeneity in the walk-length behaves very di�erently in comparison
with the one in the sojourn time. As a conclusion, we will see that the
di�usion law cannot be given in terms of di�usivity alone and hence, we
need a di�usion law with two components.

1. Introduction

Random walk models are often used in explaining the di�usion coe�cient
and di�usion equation satis�ed by Brownian particle systems. In a position
jump model, particles choose the moving direction randomly every sojourn
time △t and jump the walk-length △x. Then, in n-space dimensions, the
di�usivity is given by

(1.1) D =
|△x|2

2n△t
.

In a homogeneous environment, the parameters are assumed to be constant
and the di�usion equation is given by

(1.2) ut = D∆u,

where u = u(t, x) is the particle density, ∆u :=
∑n

i=1 ∂
2
xi
u is the Laplacian,

t > 0 is the time variable, and x ∈ Rn is the space variable.
The paper aims to introduce a discrete-time, continuous-space random

walk model in a heterogeneous environment and show the corresponding
di�usion equation by taking the di�usion limit of the solution. We will see
how the di�usion equation is decided in the process. In a heterogeneous en-
vironment, the two parameters, △x and △t, vary spatially, and hence the
di�usivity D is not constant. It should be noted that (1.1) is the correspond-
ing di�usivity, but (1.2) is not the correct di�usion equation. We will see that
the di�usivity D is decided by the heterogeneity, but the di�usion equation
is decided how to use it, i.e., by the choice of reference point.

Date: September, 2022.

1



2 YONG-JUNG KIM AND HYUN JIN LIM

Fick's di�usion equation has been widely used as a heterogeneous di�usion
law which is the given by

(1.3) ut = ∇ · (D∇u).

However, it fails to explain observed phenomenon in many situations (see
[2, 8, 16, 23]). The temperature di�erence is the one studied the most with the
longest history (see [13, 17, 18]). The particles in a warm region move more
actively than the ones in a cold region. We may model such heterogeneity
by taking nonconstant parameters,

(1.4) △x
∣∣
at p

= ϵℓ(p), △t
∣∣
at p

= ϵ2τ(p),

where the small parameter ϵ > 0 is to take a parabolic scale limit and ℓ and τ
are given functions. However, the relation (1.4) does not provide a complete
information and the way to take the heterogeneities in ℓ and τ should be
speci�ed to complete a random walk model. For example, suppose that a
particle jumps from a departure point x to an arrival point y. Then, one
may take the walk length and the sojourn time as

(1.5) △x
∣∣
x→y

= ϵℓ(ay + (1− a)x), △t
∣∣
x→y

= ϵ2τ(by + (1− b)x),

where a, b ∈ [0, 1] are the parameters that decide reference points. If a = b =
0, the reference point is the departure point x, if a = b = 1, the arrival point
y, and if a = b = 1

2 , the middle point between x and y. One of the central
aspect of the paper is that the obtained di�usion equation depends on the
parameter a, but not on b. In other words, the heterogeneity in △t involved
in the random walk system very di�erently from the one in △x.

1.1. Langevin equation. Einstein [5] introduced the idea of discrete-time
random walk and explained the di�usion phenomenon using the Brownian
particle motion. Three years later, Langevin [12] introduced the stochastic
di�erential equation (or SDE for brevity) and obtained the same result in a
simpler way. The theory of SDE has been developed a lot and is now used
widely for random phenomena (see [7, 20]). In a heterogeneous environment,
the Langevin equation becomes a nonlinear stochastic di�erential equation,

(1.6) dx = g(x)dW.

where x = x(t) is the position of a particle at time t and dW = dW (t)
is a stationary stochastic process. The drift term has been dropped from
the equation since we consider the model without advection. However, this
equation is meaningless until the way of integration is speci�ed, and there
have been debates about the right way of handling it (see [15, 19]).

The issue becomes more clear if (1.6) is rewritten in a Riemann-Stieltjes
integration form,

(1.7) x(t) = x(0) +
N∑
i=1

g(pi)(W (ti)−W (ti−1)),
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where 0 = t0 < t1, · · · < tN = t is a partition of the interval [0, t]. The
function g(x) is the deviation if dW (t) is the Gaussian white noise and
plays the role of the walk-length △x in our case. However, this relation has
meaning only when pi ∈ [ti−1, ti] is speci�ed, which plays the role of reference
point in (1.5). If the choice is pi = x(ti−1), (1.7) is called an Ito type and the
probability density function of the stochastic process satis�es a Fokker-Plank
equation

(1.8) ut = ∆(Du),

where the di�usivity D is given by the same formula (1.1) with △x = g(x)
and △t = 1. This is the same di�usion equation derived by Chapman [1].

If pi = x( ti+ti−1

2 ), (1.7) is called a Stratonovich type and the probability
density function satis�es a di�erent Fokker-Plank equation

(1.9) ut = ∇ · (
√
D∇(

√
Du)),

which is the same di�usion equation derived by Wereide [21]. In other words,
the well-known �Itô versus Stratonovich� controversy [15, 19] is about how
to set the reference point for the stochastic integration, which corresponds
to taking a reference point of a random walk for the nonconstant walk length
in our problem.

We will derive a di�usion equation in a general form with the heterogeneity
in △x only. The equation depends on the reference point parameter a in
(1.5) and the two di�usion equations, (1.8) and (1.9), are special cases of
it. However, if the heterogeneity in △t is included, the two are not special
case any more since there is no component corresponding to △t in stochastic
di�erential equation (1.6). We will see that the heterogeneity in △t has the
property of Itô stochastic integration (see Conclusion).

1.2. Model and results. We brie�y introduce main models and results of
the paper. Details and complete arguments are given in the following sections
rigorously. The �rst case is when the sojourn time is constant τ = τ0 and
the heterogeneity is in the walk-length ℓ(x) only. For simplicity, we consider
the one space dimension. The discrete-time, continuous-space random walk
model of the paper is given by a recursion relation,

uϵ(t+ ϵ2τ0, x) =
1

2
uϵ(t, B−(x))B

′
−(x) +

1

2
uϵ(t, B+(x))B

′
+(x),

where B± are given implicitly by

(1.10) B±(x) = x∓ ϵℓ(ax+ (1− a)B±(x)), a ∈ [0, 1].

In words, B±(x) are the two departure points of a particle when x is the
arrival point, and B+(x) < x < B−(x). The reference point is p = ax+ (1−
a)B±(x). The �rst conclusion of the paper is Theorem 4.1, which shows the
uniform convergence of the solution uϵ as ϵ → 0 to the solution of a di�usion
equation,

(1.11) ut =
1

2τ0
(ℓ2a(ℓ2−2au)x)x = (Da(D1−au)x)x,
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where D = ℓ2(x)
2τ0

and a ∈ [0, 1]. If a=0, the reference is the departure point

of Itô type, and (2.1) becomes (1.8). If a = 1
2 , the reference is the middle

point of Stratonovich type, and (2.1) becomes (1.9). If a = 1, the reference
is the arrival point, and (2.1) becomes Fick's law [6]. Hence, the walk-length
ℓ(x) plays the same role of g(x) in (1.6).

The second case is when the walk length is constant ℓ = ℓ0 and the
heterogeneity is in sojourn time τ(x) only. The heterogeneity in the sojourn
time is involved in the system di�erently and makes the problem extremely
harder.1 The only case done is when τ is a step function,

(1.12) τ(x) =

{
1, x < 0,

2, x ≥ 0,

and the reference point is taken as the middle point with b = 0.5 (see [3]).
In the case, the corresponding di�usion equation is

(1.13) ut = (Du)xx, D =
ℓ20
2τ

.

In Lemma 5.1, it is proved that the maximum variation of the total sojourn
time with respect to the parameter b is of order O(ϵ2) as ϵ → 0 for any given
sample path. Therefore, the di�usion equation should be independent of the
parameter b, and hence (1.13) is the di�usion equation not just for b = 0.5
case, but for all b ∈ [0, 1].

We expect that (1.13) holds for general sojourn time τ(x), but we don't
know how to work with general nonconstant sojourn time. Instead, we inter-
pret the departing rate as the reciprocal of the sojourn time, i.e.,

(1.14) γ(x) :=
τ0

τ(x)
, 0 < τ0 ≤ inf

x
τ(x).

The concept of departing rate has been widely used without connecting it
to the sojourn time (see [14, 22]). Then, we can handle the heterogeneity in
△x and △t together. Using B± in (1.10) and the departing rate γ in (1.14),
one take a discrete-time model

uϵn+1 =
1

2
γ(B+)u

ϵ
n(B+)B

′
+ +

1

2
γ(B−)u

ϵ
n(B−)B

′
− + (1− γ)uϵn.

In this model, the reference point of the departing rate γ is taken as the
departure point since the sojourn time is placed as in (1.13) for the special
case of (1.12) and the di�usion equation is independent of the reference point
parameter b.

The second conclusion of the paper is Theorem 6.1, which shows the uni-
form convergence of the solution uϵ as ϵ → 0 to the solution of a di�usion

1�A spatial jump is trivial when compared with the unknowns of time travel. One is
like sliding along the ice and the other is akin to descending blindly into the depths of the
freezing water and reappearing as an acorn.� Sir Reginald Hargreeves in The Umbrella
Academy, the second episode of the �rst season (run boy run).
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equation,

(1.15) ut =
1

2τ0
(ℓ2a(ℓ2−2aγu)x)x =

(ℓ2a
2

(ℓ2−2a

τ
u
)
x

)
x
.

If we write the equation in terms of the di�usivity D given by (1.1), the
di�usion equation (1.15) cannot be written in terms of the di�usivity D only
since the heterogeneities in ℓ and τ are involved in the equation di�erently.
If we rewrite (1.15) in terms of D and τ , we obtain

(1.16) ut =
(
τaDa

(D1−a

τa
u
)
x

)
x
.

The heterogeneities in ℓ(x) and τ(x) are involved in the di�usion equation
di�erently, and the di�usivity splits into two parts as in (1.15) or (1.16).
There can be even more components involved in the real life di�usion. How-
ever, even if there are more components involved, the di�usion equation could
be eventually written as

(1.17) ut = (K(Mu)x)x, D = KM,

where K is called the di�usion conductivity and M the motility. If the ref-
erence point is chosen as (1.5), the resulting di�usion equation is (1.16) and
the two coe�cients are

K(x) = τaDa and M(x) = τ−aD1−a.

If we write then in terms of ℓ and τ ,

K(x) = ℓ2a(x)/2 and M(x) = ℓ2−2a(x)/τ(x).

Remark 1.1. A random walk model is called reversible (or revertible) if
expectation E(X2) = X0, when the random variable X2 is the position of a
particle after two walks of the opposite direction and X0 is the initial position
(see [10]. If a = 1

2 , the random walk system is reversible and we obtain the
same di�usion equation derived in [9]. We denote the speed of particle as

v = △x
△t = ℓ

τ and the turning frequency as µ = 2
△t . Therefore, K and M of

the a = 1
2 case are written as

K(x) =
ℓ

2
=

v(x)

µ(x)
, M(x)

ℓ(x)

τ(x)
= v(x).

This is the same case obtained in [9, (32)].

In the paper, we study a discrete-time random walk system when the
jumping distance △x and the jumping time △t are spatially nonconstant.
For a continuous-time random walk model case has been considered in a
companying paper [4] and the same di�usion equations (1.15) or (1.16) are
obtained. These results show that the obtained di�usion equation and the
role of reference points are robust. On the other hand, the two models have
di�erent the technical issues and advantages. We may also see di�erent as-
pects of heterogeneous di�usion from the two models. To handle spatially
nonconstant jumping distance properly, we take a continuous-space random
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walk system. To handle spatially nonconstant jumping time, we replace the
sojourn time with departing rate.

The rest of the paper is organized as follows. In Section 2, a discrete-
time, continuous-space random walk model is introduced when the sojourn
time is constant. Basic properties of the model is discussed. The di�usion
equation (1.15) is formally derived in Section 3 and then uniform convergence
of the discrete solution to the solution of the di�usion equation is proved in 4
(Theorem 4.1). In Section 5, we show that the di�usion limit of the random
walk model is independent of the reference point of the sojourn time (Lemma
5.1), but dependent of the walk length (Lemma 5.2). In Section 6

Since the sojourn time is heterogeneous, the obtained random walk system
is not Markovian. The main e�ort of the section is to transform it into Mar-
kovian. In Section 3, we construct a Lipschitz continuous interpolation of the
discrete solution of the random walk problem, and �nd uniform estimates
using di�erence quotients. These estimates give a convergent subsequence of
the interpolation. The convergence to the weak solution is �nally proved in
Section 4. In Section 5, Green's function for the di�usion equation (??) is
obtained explicitly. It is compared with the discrete random walk system.
Three Monte Carlo simulations are given in Section 6 which show the be-
havior of Green's function and steady states. We also test the reference point
independency in the sojourn time. The computation codes of these numerical
simulations are given in Appendix.

2. Spatially heterogeneous walk-length

In this section, we introduce a discrete-time, continuous-space random
walk system. If the walk-length is spatially heterogeneous, we need to take a
continuous-space random walk system to handle such a spatial heterogeneity
properly. We start with a heterogeneity in △x �rst and consider a case with
constant jumping time τ = τ0. Denote the time mesh as

Tϵ := ϵ2τ0N = {0, ϵ2τ0, 2ϵ2τ0, 3ϵ2τ0, · · · }
for ϵ > 0 small. Note that we have chosen a parabolic scale ϵ2 in time to
obtain a di�usion limit. For a simpler presentation, we consider di�usion in
one space dimension and take the space domain as

X := [0, 1] ⊂ R

with the periodic boundary condition, i.e., X is a circle.
The particle density is a function u : Tϵ × X → R, where u(nϵ2τ0, x)

denotes the particle density at position x ∈ X and time nϵ2τ0. If needed,
we denote the ϵ dependency explicitly as uϵ. We also denote the density
distribution at nth time step as un(x) = u(nϵ2τ0, x). To derive a discrete-time
and continuous-space random walk model, we �rst �nd a recursive relation
that computes un+1(x) from un(x).

In a random walk system, a particle placed at x moves to right or left at
the next time step with equal probability. Let N+(x) > x and N−(x) < x be
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the two possible positions at the `N'ext time step when x is the departing
position. Let y be the arrival point, i.e., y = N+(x) or y = N−(x). In a
homogeneous random walk system, the walk-length |y−x| is a given constant.
In our case, the walk-length depends on the space variable and given by a
smooth function ℓ ∈ C2(X). Since ℓ is smooth and the domain X is compact,
ℓ and its derivatives are uniformly bounded, i.e., there exist constants ℓmin,
ℓmin, and M > 0 such that

(2.1)

{
0 < ℓmin ≤ ℓ(x) ≤ ℓmax < ∞,

|ℓ′(x)|, |ℓ′′(x)| < M,
x ∈ X.

Even if the domain is not compact, we may proceed the estimate under the
assumptions in (2.1).

The reference points are taken according to (??), where, for the walk from
x to y, the walk-length is given by

|y − x| = ϵℓ(ay + (1− a)x).

The arrival points y = N±(x) is decided by implicitly by

(2.2)

{
N+(x) = x+ ϵℓ(aN+(x) + (1− a)x),

N−(x) = x− ϵℓ(aN−(x) + (1− a)x).

If ϵ > 0 is small enough, N± are uniquely decided by the implicit relations
due to the uniform bounds in (2.1).

2.1. Algorithm with volume factor. Since ℓ is smooth and ϵ > 0 is small,
N± are di�erentiable and invertible. We denote the inverse functions of N±
as B±. In other words, B±(x) are the possible two positions that a particle
was placed one step `B'efore the the position one step before the current
position x. Then, for N± in (2.2),

(2.3)

{
B+(y) = y − ϵℓ(ay + (1− a)B+(y)),

B−(y) = y + ϵℓ(ay + (1− a)B−(y)).

Note that both N± and B± depend on ϵ. If needed, we may denote them
by N ϵ

± and Bϵ
± to show the ϵ dependency explcitly. Let Ω ⊂ X be a region.

Then, the population in the region Ω at the next time step is given by∫
Ω
uϵn+1(x)dx =

1

2

∫
B−(Ω)

uϵn(x)dx+
1

2

∫
B+(Ω)

uϵn(x)dx

=
1

2

∫
Ω
uϵn(B−(x))B

′
−(x)dx+

1

2

∫
Ω
uϵn(B+(x))B

′
+(x)dx,

where the second equality is by change of variables. Since the relation holds
for any region Ω, the density uϵn satis�es{

uϵn+1(x) =
1
2u

ϵ
n(B+(x))B

′
+(x) +

1
2u

ϵ
n(B−(x))B

′
−(x),

uϵ0(x) = u0(x),
(2.4)
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where u0(x) is the initial distribution. This is the discrete-time and continuous-
space recursive relation.

One of the main di�erences of the model in comparison with discrete-space
random walk systems is the presence of the volume factor, B′

±(x). Since u
ϵ
n is

the density, not the population, the volume factor appears. In a homogeneous
random walk system with a constant walk-length △x, B±(x) = x∓△x and
hence B′

±(x) = 1. Therefore, the continuous-space random walk system takes
the same recursive relation as the discrete-space random walk system when
the model is spatially homogeneous.

2.2. Formulation of heterogeneous nonlocal di�usion. A nonlocal dif-
fusion equation is often given in a convolution form using an integration ker-
nel. The recursive relation (2.4) can be similarly written using a convolution
kernel. However, since it is a heterogeneous model, we need a kernel with
two independent variables,

(2.5) K(x, y) =
1

2
δ(y −N−(x)) +

1

2
δ(y −N+(x)).

The kernel K(x, y) gives the migration rate from departing position x to
arrival point y. Consider a discrete-time random walk model in a convolution
form,

(2.6) un+1(x) =

∫
K(y, x)un(y)dy.

If we substitute the kernel (2.5), it is written as

un+1(x) =
1

2

∫
δ(x−N−(y))un(y)dy +

1

2

∫
δ(x−N+(y))un(y)dy.

After change the variables with p = N±(y), the integrals become∫
δ(x−N−(y))un(y)dy =

∫
δ(x−p)un(B−(p))B

′
−(p)dp = u(B−(x))B

′
−(x).∫

δ(x−N+(y))un(y)dy =

∫
δ(x−p)un(B+(p))B

′
+(p)dp = u(B+(x))B

′
+(x).

Therefore, after substitution, we return to the recursive formula (2.4),

un+1(x) =
1

2
un(B−(x))B

′
−(x) +

1

2
un(B+(x))B

′
+(x).

In other words, the kernel given in (2.5) contains the volume factor correctly
inside.

Remark 2.1. One might take

K(x, y) =
1

2
δ(B−(y)− x) +

1

2
δ(B+(y)− x)

as a kernel. However, it does not give the same random walk. If we write
(2.6) in a recursive formula, we obtain

un+1(x) =
1

2
un(B−(x)) +

1

2
un(B+(x)),
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which is di�erent from our recursive realtion (2.4).

3. Formal derivation

In this section, we formally show that the recursive relation (2.3)�(2.4)
converges to a di�usion equation,

(3.1)

{
∂tu(t, x) =

1
2τ0

(
ℓ2a
(
ℓ2−2au

)
x

)
x

u(0, x) = u0(x)

as ϵ → 0. The exponent a in the equation is from the choice of the reference
point given by p = ay + (1− a)x when a particle jumps from x to y.

We start the discussion with the case a = 1, i.e., the reference point is the
arrival point p = y, and then extend it to the general case. If a = 1, B±(x)
in (2.3) are explicitly given by

(3.2) B+(x) = x− ϵℓ(x), B−(x) = x+ ϵℓ(x).

Then, (2.4) gives

τ0
uϵn+1(x)− uϵn(x)

ϵ2τ0
=

1

2ϵ2

(
uϵn(x+ ϵℓ(x))(1 + ϵℓ′(x))

+ uϵn(x− ϵℓ(x))(1− ϵℓ′(x))− 2uϵn(x)
)
.

The left side converges to the time derivative τ0ut as ϵ → 0. The Taylor
expansion of the right side gives

1

2ϵ2

(
uϵn(x+ ϵℓ(x))(1 + ϵℓ′(x)) + uϵn(x− ϵℓ(x))(1− ϵℓ′(x))− 2uϵn(x)

)
=

1

2ϵ2

(
(uϵn)xxϵ

2ℓ2 + 2(uϵn)xϵ
2ℓℓx +O(ϵ3)

)
=

1

2
(ℓ2(uϵn)x)x +O(ϵ).

Therefore, after taking ϵ → 0 limit, we formally obtain Fick's di�usion law,

(3.3) ut =
1

2τ0
(ℓ2ux)x,

which is the equation (3.1) with a = 1. Since τ0 is constant, we may place it
inside the derivatives. For example, we may write it as

ut =
1

2

(
ℓ2
( 1

τ0
u
)
x

)
x
,

which is the special case of (1.15) when a = 1 and τ = τ0.
Now we consider the general case that the reference point is given by

p = ay + (1− a)x

when a particle jumps from x to y. In the following Lemma, we show that
N±(x) is invertible if ϵ is small enough and �nd the Taylor expansion of the
inverse B±(x).
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Lemma 3.1. Let X ⊂ R be a closed interval with periodic boundary condition
and ℓ ∈ C2(X) satis�es the uniform bounds in (2.1). Then, there exists ϵ0 > 0
such that for all 0 < ϵ < ϵ0, N±(x) are invertible and their inverse functions
B±(x) satisfy the following expansion;

(3.4) B±(x) = x∓ ϵℓ(x) + (1− a)ϵ2ℓ(x)ℓ′(x) +O(ϵ3)

Proof. First, we show that N± are invertible if ϵ > 0 is small enough. Let
y = N±(x). Then, by a di�erentiation,

dy

dx
= 1± ϵℓ′(ay + (1− a)x)

(
a
dy

dx
+ 1− a

)
.

Then,

dy

dx
(1∓ ϵℓ′(a2y + (1− a)ax)) = 1± ϵℓ′(ay + (1− a)x)(1− a).

Since |ℓ′| is bounded, there exists ϵ0 > 0 such that, for all 0 < ϵ < ϵ0,

(1∓ ϵℓ′(a2y + (1− a)ax)) > 0, 1± ϵℓ′(ay + (1− a)x)(1− a) > 0.

Therefore, N±(x) are monotone and invertible.
The inverse functions B± are given explicitly as in (3.2) when the reference

point is the arrival point, i.e., a = 1. In general, the inverse functions are not
given explicitly. However, in order to �nd the parabolic scaling limit, we only
need the Taylor expansion of B±. Since |y−x| = ϵ|ℓ(ay+(1−a)x)| ≤ ϵℓmax,
we have

y − x = ±ϵℓ(ay + (1− a)x)

= ±ϵ
(
ℓ(y) + (1− a)ℓ′(y)(x− y) +O(ϵ2)

)
.

If we rewrite it for y − x, we obtain

y − x = ± ϵℓ+O(ϵ3)

1± ϵ(1− a)ℓ′
= ±ϵℓ(y)− (1− a)ϵ2ℓ(y)ℓ′(y) +O(ϵ3).

Finally, we obtain

x = B±(y) = y ∓ ϵℓ(y) + (1− a)ϵ2ℓ(y)ℓ′(y) +O(ϵ3).

Therefore, B±(x) satis�es the expansion (3.4). □

We may follow the formal computation of the case with a = 1 by substi-
tuting the expansion formula (3.4) to the recursive relation (2.4) to obtain
the equation (3.1), which is left to readers of the paper. In below, we present
another formal calculation.

Fix x0 ∈ X and de�ne U(x) for x > x0 as

U(x) =

∫ x

x0

u(y)dy,
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and B(x, ϵ) for |ϵ| < ϵ0 as

B(x, ϵ) =


B+(x), if ϵ > 0,

x, if ϵ = 0,

B−(x), if ϵ < 0.

Then, U(x) is the total population in the region [x0, x] and B(x, ϵ) is smooth
with respect to ϵ at least twice due to the expansion (3.4). By expanding
U(B(x, ϵ)) with respect to ϵ with �xed x, we obtain

U (B(x, ϵ)) = U(x) + ϵu (B(x, ϵ)) ∂ϵB
∣∣∣
ϵ=0

+
1

2
ϵ2
(
ux (B(x, ϵ) · (∂ϵB)2 + u (B(x, ϵ)) ∂ϵϵB

) ∣∣∣
ϵ=0

+O(ϵ3)

= U(x)− ϵu(x)ℓ(x)

+
1

2
ϵ2
(
ux(x)ℓ(x)

2 + 2(1− a)u(x)ℓ(x)ℓ′(x)
)
+O(ϵ3).

By di�erentiating the result with respect to x, we obtain

u (B(x, ϵ))Bx(x, ϵ) = u(x)− ϵ(u(x)ℓ(x))x

+
1

2
ϵ2
(
ux(x)ℓ(x)

2 + 2(1− a)u(x)ℓ(x)ℓ′(x)
)
x
+O(ϵ3).

Then, using the formula, we obtain

u (B(x, ϵ))Bx(x, ϵ) + u (B(x,−ϵ))Bx(x,−ϵ)− 2u(x)

= ϵ2
(
uxℓ

2 + 2(1− a)uℓℓ′
)
x
+O(ϵ3)

= ϵ2
(
ℓ2ux + ℓ2a(ℓ2−2a)xu

)
x
+O(ϵ3)

= ϵ2
(
ℓ2a(ℓ2−2au)x

)
x
+O(ϵ3).

For uϵn in (2.4), we obtain

(3.5) τ0
uϵn+1(x)− uϵn(x)

ϵ2τ0
=

1

2ϵ2
(
ϵ2
(
ℓ2a(ℓ2−2au)x

)
x
+O(ϵ3)

)
.

After taking the limit as ϵ → 0, we obtain the di�usion equation,

∂tu =
1

2τ0

(
ℓ2a
(
ℓ2−2au

)
x

)
x
.

4. Uniform convergence

In this section, we show that the solution uϵn of the recursive relation (2.4),
converges uniformly to the solution u of the di�usion equation (3.1) as ϵ → 0.
To do that uϵ is extended to a function de�ned on the continuous time space
by a linear interpolation,

(4.1) uϵ(t, x) =
t− nϵ2τ0

ϵ2τ0
uϵn+1(x) +

(n+ 1)ϵ2τ0 − t

ϵ2τ0
uϵn(x)

for t ∈ [nϵ2τ0, (n + 1)ϵ2τ0]. Then, u
ϵ
n(x) = uϵ(nϵ2τ0, x) and the continuous-

time function uϵ(t, x) and the discrete-time function uϵn(x) agree on the
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discrete-time grids Tϵ = {0, ϵ2τ0, 2ϵ2τ0, 3ϵ2τ0, · · · }. The main convergence
theorem is as follows.

Theorem 4.1 (Uniform convergence). Let X ⊂ R be a closed interval with
periodic boundary condition and ℓ ∈ C2(X) satis�es the uniform bounds in
(2.1). Let the initial condition u0(x) be smooth, bounded, and positive. Let
uϵ be the linear interpolation (4.1) of the solution uϵn of (2.4) with the initial
condition u0(x). Then, for a �xed T > 0, uϵ converges to the solution u of
(3.1) uniformly, i.e.,

∥uϵ − u∥L∞(X×[0,T ]) → 0 as ϵ → 0.

The uniqueness and the existence of solutions to an explicit recursive
relation such as (2.4) is obvious. We will show a comparison principle and
use it for the proof of Theorem 4.1. For the comparison principle, we start
with super- and sub-solutions of a discrete-time model in a general setting,
which is a simple extension of the ones from continuous-time models.

De�nition 4.2. An operator K : L1(X) → L1(X) is called nonnegative if
Ku ∈ L1(X) is nonnegative for all nonnegative u ∈ L1(X).

For a given operator K, an initial function u0 ∈ L1(X), and a sequence of
functions fn ∈ L1(X), we may de�ned a sequence of functions recursively as

(4.2) un+1 = Kun + fn, n ≥ 0.

De�nition 4.3. A sequence of vn ∈ L1(X) is called a super-solution of the
relation (4.2) if

v0(x) ≥ u0(x)

vn+1(x) ≥ Kvn(x) + fn(x).

The sequence vn is called a sub-solution if the inequalities are reversed.

Theorem 4.4 (Comparison property). Suppose {wn} and {vn} are respec-
tively super- and sub-solutions with initial values, w0 and v0, and source
terms, {fn} and {gn}. If K is a nonnegative linear operator, w0 ≥ v0, and
fn ≥ gn for each n, then wn ≥ vn for all n.

Proof. The two sequences satisfy

wn+1(x) ≥ Kwn(x) + fn(x),

vn+1(x) ≤ Kvn(x) + gn(x).

Subtract the second equation from the �rst one and obtain

wn+1(x)− vn+1(x) ≥ Kwn(x)−Kvn(x) + fn(x)− gn(x)

= K(wn(x)− vn(x)) + fn(x)− gn(x).

Therefore, wn − vn is a super-solution with a nonnegative initial value and
source terms. Hence, wn ≥ vn. □

Corollary 4.5. Let K ≥ 0, u0 ≥ 0, fn ≥ 0, and un(x) be a super-solution.
Then, un ≥ 0 for all n.
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By Lemma 3.1, there exists ϵ0 > 0 such that for all 0 < ϵ < ϵ0, N± are
invertible and the time discrete density distribution uϵn satis�es the recursive
relation,

(4.3) un+1(x) =
1

2
un(B+(x))B

′
+(x) +

1

2
un(B−(x))B

′
−(x),

where B± are the inverse functions of N±. The next position function N±
and the previous position function B± are given by relations (2.2) and (2.3).
We de�ne the operator Kϵ as

(4.4) Kϵu :=
1

2
u(B+(x))B

′
+(x) +

1

2
u(B−(x))B

′
−(x).

Then, the operator is linear and positive. Note that the operator Kϵ depends
on the parameter ϵ, where the functions B± and N± depend on ϵ, too.

Using the operator Kϵ, we may write the discrete-time model (4.3) in a
simpli�ed form

uϵn+1(x) = Kϵuϵn(x),(4.5)

uϵ0(x) = u0(x).

Lemma 4.6. Let uϵ(t, x) be the linear interpolation given by (4.1). Then,

(4.6) uϵ(t+ ϵ2τ0, x) = Kϵuϵ(t, x).

Proof. Since Kϵ is a linear operator,

Kϵuϵ(t, x) =
t− nϵ2τ0

ϵ2τ0
Kϵuϵn+1(x) +

(n+ 1)ϵ2τ0 − t

ϵ2τ0
Kϵuϵn(x)

=
t+ ϵ2τ0 − (n+ 1)ϵ2τ0

ϵ2τ0
uϵn+2(x) +

(n+ 2)ϵ2τ0 − (t+ ϵ2τ0)

ϵ2τ0
uϵn+1(x)

= uϵ(t+ ϵ2τ0, x),

which completes (4.6). □

The following lemma corresponds to the formal calculation in Section 3.

Lemma 4.7 (Formal convergence). Let B± be given by (2.3) and de�ne two
operators

(4.7) Lu :=
1

2τ0

(
ℓ2a
(
ℓ2−2au

)
x

)
x
, and Lϵu :=

Kϵu− u

τ0ϵ2

for a ∈ [0, 1] and u ∈ C2(X). Then,
Lϵu = Lu+O(ϵ) as ϵ → 0.

Proof. It is obtained in (3.5) that, for each choice of reference a ∈ [0, 1],

Lϵu =
1

ϵ2τ0

(
1

2
u(B+(x), t)B

′
+(x) +

1

2
u(B−(x), t)B

′
−(x)− u(t, x)

)
is a smooth function for small ϵ and satis�es

Lϵu = Lu+O(ϵ) as ϵ → 0.
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By Taylor's formula, the di�erence satis�es

|Lϵu(x)− Lu(x)| = |Lu(x̃)− Lu(x)|
= |(Lu)x(˜̃x)| · |x− x̃|

for some x̃, ˜̃x ∈ (B+(x), B−(x)) and the distance is of order ϵ∥ℓ∥. Once
we assume smoothness and boundedness of u, ℓ, and their derivatives, the
di�erence is bounded by Cϵ with C = C(u, ℓ, a) is constant determined by
u, ℓ, and the reference point parameter a ∈ [0, 1]. □

Using the operator L given in (4.7), the di�usion equation (3.1) is written
as

(4.8) ∂tu(t, x) = Lu(t, x).

Lemma 4.8. If ℓ ∈ C3(X), there exists ϵ0 > 0 small such that

Lϵ(1) =
1

2ϵ2τ0
(B′

+ +B′
− − 2)

is uniformly bounded for a ∈ [0, 1], x ∈ X, and ϵ ∈ [0, ϵ0].

Proof. N± is de�ned for small ϵ > 0. By Lemma 4.7, for a small ϵ and u = 1,

|Lϵ(1)| ≤ |L(1)|+ |(L(1))x| · ∥ℓ∥ϵ

= | 1

2τ0

(
ℓ2a(ℓ2−2a)x

)
x
|+ | 1

2τ0

(
ℓ2a(ℓ2−2a)x

)
xx

| · ∥ℓ∥ϵ.

Since ℓ and its derivataives are uniformly bounded, the above is uniformly
bounded for a �xed a and ϵ. Then, by the continuity along a and ϵ, it is
uniformly bounded for a and ϵ, too. □

Note that if the arrival point is taken as the reference point, i.e., a = 1,
then we have

Lϵ(1) =
1

2τ0

(
1 + ϵℓ′ + 1− ϵℓ′ − 2

)
= 0.

Next, we prove the uniform convergence of the main theorem.

Proof of Theorem 4.1. Denote wϵ := uϵ − u and take samples,

wϵ
n(x) = wϵ(nϵ2τ0, x) = uϵn(x)− u(nϵ2τ0, x).

Then, from the recursive relation and the di�usion equation, we have

wϵ
n+1(x) = uϵn+1(x)− u((n+ 1)ϵ2τ0, x)

= Kϵuϵn(x)− u(nϵ2τ0, x)−
∫ (n+1)ϵ2τ0

nϵ2τ0

Lu(s, x)ds

= Kϵwϵ
n(x) +Kϵu(nϵ2τ0, x)− u(nϵ2τ0, x)−

∫ (n+1)ϵ2τ0

nϵ2τ0

Lu(s, x)ds

= Kϵwϵ
n(x) +

∫ (n+1)ϵ2τ0

nϵ2τ0

(
Lu(nτ0ϵ

2, x)− Lu(s, x) +O(ϵ)
)
ds.
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Denote

Fϵ,n(u;x) =

∫ (n+1)ϵ2τ0

nϵ2τ0

(
Lu(nτ0ϵ

2, x)− Lu(s, x) +O(ϵ)
)
ds.

Then,

|Fϵ,n(u;x)| ≤
∫ (n+1)ϵ2τ0

nϵ2τ0

(s− nτ0ϵ
2)∥L2u∥∞ +O(ϵ)ds

≤ ∥L2u∥∞τ20 ϵ
4 +O(ϵ3) ≤ ϵ2θ(ϵ)

for some θ(ϵ) which depends only on ϵ and of order O(ϵ) as ϵ → 0. Then,
{wϵ

n(x)} satis�es a recursive relation with a source term,

(4.9)

{
wn+1(x) = Kϵwn(x) + Fϵ,n(u;x),

w0(x) = 0.

Next, we construct a super-solution of the recursion relation (4.9). First,
let

η(ϵ) = max
x∈X

1

ϵ2τ0
|Kϵ(1)− 1| = max

x∈X

1

2ϵ2τ0
|B′

+(x) +B′
−(x)− 2|,

which is bounded for ϵ ∈ (0, ϵ0]. De�ne a function of ϵ > 0 as

w̄n(ϵ) =

{
θ(ϵ)
η(ϵ)

((
1 + ϵ2η(ϵ)

)n − 1
)
, η(ϵ) ̸= 0,

θ(ϵ)nϵ2, η(ϵ) = 0,

where the case with η(ϵ) = 0 is extended continuously from the other case.
We can easily check that {w̄n(ϵ)} is the solution of a recursive relation{

w̄n+1 =
(
1 + η(ϵ)ϵ2

)
w̄n + ϵ2θ(ϵ)

w̄0 = 0.

Then,

w̄n+1(ϵ) = (1 + ϵ2η(ϵ))w̄n(ϵ) + ϵ2θ(ϵ)

≥ Kϵw̄n(ϵ) + ϵ2θ(ϵ)

≥ Kϵw̄n(ϵ) + Fϵ,n(u;x).

Therefore, w̄n(ϵ) is a super-solution of (4.9). By the comparison property,

−w̄n ≤ wϵ
n ≤ w̄n.

Now we prove the uniform convergence wϵ → 0. We show the conver-
gence for discrete-time steps �rst and then extend it to continuous-time
using the linear interpolation. Let T > 0 be a given �nite time and N(ϵ) be
the number of steps to cover upto T in the sense that [0, T + ϵ2τ0] ∩ Tϵ =
{0, ϵ2τ0, · · · , N(ϵ)ϵ2τ0}. Then,

T

ϵ2τ0
< N(ϵ) ≤ T + ϵ2τ0

ϵ2τ0
.
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Since w̄n(ϵ) is an increasing sequence, for n ≤ N(ϵ),

w̄n(ϵ) ≤ w̄n(ϵ)(ϵ)

=

{
θ(ϵ)
η(ϵ)

((
1 + ϵ2η(ϵ)

)N(ϵ) − 1
)
, η(ϵ) ̸= 0

θ(ϵ)N(ϵ)ϵ2, η(ϵ) = 0

≤


θ(ϵ)
η(ϵ)

((
1 + ϵ2η(ϵ)

)T+ϵ2τ0
ϵ2τ0 − 1

)
, η(ϵ) ̸= 0

θ(ϵ)T+τ0ϵ2

τ0
, η(ϵ) = 0

≤ θ(ϵ)B

for some B = B(T, τ0, ϵ0, η) which uniformly bounded with respect to ϵ ∈
(0, ϵ0) and converges to T/τ0 as ϵ → 0. Since θ(ϵ) → 0 as ϵ → 0, we have

(4.10) sup
0≤n≤N(ϵ)

∥uϵn(·)− u(·, nϵ2τ0)∥L∞(X) → 0,

which completes the uniform convergence along discrete-time steps.
Instead of comparing uϵ and u directly, we consider the linear interpolation

of u along discrete-time steps with time interval τ0 = ϵ2τ0. Let U ϵ be the
linear interpolation

U ϵ(t, x) =
t− nϵ2τ0

ϵ2τ0
u((n+ 1)ϵ2τ0, x) +

(n+ 1)ϵ2τ0 − t

ϵ2τ0
u(nϵ2τ0, x)

for t ∈ [nϵ2τ0, (n + 1)ϵ2τ0]. Then, since uϵ(nϵ2τ0, x) = uϵn and the linear
interpolation keeps the limit, the convergence in (4.10) gives

∥uϵ − U ϵ∥L∞(X×[0,T ]) → 0

as ϵ → 0.
Finally from regularity assumption, u is smooth along time and hence is

uniformly approximated by the linear interpolation U ϵ(t, x), which gives

∥u− U ϵ∥L∞(X×[0,T ]) → 0.

Hence, the triangle argument gives the uniform convergence

∥uϵ − u∥L∞(X×[0,T ]) → 0

as ϵ → 0. □

5. Reference point dependency versus independency

The three di�usion equations, (1.3), (1.8), and (1.9), are based on a belief
that the di�usion phenomenon can be explained by the di�usivity D(x)
alone even in a heterogeneous environment. On the other hand, the di�usion
model (1.17) is based on the idea that it is not. Note that the di�usivity D
in (1.1) consists of two components, the walk length △x and the sojourn (or
jumping) time △t. In this section, we will show that the way to choose the
reference point of △x changes the �nal position of a particle, but the one
of △t does not. This di�erence between the two components tells us that
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the two components will be separated eventually and we need at least two
quantities to explain a heterogeneous di�usion phenomenon.

Let τ : X → R be the function for the heterogeneous jumping time which
is smooth and uniformly bounded by

(5.1) 0 < τmin ≤ τ(x) ≤ τmax < ∞.

The jumping time can be interpreted in two ways. One may consider it as
the period of time for a particle to stay until the next jump and then jumps
instantaneously to the next position. That's why it's called sojourn time. Or
equivalently, it can be considered as the travel time needed for a particle
to move to the next position and the particle departs to the next position
immediately after the arrival.

The heterogeneity in τ(x) indicates that it takes di�erent amount of time
to jump to the next position. Then, the random walk model is completed
after deciding the reference point when a particles jumps from one position
to another. Let the reference point for the heterogeneity in the sojourn time
be

(5.2) p = by + (1− b)x, 0 ≤ b ≤ 1,

when a particle jumps from x to y. Consider a sample path of a particle
{xn : n = 0, 1, · · · , N}, where xn is the position of the particle at the nth
time step. Since we are interested in taking di�usion limits (or parabolic
scale limits), we assume that the walk length |xn+1 − xn| is of order ϵ and
the sojourn time at each step is of order ϵ2. The sample path consists of N
jumps from the starting point x0. The total time of the random walk may
depend on the parameter b and is de�ned (or computed) by

(5.3) T (b) =
N∑

n=1

ϵ2τ(bxn + (1− b)xn−1).

The total number of walks is of order t
ϵ2

when t is the macroscopic time scale
of interest. Then, the total number of walk N is bounded by

(5.4)
t

ϵ2τmax
≤ N ≤ t

ϵ2τmin
.

The total time T (b) depends on the parameter b. However, we will show
that the di�erence is trivialized as ϵ → 0. The simplest case is when τ and
the sample xn are both monotone. Suppose τ(x) is monotone increasing and
xn < xn+1 for all n = 1, · · · , N−1. Then, T (b) has its supremum when b = 1
and its in�mum when b = 0. Therefore, we have

sup
0≤b≤1

T (b)− inf
0≤b≤1

T (b) =

N∑
n=1

ϵ2τ(xn)−
N∑

n=1

ϵ2τ(xn−1)

= ϵ2(τ(xn)− τ(x0))

≤ ϵ2τmax.
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Therefore, the di�erence becomes zero as ϵ → 0. For a general case, we have
the following lemma.

Lemma 5.1 (Reference point independence). Let τ be twice di�erentiable
and τ ′′ is uniformly bounded. Let t > 0 be �xed and the total number of walks
of the sample path {xn : n = 0, 1, · · · , N} is bounded by (5.4). Then, as
ϵ → 0,

sup
0≤b≤1

T (b)− inf
0≤b≤1

T (b) = O(ϵ2).

Proof. Denote a = 1−b. Consider a jump from x to y. The Taylor expansion
gives

τ(by + ax) = τ(x+ b(y − x)) = τ(x) + b(y − x)τ ′(x) +
1

2
b2(y − x)2τ ′′(ỹ),

τ(by + ax) = τ(y + a(x− y)) = τ(y) + a(x− y)τ ′(y) +
1

2
a2(y − x)2τ ′′(x̃),

where x̃ and ỹ are between x and y. By adding the two after multiplying a
and b, respectively, we obtain

τ(by + ax) = aτ(x) + bτ(y)− ab(x− y)
(
τ ′(x)− τ ′(y)

)
+

1

2
(ba2 + ab2)(x− y)2

(
τ ′′(x̃) + τ ′′(ỹ)

)
= aτ(x) + bτ(y)− ab(x− y)2

τ ′(x)− τ ′(y)

x− y

+
1

2
ab(x− y)2

(
τ ′′(x̃) + τ ′′(ỹ)

)
.

Since the jump distance |y−x| is of order O(ϵ), there exists C > 0 such that
|y − x| < Cϵ. Hence, we have∣∣τ(by + ax)− (bτ(y) + aτ(x))

∣∣ ≤ 2abC2∥τ ′′∥∞ϵ2.

Then, for any b ∈ [0, 1],

|T (0)− T (b)| = ϵ2
∣∣∣N−1∑
n=0

(τ(xn)− τ(axn + bxn+1))
∣∣∣

≤ ϵ2
∣∣∣N−1∑
n=0

(τ(xn)− bτ(xn+1)− aτ(xn))
∣∣∣+ ϵ4

N−1∑
n=0

2abC2∥τ ′′∥∞

= ϵ2|bτ(x0)− bτ(xn)|+ ϵ4N2abC2∥τ ′′∥∞.

Since the number of time step is bounded by (5.4), we obtain

|T (0)− T (b)| ≤ ϵ2
(
b∥τ∥∞ + 2abC2∥τ ′′∥∞

t

τmin

)
.

By using the triangle inequality, we obtain

sup
0≤b≤1

T (b)− inf
0≤b≤1

T (b) ≤ 2ϵ2
(
b∥τ∥∞ + 2abC2∥τ ′′∥∞

t

τmin

)
,

which complets the proof. □
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Lemma 5.1 says that the reference point dependency on the total amount
of time T (b) is negligible. However, the e�ect of reference point for the jump-
ing distance is not. To see this, we compute the �nal position of a particle.
This is a process to obtain a sample path when a collection of random num-
bers {W1,W2, · · · ,Wn} are given when Wn = −1 or 1. Then, depending
on the choice of reference points, we may obtain a di�erent sample path.
Suppose that the reference point is given by

xn+1 = xn + ϵℓ(axn+1 + (1− a)xn)Wn+1, n = 1, · · · , N − 1,

where the initial point x0 is given. De�ne the �nal position as

(5.5) X(a) = xn = x0 +
N∑

n=1

ϵℓ(axn+1 + (1− a)xn)Wn+1

which depends on the parameter a.
The arguments to compute the �nal time T (b) does not work in computing

the �nal position X(a). The main reason is that if the reference points are
chosen di�erently, the sample path is changed and the di�erence may increase
rapidly. For example, consider a simple case when the walk-length is given
by a function ℓ(x) = x with initial position x = 1. Suppose further that the
particle jumps to right always, i.e., Wn = 1 for all i = 1, · · · , N . Denote
the sample path as xn when the reference point is the departure point, i.e.,
a = 0. Then,

xn+1 = xn + ϵℓ(xn) = xn + ϵxn = (1 + ϵ)xn.

Therefore, the �nal position is X(0) = xn = (1 + ϵ)Nx0 = (1 + ϵ)N .
Denote the sample path as yn when the reference point is the arrival point,

i.e., a = 1. Then,

yn+1 = yn + ℓ(yn+1) = yn + ϵyn+1.

Therefore,

yn+1 =
yn

1− ϵ
,

and the �nal position is X(1) = (1− ϵ)−N . The di�erence is

X(1)−X(0) = yn − xn = (1− ϵ)−N − (1 + ϵ)N = Nϵ2 +O(ϵ3).

Since N ≥ t
τmaxϵ2

, we have

X(1)−X(0) ≥ t

τmax
+O(ϵ3) ̸→ 0

as ϵ → 0.
In the following lemma, we consider a general case. In the lemma, we

assume ℓ is monotone decreasing and we can obviously extend the result when
ℓ is monotone increasing. If ℓ changes its monotonicity in a macroscopic scale,
we may divide the domain. If ℓ changes its monotonicity in a microscopic
scale, it has no meaning anyway.
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Lemma 5.2 (Reference point dependence). Let t > 0, N be an integer
bounded by (5.4), and ℓ(x) be twice di�erentiable and satisfy

0 < ℓmin ≤ ℓ(·) ≤ ℓmax < ∞, −∞ < −ℓ′max ≤ ℓ′(·) ≤ −ℓ′min < 0.

For a given sequence {Wn}Nn=1 with Wn = −1 or 1, de�ne X(a) by (5.5).
Then, for ϵ > 0 small, there exists {Wn}Nn=1 such that

(5.6) sup
0≤a≤1

X(a)− inf
0≤a≤1

X(a) ≥ t

τmax
ℓminℓ

′
min.

Proof. For a simpler computation, we take a case when the N steps of walks
are in the positive direction, i.e., Wn = 1 for n = 1, · · · , N . Denote the
sample path as xn when the reference point is the departure point, i.e.,
a = 0. Then, xk satisfy

xk+1 = xk + ϵℓ(xk)

and hence
xN = x0 + ϵℓ(x0) + · · ·+ ϵℓ(xN−1).

Denote the sample path as yk when the reference point is the arrival point,
i.e., a = 1. Then, yk satisfy

yk−1 = yk − ϵℓ(yk)

and hence
y0 = yN − ϵℓ(yN )− ϵℓ(yN−1)− · · · − ϵℓ(y1).

By de�nition, one has x0 < x1 < · · · < xN and y0 < y1 < · · · < yN with
xk+1 − xk, yk+1 − yk ≥ ϵℓmin. For notational convenience, we set xN = yN
and estimate x0 − y0. Then, by comparing yN−1 and xN−1, we obtain

yN−1 − xN−1 = yN − ϵℓ(yN )− xN + ϵℓ(xN−1)

≥ ϵℓ(xN−1)− ϵℓ(xN )

≥ ϵℓ′min · |xN − xN−1|
≥ ϵ2ℓminℓ

′
min.

Using inductive argument, we obtain

yN−k − xN−k = yN−k+1 − xN−k+1 − ϵℓ(yN−k+1) + ϵℓ(xN−k)

≥ (k − 1)ϵ2ℓminℓ
′
min + ϵℓ′min · |yN−k+1 − xN−k|

= (k − 1)ϵ2ℓminℓ
′
min + ϵℓ′min · |yN−k+1 − xN−k+1 + xN−k+1 − xN−k|

≥ (k − 1)ϵ2ℓminℓ
′
min + ϵℓ′min · |xN−k+1 − xN−k|

≥ kϵ2ℓminℓ
′
min,

and hence
y0 − x0 ≥ Nϵ2ℓminℓ

′
min.

Since t
τmax

≥ Nϵ2, we have

y0 − x0 ≥ Nϵ2ℓminℓ
′
min ≥ t

τmax
ℓminℓ

′
min.
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Note that the sequence {x0, x1, · · · , xN = yN , · · · , y1, y0} is a sample path
taking the starting point as a reference point and walking N times to the
positive direction and then walking N times to the negative direction. We
see that the �nal point is di�erent from the starting point and the di�erence
is of order O(1). □

6. Heterogeneous sojourn time

We assume the sojourn time τ(x) and its second order derivative are uni-
formly bounded by

(6.1) 0 < τmin ≤ τ(x) ≤ τmax < ∞, |τ ′′(x)| < M.

We assume that a particle stay for the period of sojourn time τ(x) after
arriving at a point x then jumps to the next position instantaneously. We can
make an individual based model for a heterogeneous sojourn time. However,
both discrete-time and continuous-time model cannot handle nonconstant
sojourn time except special cases (see [3]). To handle a general nonconstant
sojourn time, we introduce departing rate. For a given sojourn time τ(x), we
�rst take a time step τ0 > 0 which is smaller than or equal to τmin in (6.1).
Then, we set the departing rate as

γ(x) =
τ0

τ(x)
≤ 1.

This is the rate of the population at x that depart the position during the
�xed time period τ0 > 0. If the departing rate is included to the system,
(2.4) becomes

(6.2)

{
uϵn+1 =

1
2γ(B+)u

ϵ
n(B+)B

′
+ + 1

2γ(B−)u
ϵ
n(B−)B

′
− + (1− γ)uϵn,

uϵn=0 = u0.

Note that the departing rate is given as a function of the departure point.
Denote

K̃ϵu :=
1

2
γ(B+)u(B+)B

′
+ +

1

2
γ(B−)u(B−)B

′
− + (1− γ)u,

L̃ϵu :=
K̃ϵu− u

ϵ2τ0
.

Then,

L̃ϵu =
K̃ϵu− u

ϵ2τ0
=

Kϵγu− γu

ϵ2τ0
= Lϵ(γu),

where Kϵ and Lϵ are the operators given in (4.4) and (4.7). Since we assume
γ(·) has the same regularity that ℓ(·) has, Lemmas 4.6� 4.8 still hold after

the operators are replaced with K̃ϵ and L̃ϵ. Then, Lemma 4.7 is written as

K̃ϵu− u

ϵ2τ0
= L̃ϵu = Lϵ(γu) = L(γu) +O(ϵ) as ϵ → 0,
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where Lu = 1
2τ0

(
ℓ2a
(
ℓ2−2au

)
x

)
x
. The estimate in Lemma 4.8 is written as

|L̃ϵ(1)| ≤ |L(γ)|+ |(L(γ))x| · ||ℓ||ϵ

= | 1

2τ0

(
ℓ2a(ℓ2−2aγ)x

)
x
|+ | 1

2τ0

(
ℓ2a(ℓ2−2aγ)x

)
xx

| · ||ℓ||ϵ.

Theorem 6.1 (Uniform convergence). Let u0(x), ℓ(x), and γ(x) be smooth,
bounded, and positive. Let uϵ be the linear interpolation (4.1) of the solution
uϵn of (6.2). Then, for a �xed T > 0, uϵ converges uniformly to the solution
u of

(6.3) ut =
1

2τ0
(ℓ2a(ℓ2−2aγu)x)x.

Proof. We already know that K̃ϵ is a positive operator. Let w
ϵ = uϵ − u and

consider a discrete time sample,

wϵ
n(x) = wϵ(nϵ2τ0, x) = uϵn(x)− u(nϵ2τ0, x).

Using the recursive relation gives

wϵ
n+1(x) = uϵn+1(x)− u((n+ 1)ϵ2τ0, x)

= K̃ϵu
ϵ
n(x)− u(nϵ2τ0, x)−

∫ (n+1)ϵ2τ0

nϵ2τ0

L(γu)(s, x)ds

= K̃ϵw
ϵ
n(x) + K̃ϵu(nϵ

2τ0, x)− u(nϵ2τ0, x)−
∫ (n+1)ϵ2τ0

nϵ2τ0

L(γu)(s, x)ds

= K̃ϵw
ϵ
n(x) +

∫ (n+1)ϵ2τ0

nϵ2τ0

(L(γu)(t, x)− L(γu)(s, x) +O(ϵ)) ds.

Let Fϵ,n(u;x) =
∫ (n+1)ϵ2τ0
nϵ2τ0

(L(γu)(t, x)− L(γu)(s, x) +O(ϵ)) ds. Then,

|Fϵ,n(u;x)| ≤
∫ (n+1)ϵ2τ0

nϵ2τ0

(s− t)||L(γL(γu))||∞ +O(ϵ)ds

≤ ||L(γL(γu))||∞(τ0)
2ϵ4 +O(ϵ3) ≤ ϵ2θ(ϵ) = ϵ2O(ϵ)

for some θ(ϵ) which is function of ϵ only. Then {wϵ
n(x)} is the solution of

recursive relation

vm+1(x) = K̃ϵvm(x) + Fϵ,n(u;x)(6.4)

vn=0(x) = 0

Then we already know that η(ϵ) as

η(ϵ) = max
x∈X

1

ϵ2τ0
|K̃ϵ(1)− 1|

is bounded similarly as in the lemma so with the same argument as in the
previous section, we have uniform convergence as well.

Similar to previous proof,
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w̄n(ϵ) =

{
θ(ϵ)
η(ϵ)

((
1 + ϵ2η(ϵ)

)N − 1
)

, η(ϵ) ̸= 0

θ(ϵ)nϵ2 , η(ϵ) = 0

is super-solution of the recursive relation (6.4) by comparison principle and
the lemma as

w̄n+1(ϵ) = (1 + ϵ2η(ϵ))w̄n(ϵ) + ϵ2θ(ϵ)

≥ K̃ϵw̄n(ϵ) + ϵ2θ(ϵ)

≥ K̃ϵw̄n(ϵ) + Fϵ,n(u;x)

and
w̄n=0(ϵ) = 0

Thus by comparison,
−w̄n ≤ wϵ

n ≤ w̄n

and with similar linear interpolation argument we achieve uniform conver-
gence

||uϵ − u||L∞(X×[0,T ]) → 0

as ϵ → 0. □

Since the sojourn time τ and γ are connected by the relation γ(x) = τ0
τ(x) ,

(6.3) is written as

ut =
(ℓ2a

2

(ℓ2−2a

τ
u
)
x

)
x
.

If a = 0.5, the random walk becomes reversible, and the corresponding dif-
fusion equation is

ut =
1

2

(
ℓ
( ℓ
τ
u
)
x

)
x
.
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