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Abstract. Di�usion in a heterogeneous environment is not understood
well. There have been lots of discussions and debates on it when di�u-
sivity varies in space. Nonlocal di�usion theory is also developed for
homogeneous environments and its extension to a heterogeneous envi-
ronment is limited. In this paper, we introduce a systematic method to
construct heterogeneous nonlocal di�usion and show the convergence to
a local di�usion equation as a parabolic scale limit. We introduce the
spatial heterogeneity in the walk-length and departing rate.

1. Introduction

One of the commonly employed nonlocal di�usion models is an integro-
di�erential equation,

(1.1) ut =

∫
Rn

u(t, y)K(y → x)dy − u(t, x)

∫
Rn

K(x → y)dy,

where u(t, x) is the population density at position x and time t, and K(x →
y) is the migration rate from x to y. The equation is called a convolution
model if

K(x → y) = J(x− y),

where the convolution kernel J is usually normalized and assumed to be
symmetric, i.e.,

(1.2)

∫
Rn

J(z)dz = 1,

and

(1.3) J(z) = J(−z).

The nonlocal di�usion equation has been used to explain various phenom-
ena such as phase transition and speration [3, 4, 5, 6], biological mutation
[1, 8, 9, 10, 21, 22], dispersal with long-distance events [16, 25, 29], etc.
The fundamental properties of the problem such as uniqueness, existence,
stability, interface motion, and traveling wave solutions are studied well
[13, 19, 20, 32, 36]. It is shown that the nonlocal equation can approximate
wide class of di�usion equations (e.g.,[11, 16, 24]).

The convolution model (1.1)�(1.3) is called homogeneous since a single
kernel is used over the whole space. Theories for such a homogeneous non-
local di�usion equation are well-established. If the environment is spatially

1



2 YONG-JUNG KIM AND HYUN-JIN LIM

heterogeneous, we need to include spatial heterogeneity in the model which
will produce heterogeneous nonlocal di�usion equations. The spatial hetero-
geneity has been studied recently [7, 10, 27]. In particular, Molino and Rossi
[28] proposed a heterogeneous nonlocal model using,

(1.4) K(x → y) = J(A(x)(x− y)) detA(x),

where J is the convolution kernel and A(x) is an n × n real matrix with
detA(x) ≥ a0 > 0. The spatial heterogeneity is included by assigning a
dilation matrix A(x) to each point x, and the multiplied Jacobian, detA(x),
makes the mass conserved. It is shown that the di�usion limit (or parabolic
scale limit) of the problem converges to the solution of Chapman's di�usion
law [12]

(1.5) ut = ∆(D(x)u)

when the resulting di�usion is isotropic and D(x) is the di�usivity. One of
the critical issues of heterogeneous di�usion theory is that there are in�nitely
many choices of di�usion laws when the di�usivity D(x) is not constant, e.g.,

(1.6) ut = ∇ · (D1−q(x)∇(Dq(x)u)), q ∈ R.

Two other well-known examples are Fick's law [18] with q = 0 and Wereide's
law [34] with q = 0.5. Of course, these di�usion laws are all identical if D is
constant.

There have been lots of discussions and debates about what is the correct
di�usion law when the di�usivity D is spatially nonconstant (see [26, 31] for
discussions and experiments). However, the fact that Chapman's di�usion
law (1.5) is derived from the nonlocal equation (1.1) with (1.4) does not
imply (1.5) is the correct di�usion law. The other two di�usion laws, (1.6)
with q = 0 or q = 0.5, also can be derived from related nonlocal di�usion
equations (see [27]). It is clear that a derivation of a di�usion law does not
justify it. We only need to �nd useful information from the mathematical
derivation of di�usion laws, which is the mechanism that decides the di�usion
laws. One of the main purposes of the paper is to show that it is the way to
choose the reference point that decides the di�usion law.

The reference point is the position from which the spatial heterogeneity is
taken. For example, when a particle jumps from a departure point x to the
arrival point y, the spatial heterogeneity should be taken from somewhere
nearby x or y. In the model (1.4), the heterogeneity is taken from the depar-
ture point, A = A(x), i.e., the reference point is the departure point. In the
paper, we consider the reference point dependency by taking the reference
point, denoted by p, as

(1.7) px→y = ay + (1− a)x, 0 ≤ a ≤ 1.

In the model (1.4), the spatial heterogeneity is included in the dilation matrix
A and the reference point is the departure point x, i.e., a = 0. Recently,
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Alfaro et al. [2] proposed a heterogeneous nonlocal model using,

(1.8) K(x → y) = J(p, x− y)
(
= J(ay + (1− a)x, x− y)

)
,

where J(p, z) is a convolution kernel assigned to a position p ∈ Rn, z is
the variable for the convolution, and J(p, z) = J(p,−z). Then, after tak-
ing a di�usion limit, the nonlocal di�usion equation gives a local di�usion
equation,

(1.9) ut = ∇ · (D2a(x)∇(D1−2a(x)u)).

If a = 0, the reference point is the departure point, p = x, and the obtained
equation is Chapman's di�usion law. This is the same di�usion law obtained
from the kernel (1.4), which says that if the reference point is the departure
point, we obtain Chapman's di�usion law (1.5).

The two convolution models, (1.4) and (1.8), have di�erent meanings. In
particular, (1.8) �ts a situation that organisms migrate among habitats and
has the property of a discrete-patch model. For example, if a = 1

2 , the kernal
(1.8) is symmetric, i.e., K(x → y) = K(y → x), and the resulting di�usion
equation is Fick's law (??). For a continuous-space random walk model for
physical di�usion phenomena when u(t, x) is the particle density, a Jacobian
term such as in (1.4) should be included. However, it is too complicate to
include such a term for a general situation such as (1.8), where the dilation
in (1.4) is an exceptional case.

2. Model and results

The purpose of the paper is to introduce a spatially heterogeneous nonlocal
di�usion model that naturally preserves the mass without adding a Jacobian
like term and then show the convergence of its solution to the solution of
a di�usion law after taking a parabolic scale limit. In this process, we will
see the reference point dependency in the resulting di�usion equation. For
simplicity, we consider a random walk system in the one space dimension.
However, the method and result of the paper can be extended to multiple
dimensions.

Let ℓ ∈ C2(R) be the distance function of the walk-length at position
x ∈ R and we assume ℓ and its derivatives are uniformly bounded by

(2.1) 0 < ℓmin ≤ ℓ(x) ≤ ℓmax < ∞, |ℓ′(x)|+ |ℓ′′(x)| < M.

The spatial heterogeneity of the model is included in this distance function
ℓ(x). If a particle jumps from x to y, then the distance is given by

|y − x| = ℓ(p) = ℓ(ay + (1− a)x).

Thaking this relation as a rule, we may de�ne N±(x), which is the two
positions that a particle at x may jump to with the equal probability 1

2 .
Then, the two positions N+(x) > x and N− < x are given implicitly by

(2.2)

{
N+(x) = x+ ℓ(aN+(x) + (1− a)x),

N−(x) = x− ℓ(aN−(x) + (1− a)x).
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Next, we take the kernel K(x → y) = K(x, y) as to a variable function
for the conditional probability of Markov process, where the kernel gives the
conditional probability

∫
AK(x, y)dy = P (Xt ∈ A|X(0) = x). Hence,K(x, y)

is the rate for a particle to move from x to y per unit time. Then, the rate
for a particle to depart a position x is given by

(2.3) γ(x) =

∫
R
K(x, y)dy.

For a homogeneous case, the departing rate is constant and is normalized by
one (1.2). We assume that the departing rate γ(x) is bounded by

(2.4) 0 < γmin ≤ γ(x) ≤ γmax < ∞.

Notice that since K is a rate for probability, not probability itself, γ is not
necessarily bounded by one. Then, a random walk system that walks to one
of the two positions N±(x) with equal probability with departure rate γ(x)
can be obtained by taking a kernel,

(2.5) K(x, y) =
γ(x)

2
δ(y −N−(x)) +

γ(x)

2
δ(y −N+(x)).

This kernel is not symmetric. For example,
∫
K(x, y)dy = γ(x) ̸=

∫
K(y, x)dy.

Finally, the nonlocal integration equation (1.1)with an initial value becomes

(2.6)

ut(t, x) =

∫
R
u(t, y)K(y, x)dy − γ(x)u(t, x),

u(0, x) = u0(x).

If the functions N±(x) for the next positions have inverse functions and
denote them by B±(x), the (2.6) is written as

ut(t, x) =
γ(B+(x))

2
u(B+(x), t)∂xB+(x) +

γ(B−(x))

2
u(B−(x), t)∂xB−(x)

− γ(x)u(t, x).

The terms B+
′(x) and B−

′(x) play the role of the Jacobian determinant and
make the mass conserved.

The main result of the paper is Theorem 6.1. If we rewrite the conclusion
in n space dimensions for comparison, the di�usivity of the model is given
as

D(x) =
ℓ2(x)γ(x)

2n
and the di�usion limit of the solution of the nonlocal problem (1.1) converges
to the solution of a di�usion equation

(2.7) ut = ∇ ·
((D(x)

γ(x)

)a
∇
((D(x)

γ(x)

)1−a
γ(x)u

))
.

If γ(x) = 1, it is written as

(2.8) ut = ∇ ·
(
D(x)a∇

(
D(x)1−au

))
.
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If we rewrite (2.7) in terms of ℓ = ℓ(x) and γ = γ(x), we obtain

ut =
1

2n
∇ ·

(
ℓ2a∇

(
ℓ2−2aγu

))
.

Remark 2.1. The kernel (2.5) is the case that a particle departing x moves
to exactly N+(x) or N−(x). We may generalize the situation and allow par-
ticles to move in a neighborhood of N±(x) by taking

K(x, y) =
γ(x)

2
φ(y −N−(x)) +

γ(x)

2
φ(y −N+(x)),

where φ be a compactly supported smooth function with
∫
φ(x)dx = 1.

In Section 3, we introduce a heterogeneous position jump process and
formulate a nonlocal equation. In Section 4, we give formal calculation of
local di�usion equation by parabolic scaling limit of the nonlocal model. In
Section 5, we consider a case with γ(x) = 1 and prove the convergence of
the solution of non-local equation to a local di�usion equation after taking
a di�usion limit. In Section 6, we extend the result to a case when γ(x) is
not constant.

3. Random walk model as a Markov process

In this section, we develop the continuous-time random walk model (1.1)
with (2.5) in terms of Markov process and see the connection with Continuous
Time Markov Chain (or CTMC for brevity). Since the walk-length of the
random walk is heterogeneous, we consider continuous-space random walk
to handle the spatial heterogeneity properly. The obtained continuous-time
random walk system is one of the simplest nonlocal di�usion equation which
jumps to one of two possible positions.

3.1. CTMC. A random walk system is a Markov process that the current
position of a particle decides the probability distribution of the next position.
In our case with a non-constant walk-length and sojourn time, the distribu-
tion is a spatial function. The process is a CTMC given by a stochastic
process {Xt}t∈T , where T = [0,∞) and Xt : (t, ω) 7→ s ∈ S represents the

position at time t and ω in �ltered probability space
(
Ω, F, {Ft}t∈T , P

)
. In a

CTMC, stopping time steps are sequence of moments τn such that the par-
ticle jumps to the next state and stays until the next jump. We may de�ne
them inductively by τ0 = 0 and

τn+1 = inf{t ∈ [τn,∞);Xt ̸= Xτn} = inf{t ∈ (τn,∞);Xt ̸= Xτn}.

We can relate the stopping time steps to staying period of time at each
position, e.g., τ1 is the time period to stay at X0 = s ∈ S, and is called
holding time. The holding time is a random variable and takes an exponential
distribution with parameter γ(x) ∈ [0,∞]. In order to avoid well-known
pathologies such as in�nite number of transition in �nite time or staying at
some position forever, we assume the uniform bounds in (2.4). Then, such a
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Markov chain is regular, i.e., it is almost surely right continuous and there
is no in�nite transition in a �nite time.

A jump chain of a given CTMC is de�ned as {Yn = Xτn}, which is called an
embedded discrete time Markov chain or sinply a jump chain. The Markovity
of a jump chain follows from the strong Markovity of the CTMC. Assuming
time homogeneity of the CTMC, one-step transition matrix Q of the jump
chain Y is given by

Q(x, y) = P (Xτ1 = y|X0 = x), x, y ∈ S.

Note that transition matrix is measurable with respect to the current state
x and takes a probability mass with respect to the next state y. The jump
chain and holding time are independent of given initial state.

In the paper, our main interest is the e�ect of the spatial heterogeneity in
the di�usion equation and we take a simplest case when particles jump to
either right or left from their current position on a �nite interval S = [0, 1]
with the periodic boundary condition. More speci�cally, we choose Q(x, y)
as

Q(x, y) =
1

2
δ (y −N+(x)) +

1

2
δ (y −N−(x))

where N±(x) is next position when the current position is x. Finally, for a
given CTMC, a generator is de�ned as a one-sided derivative of the transition
kernel {Pt} at 0, i.e.,

G = lim
t→0+

Pt − I

t
.

It is known that the generator matrix G(x, y) is de�ned well and satis�es

G(x, y) = −γ(x)I(x, y) + γ(x)Q(x, y),

where I(x, y) is identity matrix and Q(x, y) is the transition matrix of the
embedded DTMC. When sojourn time is constant, every state has identical
distribution for holding time and one can assume γ(·) = 1. Then, G(x, y)
is identical to Q(x, y) which is the one step transition matrix of embedded
DTMC if the identity part I(x, y) is ignored.

Note that
∑

y G(x, y) = 0,

G(x, x) = −
∑
y ̸=x

G(x, y), and Q(x, y) = −G(x, y)

G(x, x)
.

For a �nite or a discrete states case, G(x, y) is the jumping rate from x to y,
and the departing rate γ(x) := −G(x, x) is assumed to be bounded by (2.4).
A CTMC gives the dynamics of population µ(t, x) in as a di�erential form,

(3.1) ∂tµ(t, x) =
∑
y

µ(t, y)G(y, x).

Since
∑

y G(x, y) = 0, it can also be written as

(3.2) ∂tµ(t, x) =
∑
y

µ(t, y)G(y, x)− µ(t, x)
∑
y

G(x, y).
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3.2. Model for continuous state space. In our case, the sample space is
continuous and we consider densities. Then, the population µ is replaced with
the population density u(t, x) and the jumping probability G(x, y) is with
jumping probability density K(x, y). In the probability theory, the generator
matrix G(x, y) gives the probability to move from x to y only when x ̸= y.
If x = y, G(x, x) = −

∑
y ̸=xG(x, y) is the probability to depart x. However,

we cannot take this convection for a continuous state case. Hence, we use
the formula (3.2), not (3.1), and take an integral equation,

∂tu(t, x) =

∫
u(t, y)K(y, x)dy − u(t, x)

∫
K(x, y)dy,

as our continuous state model.
We need an assumption on the kernel K(x, y) that there exists a function

γ and it satis�es

(3.3)

∫
K(x, y)dy = γ(x).

Note that the kernel K(x, y) is not a function of two points x and y only, but
may depend on the points in a neighborhood. Hence, (3.3) is an assumption
and a de�nition for γ(x) at the same time, which says that the total rate
that departs x is given by x alone. However, in general,

∫
K(x, y)dx is not

a function of y alone. The γ(x) plays the same role of γ(x) for the CTMC
(3.1) and (3.2). We also need upper and lower bounds in (2.4). Notice that
since K is a probability density, not probability itself, γ is not necessarily
bounded by one.

In the paper, we take a kernel

(3.4) K(x, y) =
γ(x)

2
δ(y −N−(x)) +

γ(x)

2
δ(y −N+(x)).

This kernel models a random walk that a particle jumps to one of two po-
sitions N±(x) with equal probability 1

2 when its current position is x. The
speci�c choice of N±(x) in this paper is given in the following section. The
probability to jump from x is given by γ(x). We can easily see that (3.3) is
satis�ed. However, the derivative K(x, y) with respect to x is∫

K(x, y)dx =
γ(B+(y))

2

1

N+
′(B+(y))

+
γ(B−(y))

2

1

N−
′(B−(y))

,

where B± are inverse functions of N±, i.e., the function for previous position.
Then, the integral form (2.6) is written as,

ut(t, x) =
γ(B+(x))

2
u(B+(x), t)∂xB+(x) +

γ(B−(x))

2
u(B−(x), t)∂xB−(x)

(3.5)

− γ(x)u(t, x).
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3.3. Kernel generalization. In this paper, we consider (3.4), which is one
of the simplest models that a particle jumps to one of two possible positions.
However, the approach in the paper is �exible and one can generalize the
system in various ways. For example, by taking a linear combination of delta
measures, K(x, y) can be given as a discrete sum,

K(x, y) =
∑
j

pjδ(y −Nj(x)),

or as an integration form,

K(x, y) =

∫
p(α)δ (y −N(α, x)) dα,

where Nj(·) ane N(α, ·) are to denote possible positions in the next step,
i.e., a particle placed at x jumps to one of Nj(x) or N(α, x).

If the state x and the index α are in the same space, we can rewrite the
kernel as

K(x, y) =

∫
p(α)δ (y −N(α, x)) dα

=
∑

α,y=N(α,x)

p(α)

∂αN(α, x)
,

where the summation is for α such that y = N(α, x). Then, by denoting
Nx(α) = N(α, x) as a function of α with a �xed x and taking its inverse
function Bx = (Nx)−1, we may write α = Bx(y). Then,

K(x, y) = p (Bx(y)) ∂yB
x(y).

If this idea is generalized in Rn, derivative is replaced by the Jacobian de-
terminant.

4. Formal derivation

4.1. Two points random walk. We assume the walk-length function is
smooth, ℓ ∈ C3, and satis�es

(4.1) 0 < ℓmin ≤ ℓ(x) ≤ ℓmax < ∞, |ℓ′(x)|+ |ℓ′′(x)| ≤ M < ∞.

The function N ϵ
+(x) > x is for the position at the next step when a particle

jumps to right from x. Similarly, N ϵ
−(x) < x is the position when the particle

jumps to left. These are implicitly given by

(4.2) N ϵ
±(x) = x± ϵℓ(aN ϵ

±(x) + (1− a)x),

which decides the functions uniquely under the assumptions in (4.1) and the
smallness of ϵ > 0. Furthermore, N ϵ

± are invertible for small ϵ > 0, and we
denote their inverse functions as Bϵ

±, respectively. Then,

(4.3) Bϵ
±(x) = x∓ ϵℓ(ax+ (1− a)Bϵ

±(x)).
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The di�usion kernel is de�ned by

(4.4) Kϵ(x, y) =
1

2
δ(y −N ϵ

−(x)) +
1

2
δ(y −N ϵ

+(x)).

Then,

(4.5) γ(x) =

∫
Kϵ(x, y)dy = 1,

and (2.6) is written as

(4.6)

∂tu(t, x) =
1

ϵ2

∫
u(t, y)Kϵ(y, x)dy − u(t, x),

u(0, x) = u0(x).

The small parameter ϵ > 0 is to take the di�usion limit. The coe�cient 1
ϵ2

is from the macroscopic time scale and ϵ in (4.2) is for the space scale. The
solution u of (4.6) depends on ϵ and we may write it as uϵ if we want to
denote the dependency explicitly.

In this section, we formally show that, after taking a di�usion limit, the
solution of (4.6) converges to a solution of

(4.7)

{
∂tu(t, x) =

1
2

(
ℓ2a

(
ℓ2−2au

)
x

)
x
,

u(0, x) = u0(x).

The proof is completed rigorously in the following section. We start with the
case a = 1 when the reference point is the arrival point and then extend it
to a general case. If a = 1, the reference point is the arrival point p = x and
Bϵ

± are explicitly given by

(4.8) Bϵ
+(x) = x− ϵℓ(x), Bϵ

−(x) = x+ ϵℓ(x).

Then, by the Taylor expansion, (4.6) is written as

∂tu(x) =
1

2ϵ2
(
u(x+ ϵℓ(x))(1 + ϵℓ′(x)) + u(x− ϵℓ(x))(1− ϵℓ′(x))− 2u(x)

)
=

1

2ϵ2
(
(u+ ϵℓu′ +

1

2
ϵ2ℓ2u′′) · (1 + ϵℓ′)

+ (u− ϵℓu′ +
1

2
ϵ2ℓ2u′′) · (1− ϵℓ′)− 2u+O(ϵ3)

)
=

1

2ϵ2
(
u+ ϵuℓ′ + ϵℓu′ · (1 + ϵℓ′) +

1

2
ϵ2ℓ2u′′ + u− ϵuℓ′

− ϵℓu′ · (1− ϵℓ′) +
1

2
ϵ2ℓ2u′′ − 2u

)
+O(ϵ3)

= ℓℓ′u′ +
1

2
ℓ2u′′ +O(ϵ) =

1

2
(ℓ2ux)x +O(ϵ).

Therefore, after taking ϵ → 0, we obtain the equation (4.7) with a = 1, which
is Fick's law, i.e.,

∂tu(x) = (Dux)x, D = ℓ2/2.
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Next, we consider the general case with 0 ≤ a ≤ 1. In the following
Lemma, we �rst show that N ϵ

±(x) is invertible if ϵ is small enough and �nd
an expansion of the inverse Bϵ

±(x).

Lemma 4.1. Let ℓ ∈ C3(R) be uniformly bounded as in (4.1). Let N ϵ
±(x) be

implicitly given by (4.2) for 0 ≤ a ≤ 1. Then, there exists ϵ0 > 0 such that
for all 0 < ϵ < ϵ0, N

ϵ
± are invertible and the inverse functions Bϵ

± satisfy

(4.9) Bϵ
±(x) = x∓ ϵℓ(x) + (1− a)ϵ2ℓ(x)ℓ′(x) +O(ϵ3).

Proof. First, we show that N ϵ
± are invertible if ϵ > 0 is small enough. Let

y = N ϵ
±(x). Then, by a di�erentiation,

dy

dx
= 1± ϵℓ′(ay + (1− a)x)

(
a
dy

dx
+ 1− a

)
.

Then,

dy

dx
(1∓ ϵℓ′(a2y + (1− a)ax)) = 1± ϵℓ′(ay + (1− a)x)(1− a).

Since |ℓ′| is bounded, there exists ϵ0 > 0 such that, for all 0 < ϵ < ϵ0,

(1∓ ϵℓ′(a2y + (1− a)ax)) > 0, 1± ϵℓ′(ay + (1− a)x)(1− a) > 0.

Therefore, N ϵ
±(x) are monotone and invertiable. The inverse functions are

denoted by Bϵ
±(x).

The inverse functions Bϵ
± are given explicitly as in (4.8) when the reference

point is the �nal point, a = 1. In general, the inverse functions are not given
explicitly. However, in order to �nd the parabolic scaling limit, we only need
the Taylor expansion of Bϵ

±. Since |y − x| = ϵ|ℓ(ay + (1− a)x)| ≤ ϵℓmax,

y − x = ±ϵℓ(ay + (1− a)x)

= ±ϵ
(
ℓ(y) + (1− a)ℓ′(y)(x− y) +O(ϵ2)

)
.

If we rewrite it for y − x, we obtain

y − x = ± ϵℓ+O(ϵ3)

1± ϵ(1− a)ℓ′
= ±ϵℓ(y)− (1− a)ϵ2ℓ(y)ℓ′(y) +O(ϵ3).

Finally, we obtain

x = Bϵ
±(y) = y ∓ ϵℓ(y) + (1− a)ϵ2ℓ(y)ℓ′(y) +O(ϵ3).

Therefore, Bϵ
±(x) satis�es the expansion (4.9). □

Using the Taylor expansion of Bϵ
±(x) in (4.9), we may do the same calcula-

tion as the previous case a = 1 to obtain the second order term in expansion
with respect to ϵ at zero. In below, we introduce another approach. Fix x0
in the domain and de�ne U(x) and B(x, ϵ) as

U(x) =

∫ x

x0

u(y)dy, B(x,±ϵ) = Bϵ
±(x)
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for the ϵ > 0. Then, U(x) means population (not density) within the region
[x0, x] assuming x0 < x. Extend B(x, s) smoothly for s ∈ [−ϵ, ϵ] such that
B(x, 0) = x.

Expand U (B(x, ϵ)) for small ϵ > 0 with a �xed x and obtain

U(B(x, ϵ)) = U(x) + ϵu (B(x, ϵ)) ∂ϵB|ϵ=0

+
ϵ2

2

(
ux (B(x, ϵ) · (∂ϵB)2 + u (B(x, ϵ)) ∂ϵϵB

)
|ϵ=0 +O(ϵ3)

= U(x)− ϵu(x)ℓ(x) +
ϵ2

2

(
ux(x)ℓ(x)

2 + 2(1− a)u(x)ℓ(x)ℓ′(x)
)
+O(ϵ3).

Then, by di�erentiating it with respect to x, we obtain

u (B(x, ϵ))Bx(x, ϵ) = u(x) + ϵ∂x (u (B(x, ϵ)) ∂ϵB) |ϵ=0

+
ϵ2

2
∂x

(
ux (B(x, ϵ) · (∂ϵB)2 + u (B(x, ϵ)) ∂ϵϵB

)
|ϵ=0 +O(ϵ3)

= u(x)− ϵ(u(x)ℓ(x))x +
1

2
ϵ2

(
ux(x)ℓ(x)

2 + 2(1− a)u(x)ℓ(x)ℓ′(x)
)
x
+O(ϵ3).

Do the same computation for u (B(x,−ϵ))Bx(x,−ϵ) and add the two, which
give

u (B(x, ϵ))Bx(x, ϵ) + u (B(x,−ϵ))Bx(x,−ϵ)− 2u(x)

= ϵ2
(
ux(x)ℓ(x)

2 + 2(1− a)u(x)ℓ(x)ℓ′(x)
)
x
+O(ϵ3)

= ϵ2
(
ℓ2ux + ℓ2a(ℓ2−2a)xu

)
x
+O(ϵ3)

= ϵ2
(
ℓ2a(ℓ2−2au)x

)
x
+O(ϵ3).

Hence, the solution of (4.6) satis�es

∂tu =
1

2

(
ℓ2a(ℓ2−2au)x

)
x
+O(ϵ)

for small ϵ > 0. After taking ϵ → 0 limit, we obtain the desired di�usion
equation (4.7).

4.2. Other random walks. A random walk system is called revertible if a
particle returns to the same position after two walks when the second walk
is in the opposite direction of the �rst one. The random walk system with
(4.2) is revertible only when a = 1/2. In the case, the di�usion equation (4.7)
becomes Wereide's law

ut = (
√
D(

√
Du)x)x, D = ℓ2/2.

Suppose that f is an increasing function and f−1 is its inverse. Then, we
may construct a revertible random walk by taking

K(x, y) =
1

2
δ(y − f(x)) +

1

2
δ(y − f−1(x)).

In this model, f(x) is the position after a walk to right and f−1(x) is the
position after a walk to left when x is the departure point. Then, it is clearly
a revertible system since f−1(f(x)) = x. If the walk-length is of order ϵ > 0,
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i.e., |f(x)− x| = O(ϵ), we may write f(x) = x+ ϵℓ(x) for some ℓ(x). If f is
di�erentiable, the parabolic scale perturbed problem becomes

ϵ2∂tu(x) =

∫
u(y)K(y, x)− u(x)K(x, y)dy

=
1

2

(
u(f−1(x))(f−1)′(x) + u(f(x))f ′(x)

)
.

Then,

ϵ2∂tu(x) =
1

2
u(x+ ϵℓ)(1 + ϵℓ′)

+
1

2
u(x− ϵℓ+ ϵ2ℓℓ′ +O(ϵ3))(1− ϵℓ′ + ϵ2(ℓℓ′)′ +O(ϵ3))− u(x)

=
1

2

{
u+ ϵℓu′ + uϵℓ′ +

1

2
ϵ2ℓ2u′′ +

1

2
ϵ2ℓℓ′u′

+
(
u− ϵℓu′ + ϵ2ℓℓ′u′ +

1

2
ϵ2ℓ2u′′

) (
1− ϵℓ′ + ϵ2(ℓℓ′)′

)}
− u+O(ϵ3)

=
1

2

(
ℓ2u′′ + 3ℓℓ′u′ + (ℓℓ′)′u

)
=

1

2

(
(ℓ2u′)′ + (ℓℓ′u)′

)
=

1

2

(
ℓ(ℓu)′

)′
,

which is the same di�usion equation as (4.7) with a = 1/2, i.e., Wereide's
di�sion law,

(4.10) ∂tu =
1

2
(ℓ(ℓu)x)x

So far, we have derived di�usion equations after constructing the kernel
explicitly. Next, we see which components of the random walk decide the
di�usion equation when Bϵ

±(x) are given with the small parameter ϵ > 0.
Consider a singular expansion,

Bϵ
+(ϵ, x) = x+ ϵf1 +

1

2
ϵ2f2 +O(ϵ3).

Similarly, we may consider a singular expansion for Bϵ
−(x), i.e.,

Bϵ
−(ϵ, x) = x− ϵf1 +

1

2
ϵ2f3 +O(ϵ3).

Note that the �rst order term is not free, but should be −ϵf1 to have a
di�usion limit. However, the second order term can be chosen arbitrarily.
Then, after substituting the expansion to (3.5), we obtain

ϵ2∂tu =
1

2
u(x+ ϵf1 +

1

2
ϵ2f2)(1 + ϵf ′

1 +
1

2
ϵ2f ′

2)

+
1

2
u(x− ϵf1 +

1

2
ϵ2f3)(1− ϵf ′

1 +
1

2
ϵ2f ′

3)− u+O(ϵ3)

=
1

2
ϵ2

((f2 + f3
2

u
)′

+ (f2
1u

′)′
)
+O(ϵ3).
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Therefore, after taking ϵ → 0 limit, we obtain a di�usion equation

(4.11) ∂tu =
1

2

(
f2 + f3

2
u+ f2

1ux

)
x

.

To compare with the previous revertible case, choose f(x) = Bϵ
+(x) =

x+ ϵf1(x) +
1
2ϵ

2f2(x) +O(ϵ3) and assume f(x) is monotone. The expansion

of its inverse f−1(x) can be computed as follows. Let y = f(x). Then,

y − x = ϵf1(x) +
1

2
ϵ2f2(x) +O(ϵ3)

= ϵ
(
f1(y) + f ′

1(y)(x− y) +
1

2
ϵf(y) +O(ϵ2)

)
,

and

y − x =
ϵf1 +

1
2ϵ

2f2 +O(ϵ3)

1 + ϵf ′
1

= ϵf1 − ϵ2f1f
′
1 −

1

2
ϵ2f2 +O(ϵ3).

We have omitted the argument y for convenience and �nally obtain

f−1(x) = x− ϵf1(x) +
1

2
ϵ2

(
2f1(x)f

′
1(x)− f2(x)

)
+O(ϵ3).

After substituting f3 = 2f1(x)f
′
1(x)−f2(x) in the equation (4.11), we obtain

the same equation as (4.10), i.e.,

(4.12) ∂tu =
1

2
(f1(f1u)x)x .

Note that the second order term f2 does not appear in (4.12).

5. Convergence with constant departing rate

In this section we show the uniform convergence of solutions of the non-
local equation (4.6) to the solution of a di�usion equation (4.7). So far, we
have considered the problem in the whole real line R. However, for the proof
of uniform convergence, we take a compact domain in time and space. In
particular, we take a closed interval X ⊂ R with the periodic boundary con-
dition, which is basically a circle without boundary. Hence, we may forget
the boundary condition. The main theorem is as follows.

Theorem 5.1 (Uniform convergence with heterogeneous walk-length). Let
X be a closed interval with the periodic boundary condition. Let the initial
condition u0(x) and the walk-length ℓ(x) be smooth, bounded, and positive
de�ned on X. Let uϵ be the solution of (4.6) when Kϵ(x, y) is given by (4.4).
Then for a �xed T > 0, uϵ converges to the solution u of (4.7) uniformly,
i.e.,

∥uϵ − u∥L∞(X×[0,T ]) → 0, as ϵ → 0.
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Here we discuss the existence and the uniqueness of solutions of (4.6) and
obtain the comparison principle. The time scale is ϵ2 for ϵ > 0 is small enough
and consider following form with source function f(t, x) ∈ C([0, T ];L1(X)).

(5.1)


∂tu

ϵ(t, x) = 1
2u

ϵ(Bϵ
+(x), t)∂xB

ϵ
+(x) +

1
2u

ϵ(∂xB
ϵ
−(x), t)∂xB

ϵ
−(x),

−uϵ(t, x) + f(t, x)

uϵ(0, x) = u0(x).

The previous positions Bϵ
±(x) are smooth di�eomorphisms under the as-

sumptions of smoothness, positivity, and uniform boundedness of walk-length,
and smallness of ϵ > 0. Note that the time scaling of order ϵ2 is irrelevant
with the uniqueness and the existence of a solution and hence the nonlocal
problem without scaling has well de�nedness.

We have following property from the substitution.

Lemma 5.2 (Population Conservation). Let D ⊂ X be an arbitrary subdo-
main of X. Then, we have∫

D
u(Bϵ

+(x), ·)∂xBϵ
+(x)dx =

∫
Bϵ

+(D)
u(x, ·)dx,

∫
D
u(Bϵ

−(x), ·)∂xBϵ
−(x)dx =

∫
Bϵ

−(D)
u(x, ·)dx.

Now we show the uniqueness of a solution of the nonlocal equation. For a
�xed T > 0, let

XT = C([0, T ];L1(X))

be the Banach space with the uniform norm

|∥w|∥ := max
t∈[0,T ]

∥w(·, t)∥L1(X).

For given functions u0 and f , de�ne an operator Tu0,f on the space XT as

Tu0,f (w)(t, x) =

∫ t

0

(1
2
w(Bϵ

+(x), t)∂xB
ϵ
+(x) +

1

2
w(∂xB

ϵ
−(x), t)∂xB

ϵ
−(x)− w(t, x)

)
ds

+

∫ t

0
f(x, s)ds+ u0(x).

We show the uniqueness of the solution using a �xed point theory of the
operator.

Theorem 5.3 (Banach �xed point). Let u0 ∈ C([0, T ];L1(X)). There exists
a unique solution of (5.1) if f ∈ C([0, T ];L1(X)).

Proof. It is enough to �nd a �xed point in the Banach space XT for the
operator. It is easy to see that the operator Tu0,f (w) on the space is linear
in triple (u0,f, w). It is well-de�ned since for each t,
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∥Tu0,f (w)(·, t)∥L1(X)

≤
∥∥∥∫ t

0

(
1

2
w(Bϵ

+(·), t)∂xBϵ
+(·) +

1

2
w(∂xB

ϵ
−(·), t)∂xBϵ

−(·)− w(·, t)
)
ds
∥∥∥
L1(X)

+

∫ t

0
∥f(·, s)∥L1(X)ds+ ∥u0∥L1(X)

≤ ∥u0∥L1(X) + 2t|∥w|∥+ t|∥f |∥

so L1 bounded and continuous along time as

∥Tu0,f (w)(x, t2)− Tu0,f (w)(x, t1)∥L1(X)

=

∫
X

∫ t2

t1

∣∣∣∣12w(Bϵ
+(x), t)∂xB

ϵ
+(x) +

1

2
w(∂xB

ϵ
−(x), t)∂xB

ϵ
−(x)− w(t, x)

∣∣∣∣ ds
+

∫
X

∫ t2

t1

|f(x, s)|dsdx

≤ 2|t2 − t1| · |∥w|∥+ |t2 − t1| · |∥f |∥

using conservation property for 0 ≤ t1 ≤ t2 ≤ T . Finally the operator is
Lipschitz as

|∥Tu0,f (w)− Tv0,g(z)|∥ = |∥Tu0−v0,f−g(w − z)|∥
≤ ∥u0 − v0∥+ 2T |∥w − z|∥+ T |∥f − g|∥

and by taking T su�ciently small, by Banach �xed point theorem, a unique
solution exists on interval [0, T ] and iterate to extend to de�ne on [0,∞).

Note that by the de�nition of the operator, the unique solution also be-
longs to C1

(
[0, T ];L1(X)

)
. □

De�nition 5.4 (Super- and sub-solutions). Let T > 0. We call v(t, x) ∈
C1

(
[0, T ];L1(X)

)
a super-solution of (5.1) if

∂tv(x, ·) ≥
1

2
v(Bϵ

+(x), ·)∂xBϵ
+(x)+

1

2
v(∂xB

ϵ
−(x), ·)∂xBϵ

−(x)−v(x, ·)+f(x, ·).

The function v(t, x) is called a sub-solution if the inequalities are reversed.

Theorem 5.5 (Comparison property). If v is a super-solution of (5.1),
f ≥ 0, and v(·, 0) ≥ 0, then v ≥ 0.

Proof. Put v− = −min(v, 0) = max(−v, 0). Then, ∂tv
− = 0 for v > 0. If

v ≤ 0,

∂tv
− = −1

2
v(Bϵ

+(x), ·)∂xBϵ
+(x)−

1

2
v(∂xB

ϵ
−(x), ·)∂xBϵ

−(x) + v(x, ·)− f(x, ·),

≤ −
(1
2
v(Bϵ

+(x), ·)∂xBϵ
+(x) +

1

2
v(∂xB

ϵ
−(x), ·)∂xBϵ

−(x)
)

≤ 1

2
v−(Bϵ

+(x), ·)∂xBϵ
+(x) +

1

2
v−(∂xB

ϵ
−(x), ·)∂xBϵ

−(x).
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Therefore, ∫
∂tv

− ≤
∫

v−,

and, by Gronwall's lemma, ∫
v− ≤ 0

for all time t ≥ 0. By de�nition, v− = 0 and hence v is nonnegative. □

Corollary 5.6. Suppose u and v are respectively super- and sub-solutions of
(5.1) with initial condition u0 and v0 and source terms f and g. If u0 ≥ v0
and f ≥ g, then u ≥ v.

Proof. u− v is supersolution of the nonlocal equation with initial condition
u0 − v0 and source term f − g by linearity and is nonnegative followed by
previous comparison property. □

We can prove the following lemma using the formal calculation of the
previous section.

Lemma 5.7 (Formal convergence). Let a ∈ [0, 1], Bϵ
± be given by (4.3), and

Lϵu :=
1

ϵ2

(1
2
u
(
Bϵ

+(x), t
)
∂xB

ϵ
+(x) +

1

2
u
(
Bϵ

−(x), t
)
∂xB

ϵ
−(x)− u(x)

)
.

Then, for Lu := 1
2

(
ℓ2a

(
ℓ2−2au

)
x

)
x
,

Lϵu = Lu+O(ϵ) as ϵ → 0.

Proof. As shown in the formal calculation, for each choice of reference a ∈
[0, 1],

Lϵu =
1

ϵ2

(1
2
u(Bϵ

+(x), t)∂xB
ϵ
+(x) +

1

2
u(Bϵ

−(x), t)∂xB
ϵ
−(x)− u(t, x)

)
is smooth well-de�ned function of ϵ when it is su�ciently small and takes
Taylor expansion as

Lϵu = Lu+O(ϵ)

with the di�erence given as

|Lϵu(x)− Lu(x)| = |Lu(x̃)− Lu(x)| = |(Lu)x(˜̃x)| · |x− x̃|

for some x̃, ˜̃x ∈ (Bϵ
+(x), B

ϵ
−(x)) and the distance is in the order of ϵ · ∥d∥.

Once we assume smoothness and boundedness of u, ℓ and their derivatives,
the di�erence is bounded by Cϵ with C is constant determined by u, ℓ and
choice of reference. □

The di�usion equation corresponding to the nonlocal equation is

∂tu(t, x) = Lu(t, x)

u(0, x) = u0(x)
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Lemma 5.8. For each choice of reference, i.e. a ∈ [0, 1],

Lϵ(1)(x) =
1

2ϵ2
((Bϵ

+)
′(x) + (Bϵ

−)
′(x)− 2)

is bounded and thus bounded uniformly for x ∈ X and ϵ ∈ [0, ϵ0] for su�-
ciently small ϵ0.

Proof. We de�ned N ϵ
± for small enough ϵ. By previous lemma, for su�ciently

small ϵ,

|Lϵ(1)| ≤ |L(1)|+ |(L(1))x| · ϵ · ∥d∥

= |1
2

(
ℓ2a(ℓ2−2a)x

)
x
|+ |1

2

(
ℓ2a(ℓ2−2a)x

)
xx

|ϵ · ∥d∥

which is bounded for �xed ϵ by boundedness of ℓ and its derivatives. Then
by continuity along ϵ, uniformly bounded for ϵ su�ciently small.

Note that for a = 1, that is for arrival point reference,

Lϵ(1) =
1

2

(
1 + ϵℓ′ + 1− ϵℓ′ − 2

)
= 0.

□

Now we prove the convergence theorem.

Proof of Theorem 5.1. Set wϵ = uϵ − u then

∂tw
ϵ − Lϵw

ϵ = Lϵ(u
ϵ − wϵ)− Lu = Lϵu− Lu.

Let Fϵ(u;x, t) = Lϵu− Lu. From Lemma 5.7,

|Fϵ(u;x, t)| ≤ θ(ϵ) = O(ϵ),

i.e., θ(ϵ) is function of ϵ only and is independent of the time variable. This
is possible by choosing θ(ϵ) = ∥d∥ϵ ·maxt∈[0,T ]∥(Lu)x∥∞.

In order to apply the comparison property, we �nd a super-solution w̄(t, x)
of (5.1) with source term θ(ϵ) for each �xed ϵ. Put η(ϵ) as

η(ϵ) = max
x∈X

|Lϵ(1)| = max
x∈X

1

2ϵ2
|(Bϵ

+)
′(x) + (Bϵ

−)
′(x)− 2|,

which we know bounded from lemma. Choose

w̄ϵ(t, x) =

{
θ(ϵ)
η(ϵ)

(
eη(ϵ)t − 1

)
, η(ϵ) ̸= 0,

θ(ϵ)t, η(ϵ) = 0,

where η(ϵ) = 0 case is extended by continuity. This w̄ϵ is a super-solution of

∂tv = Lϵv + Fϵ(u;x, t)

v(·, 0) = 0

since w̄ϵ(·, 0) = 0 and

∂tw̄
ϵ = η(ϵ)w̄ϵ + θ(ϵ) ≥ Lϵw̄

ϵ + θ(ϵ).

By the comparison property,

−w̄ϵ ≤ wϵ ≤ w̄ϵ
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Since w̄ϵ(t, x) is constant in space at each time t and is increasing, its value
is uniformly bounded by w̄ϵ(·, t = T ) and by taking ϵ → 0, we have w̄ϵ → 0
uniformly on X × [0, T ] so �nally we have the uniform convergence

∥uϵ − u∥L∞(X×[0,T ]) → 0

as ϵ → 0. □

6. Convergence with nonconstant departing rate

In this section, we consider the �nal case when the departing rate

(6.1) γ(x) =

∫
K(x, y)dy

is not constant. In the previous sections, we have considered a case that the
departing rate is constant γ(x) = 1 and the heterogeneity of the random
walk system is in the non-constant walk-length ℓ = ℓ(x). A classical position
jump consists of walk-length ∆x and the sojourn time (or jumping time)
∆t. The spatial heterogeneity in the walk-length has been handled in terms
of the walk-lenth function ℓ(x). However, the heterogeneity in ∆t cause a
di�erent level of di�culty that the resulting random walk system is not
Markov process anymore. The fate of a current situation cannot be decided
by the previous step since ∆t is not �xed.

In the accompanying paper [30, Sections 5 and 6], the relations among so-
journ time, sojourn rate, and departing rate are discussed. In the discussion,
the sojourn time is reversely proportional to the departing rate and propor-
tional to the sojourn rate. The main di�erence is that the heterogeneity in
the sojourn time is independent of the choice of reference point, but the one
in the departing rate is not. However, if the reference point of departing rate
is taken as the departure point, we may obtain the equivalent e�ect. Hence,
the meaning of (6.1) is twofold in that the departing rate γ(x) is given by
the relation and chosen from the departure point x. In particular, in the
formation of the kernel K (3.4), γ is taken from the departure point x.

To consider the case with a nonconstant departing rate in (6.1), the kernel
in (4.4) is replaced by

(6.2) Kϵ(x, y) =
γ(x)

2
δ(y −N ϵ

−(x)) +
γ(x)

2
δ(y −N ϵ

+(x)).

In the following theorem, we show that the solution uϵ of the nonlocal prob-
lem (4.6) uniformly converges to the solution of a local problem,

(6.3)

{
∂tu(t, x) =

1
2

(
ℓ2a

(
ℓ2−2aγu

)
x

)
x
,

u(0, x) = u0(x).

Note that the departing rate γ is placed inside of the inside derivative and
the steady state of the problem is supposed to be reversely proportional to
it.
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Theorem 6.1 (Uniform convergence with heterogeneous walk-length and
jumping time). Let X be a closed interval with the periodic boundary condi-
tion (i.e., a circle). Let the initial condition u0(x), the walk-length ℓ(x), and
the departing rate γ(x) be smooth, bounded, and positive de�ned on X. Let
uϵ be the solution of (4.6) when Kϵ(x, y) is given by (6.2). Then for a �xed
T > 0, uϵ converges to the solution u of (6.3) uniformly, i.e.,

∥uϵ − u∥L∞(X×[0,T ]) → 0, as ϵ → 0.

The convergence has been proved for the case when γ(x) = 1 in the pre-
vious section. For a case with non-constant γ(x), the convergence is directly
obtained from the constant departing rate case. Let

K̃ϵ(x, y) :=
Kϵ(x, y)

γ(x)
=

1

2
δ(y −N ϵ

−(x)) +
1

2
δ(y −N ϵ

+(x)).

Then, the integral equation with the kernel K̃ϵ is

∂tu(t, x) = P (u) =

∫
u(t, y)K̃ϵ(y, x)dy − u(t, x),

where P (·) is generator of the nonlocal functional equation. The correspond-
ing di�erential di�usion equation is

ut =
1

2
(ℓ2a(ℓ2−2au)x)x.

The integral equation with the kernel Kϵ is written as

∂tu(t, x) =

∫
u(t, y)Kϵ(y, x)− u(t, x)Kϵ(x, y)dy

=

∫
γ(y)u(y)K̃ϵ(y, x)− γ(x)u(x)K̃ϵ(x, y)dy = P (γu),

which is the same linear equation except that u is replaced by γu. Hence, by
substitution, we obtain its di�usion limit for free which is

(6.4) ut =
1

2
(ℓ2a(ℓ2−2aγu)x)x.

This �nal di�usion equation �ts in diverse situations. If the heterogeneity in
the walk-length is forgotten, we obtain

ut = ∆(γu) = ∇ · (γ∇u+ u∇γ),

where an advection term appears. This di�usion has been taken in many
places. In particular, the advection term u∇γ provides chemotactic phenom-
enon and the model is widely used in chemotaxis modeling [33][14][35][17].
The case with a = 1/2 gives a revertible random walk and the departing
rate is reversely proportional to the sojourn time, i.e., γ ∼= 1

∆t after rescal-
ing. Then, (6.4) is written as

ut =
(∆x

2

(∆x

∆t
u
)
x

)
x
.
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The turning frequency µ is reversely proportional to ∆t/2. Hence, if we
denote the velocity by v = ∆x

∆t , the above is written as

ut =
( v
µ

(
vu

)
x

)
x
,

which is the same equation obtained from a discrete kinetic equation [23].
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