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ABSTRACT 

  
The fundamental question regarding the fractionation phenomenon is whether diffusion alone is 

responsible for it or if an additional advection dynamic is involved. We studied the fractionation by 

diffusion of particles in spatially heterogeneous environments. By experimentally observing the time-

sequential fractionation patterns of dye particles diffusing across a solid-solid interface of varying 

polyacrylamide gel densities, we found that the two-component diffusion model accurately captures 

the observed fractionation dynamics. In contrast, single-component diffusion models by Fick, 

Wereide, and Chapman do not. Our results indicate that diffusion alone can explain the fractionation 

phenomenon and that additional advection dynamics are not involved. The underlying physics in the 

fractionation phenomenon is discussed using a two-component random walk model. 

 

 

 
INTRODUCTION 

 

Diffusion, a macroscopic phenomenon driven by the random microscopic movement of particles, is 

well-understood in homogeneous environments. In 1855, Fick introduced the concept of diffusion 

flux, JF = –Du, where u is the gradient of the particle concentration in water, and D is the 

diffusivity constant. This diffusion law states that particles move from regions of high concentration 

to low concentration, leading to an eventual homogenization of their distribution. Fifty years later, 

Einstein further elucidated this process using a random walk model and linked Fick’s concept of 

homogeneous diffusion to molecular-level physics1.  

 

In 1856, one year after Fick’s paper, Ludwig2 observed that salt particles move toward higher 

concentration regions if temperature T is spatially non-constant. Soret3 confirmed this fractionation 

phenomenon and experimentally showed that this uphill diffusion appears when the temperature is 

not uniform. Since then, numerous examples of the Ludwig-Soret effect in liquids and gases have 

been observed4–9, which led to the development of thermal diffusion equations that include thermal 

advection terms. 
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The phenomenon of fractionation is not limited to fluid phases. Dominguez10 studied isotope 

fractionation via thermal gradient in silicate melts subject to high temperatures. On the other hand, 

Darken11 showed that, even if the temperature is homogeneous, the fractionation of carbon appears 

in an austenite rod when its composition is discontinuous along a solid-solid interface12,13. He replaced 

the thermal advection term with the chemical-potential ‘advection term’ introduced by Nernst14. 

Milligen et al.15 observed the fractionation of dye particles in a liquid-solid interface, where green 

food dye particles diffuse towards gelatin. 

 

Furthermore, fractionation phenomena have been gaining interest, especially in biological systems, 

where selective fractionation of particles, such as proteins and nanoparticles, plays an important role 

in cellular functions. Specifically, the passive nature of processes observed in liquid-liquid phase 

separation16–18 and perinuclear accumulation of functional particles19–22 offers an alternative transport 

mechanism within living organisms that is energy-efficient and incurs no energy cost. 

 

The theoretical explanations for the Ludwig-Soret effect were contributed by Chapman23–26, Enskog27, 

Wereide28, and Onsager29, though their studies were focused primarily on thermo-diffusion in gaseous 

mixtures. In particular, Chapman developed his diffusion model to explain the fractionation 

phenomenon using diffusion alone. However, differing opinions on the physical cause of the Ludwig-

Soret effect in liquid have emerged, with proposals ranging from activation self-diffusion free 

enthalpies30 to solvation entropy31. Researchers today often use diffusion models supplemented with 

various advection terms tailored to each system, yet in many cases, the physical evidence for these 

advection terms remains elusive. 

 

Consequently, there has been much debate about which diffusion law is correct when diffusivity 

varies spatially. Some claim no universal form of diffusion equation exists32,33, while others argue 

that diffusion law is only a convention as long as the added advection term is suitable34,35. The 

remaining key question about the fractionation phenomenon is whether diffusion alone is responsible 

for it or if an additional advection dynamic is involved. This controversy stems from two facts. First, 

due to the nature of the diffusion phenomenon, it is hard to experimentally obtain time-sequential 

dynamics data with the accuracy needed to verify diffusion laws, which consequently makes it 

difficult to determine whether a diffusion model aligns with the phenomenon or if an additional 

advection dynamic is present. Second, diffusivity alone cannot explain heterogeneous diffusion 

phenomena, as all attempts so far have used a single diffusion coefficient D to explain the 

fractionation phenomenon. 

 

In this paper, we present for the first time the time-sequential dynamics data, and we demonstrate that 

two-component diffusion law alone can explain the fractionation phenomenon exactly. More 

specifically, Kim et al. derived two-component diffusion model36–40 extending Einstein’s random 

walk idea after adding spatial heterogeneity. The model divides the diffusivity into two parts, D = 

KM, and the diffusion flux is written as  

𝐽K  = – 𝐾(𝑥)(𝑀(𝑥)𝑢), 𝐷(𝑥) = 𝐾(𝑥)𝑀(𝑥). (1) 

When M is constant, Eq. (1) reduces to Fick’s law. If we consider two-component random walk model 

and denote the walk length of diffusing particles by l(x) and the sojourn time by τ(x), the diffusion 

flux in Eq. (1) becomes 

𝐽K  = –
𝑙(𝑥)

2𝑛
(

𝑙(𝑥)

𝜏(𝑥)
𝑢) , 𝐷(𝑥) =

𝑙2(𝑥)

𝑛𝜏(𝑥)
, (2) 

where n is the space dimension. We find that the experimentally measured coefficient values closely 

match the estimates obtained from comparing lattice systems with different acrylamide densities. 



Fig. 1 Fractionation at spatially heterogeneous gel interfaces. (A) Schematic view of the experimental setup, 

depicting two adjoining polyacrylamide gels with different acrylamide/bis-acrylamide concentration and the 

transition layer. (B) Snapshots of the experiment taken between 4 to 64 hours. The 64 hr snapshot, magnified 

on the right, is contrast-adjusted to highlight fractionation. (C) Dye concentration between 4 hours (blue dots) 

and 64 hours (thick black dots) for BPBG12%,4%. The initial distribution at 4 hours forms as the gel interface fully 

polymerizes. (D) Dye concentration profiles for homogeneous cases with gel densities of 4% (left) or 12% 

(right). Gel at x > 0 initially contains no dye. (E) The diffusivities for the four gel densities and two dye types, 

BPB (circle) and R6G (square). 

 

RESULTS AND DISCUSSION 

 

Fractionation at spatially heterogeneous gel interfaces. 
We observed dynamic fractionation patterns of dye concentration diffusing across a spatially 

heterogeneous solid-solid interface (Fig. 1A). This interface was made by adjoining two gels made 

of water and acrylamide/bis-acrylamide (or simply acrylamide) solution (see Methods: 

Polyacrylamide gels with heterogeneous lattice interface). Selected for their clarity, structural 

stability when hydrated, and adjustable pore size, these gels allow precise observation of dye 

movement across a solid-solid interface that provides spatial heterogeneity. Specifically, we 

manipulated the lattice size (or porosity) by varying the acrylamide concentration of the gel and 

pouring it over an already solidified one (Fig. 1A magnified inset). Consequently, the pore size of our 

polyacrylamide gels ranged from approximately 70 to 130 nm41. The dye particles we used for the 

experiments were Bromophenol Blue (BPB) and Rhodamine 6G (R6G) selected for their small 

particle size of 2–3 nm and long-lasting color fastness, making them ideal for extended observation 

periods. 

 

Four experimental groups, each representing different gel density combinations and dye types, are 

used. For example, in the BPBG12%,4% group, one side of the interface is a gel with 4% acrylamide, and 

the other with 12%. Similar setups were used for R6GG12%,4%, BPBG10%,5%, and BPBG5%,10%. In each case, 

the higher percentage gel was injected later to minimize the transition time, except for BPBG5%,10%. 

 

We measured the absorbance of BPB or R6G eight times at intervals of k2 hours, where k = 1, 2, …, 

8 (Fig. 1B). The 1-hour snapshot was excluded because the solidification process of the second gel 



occurred during the first hour. To mitigate boundary effects, only the central part of each snapshot 

was taken (see Methods: Data Extraction Process). The absorbance data were converted to one-

dimensional dye concentration profiles. This time-sequential image shows the fractionation dynamics 

over time (Fig. 1C, see Methods: Dye standard curve measurement). Since the 4-hour snapshot (in 

blue, Fig. 1C) is taken 4 hours after the second gel is injected, the diffusion process has already begun, 

resulting in a step-like distribution. 

 

Fig. 1D shows how we measured the diffusivity of each gel concentration. The second half of the gel 

cast was filled with the same concentration gel without dye particles, and then the diffusion of dye 

particles was measured. The two images in Fig. 1D are the processed data for the two homogeneous 

cases. Diffusivities for the four gel densities and two dye types used in the experiment were obtained 

from multiple runs of experiments and are given in Fig. 1E. The average diffusivities measured are 

D12% = 0.2725 mm2/hr for BPB in 12% acrylamide gel and D4% = 0.5825 mm2/hr for BPB in 4% gel. 

The heterogeneous diffusivity D(x) for BPBG12%,4% takes these values for x < 0 and x > 0, respectively. 

 

 
Fig. 2 Comparisons of fractionation with four diffusion models. (A) Comparison of BPBG12%,4% 
experimental result with four diffusion model predictions. The initial dye distribution is represented in blue, 

with time-sequential fractionation patterns (black) are shown with the final fractionation emphasized. The 

residual at 64 hours is displayed below each model’s prediction. (B) Quantitative comparison of fractionation 

quotient Qfrac values. Experimental data (red circle) are compared with Fick (square), Wereide (triangle), 

Chapman (diamond) and Kim (circle).  

 

 

Comparison of fractionation with four diffusion models. 
The experimental data from BPBG12%,4% group and the numerical estimates from four diffusion models 

are compared in Fig. 2. The diffusion fluxes for these models are given by: Fick’s model (JF = –Du), 

Wereide’s28 model (JW = –√𝐷 (√𝐷u)), and Chapman’s23,42 model (JC = – (Du)). Since these three 



diffusion fluxes depend solely on the diffusivity D, we call them single-component models. In 

contrast, Kim’s two-component diffusion flux JK in (1) requires two coefficients, K and M. 

 

The numerical estimates given in Fig. 2A are solutions of a differential equation, ∂t u = – ∂x J, with 

the initial condition u(4, x) = u4(x), where u4(x) is the experimental data at 4 hr (blue dots) and J is 

one of the four diffusion fluxes. In Fig. 2A, experimental data are compared with numerical estimates. 

Fick gives homogenization, showing flattening of dye concentration pattern over time, while 

Chapman and Wereide give too much fractionation. To use Kim’s two-component diffusion flux, we 

need one more coefficient. Roughly speaking, we took M(x) = M˗ for x < 0 and set M(x) = M+ for x > 

0. Since JK is invariant for constant multiplication of K(x) and M(x) as 𝐽K = – 𝐾(𝑥)(𝑀(𝑥)𝑢) =

– 𝐶𝐾(𝑥) (
𝑀(𝑥)

𝐶
𝑢), we can choose M˗ = 1 without loss of generality (i.e. choosing C = M˗). Then, 

K(x) is simply given by K(x) = D(x)/M(x). The next step is to find M+ that fits the data best using the 

least square method. Therefore, it is not surprising that the two-component diffusion model gives the 

best fit in Fig. 2. The surprising finding is that the fit is near perfect (Fig. 2A bottom) that this result 

tells us that no additional convection dynamics exist; the two-parameter diffusion model alone is 

sufficient. The fractionation quotient Qfrac is given in Fig. 2B to quantify the fractionation degree, 

which measures the difference in dye amounts between two sides, normalized by the net dye amount 

(see Methods: Qfrac calculation for the definition of Qfrac). 

 

Physics and Mathematics behind fractionation. 

The two-component diffusion flux JK disappears when Mu is constant, meaning that u becomes 

inversely proportional to M(x) at equilibrium. To see the physical meaning of M(x), we need to see 

the connection between M(x) and random walk parameters. The lattice model appears to be the best 

fit for describing the diffusion phenomenon across acrylamide gels. Suppose that a particle jumps the 

walk-length x = l(x) every sojourn time t = (x). Then, coefficient M is given by M(x)= l(x)/(x) 

(see SI: Derivation of two-component diffusion flux). Therefore, at the equilibrium state, JK = 0 gives 

l(x)u/(x) = constant, meaning the particle density (or concentration) u is proportional to 𝜏(x) and 

inversely proportional to l(x). This aligns with the physical intuition that equilibrium is obtained when 

the particle mass flux across heterogeneous gel interface is balanced. At the heterogeneous interface 

x = 0, the mass flux for x > 0 is written as J+ = ρN+/(2nA++), where ρ is molar mass, N+ is the number 

of particles inside a lattice for x > 0, A+ is the area of one side of the lattice, and + is sojourn time. 

Here, the term 2 n is because of the number of faces on n-dimensional lattice. Since the mass density 

is defined as u+ = ρN+/V+, we can rewrite the flux as J+ = l+u+/(2n+). At the equilibrium, this flux 

should be balanced with the flux from negative domain, J+ = J˗. Thus, the relation M(x)u = constant 

is obtained again where coefficient M is given by M(x)= l(x)/(x). However, l(x) and (x) do not 

necessarily change linearly. In other words, M+ and M˗ can differ. This leads to fractionation over 

time because they should satisfy u+/u˗ = M˗/M+ at the equilibrium. 

 

To measure the fractionation quantitatively, we use the exponent q of diffusivity as M˗/M+ = (D˗/D+)q. 

In heterogeneous environment, if D ≠ 1, we can express M(x) = Dq(x) where q(x) = lnM(x)/lnD(x) 

(see SI: Derivation of exponent form of diffusion flux), and hence the flux JK is written as Jq =  D(1  

-q)(Dqu). In this notation, we denote only the variation in K(x) and M(x) using D(x). Using this form 

has an advantage: the three one-component diffusion fluxes are in this form, where JF = J0, JW = J0.5, 

and JC = J1. For the two-component diffusion law, the exponent q varies in space, i.e., JK = Jq(x). In 

our experiment, since the diffusivity is constant for x < 0 and x > 0, we can choose a constant q as q 

= ln(M+/M˗)/ln(D+/D˗) when D+ ≠ D˗. If the gel concentration or the dye particle types are changed, 

the corresponding exponent q changes depending on the change of M compared to D. In a previous 

discussion, we fixed M˗ = 1 and used M+ as a fitting parameter. Equivalently, we can take the 



exponent q as a fitting parameter since D+ and D˗ can be measured independently (see Methods: 

Numerical estimations for heterogeneous diffusion). This approach allows us to compare the two-

component flux to single-component ones. 

 

From Eq. (2), we see that if (x) is constant and l(x) varies, the exponent corresponding to the flux JK 

is q = 0.5. If l(x) is constant and (x) varies, then q = 1. If (x) is proportional to l(x), then the ratio 

l(x)/(x) is constant and hence q = 0. We are analyzing our experiment using a lattice model where 

we assume dye particles jump instantly from one lattice to another every sojourn time. Assuming no 

other interactions (such as attraction or repulsion) are present, as the lattice size grows, the dye 

particles’ walk length will increase. Simultaneously, because the lattice cell is now larger, it would 

take longer for dye particle to jump to the next cell. Therefore, we expect that q < 0.5 in our 

experiment. Since we observed the fractionation across the heterogeneous interface, the rate of change 

should be different; otherwise, (x) would be proportional to l(x) resulting in no fractionation as the 

system will follow Fick’s law. Additionally, if (x) were to increase faster than l(x), resulting q would 

become negative which means larger dye density with higher diffusivity. This inverse fractionation 

is mathematically possible, but its existence in physical system is questionable as it is counter intuitive. 

Therefore, we expect (x) to increase as l(x) increase, but at a slower rate than l(x), leading to q > 0. 

In fact, we find the exponent corresponding to the experiment in Fig. 2 is q = 0.254. 

 

 



 
Fig. 3 Dye type, gel density, and initial distribution effect in fractionation. Comparison of dye distribution 

in the R6GG12%,4% (A), BPBG5%,10% (B) and BPBG12%,4% (C) experiments and corresponding numerical estimates 

from 4 hours (blue) up to 64 hours (black, 64 hr highlighted). On the right, Qfrac for each hour are compared 

between experiment (red circle), Fick (square), Wereide (triangle), Chapman (diamond) and Kim (circle). 

 
Effects of dye type, gel density, and initial distribution. 

We investigated the fractionation dynamics for three more cases by varying dye type, gel density, and 

initial distribution. In Fig. 3A, time-sequential experimental patterns from the R6GG12%,4% group are 

shown alongside a numerical estimate using the two-component model. The corresponding q-value 

of the group is q = 0.267 ± 0.042, which is slightly bigger than the case of Fig. 2. The size of R6G 

based on its chemical structure is slightly larger (~1 nm) than that of BPB, which affects the 

fractionation process and changes the q-value. The distribution pattern evolves to a step function-like 

equilibrium state and it is well captured by the two-component (see Fig. S1A for the performance of 

other single-component models). In Fig. 3B, an example from the BPBG5%,10% group is given, which 

gives q = 0.236 ± 0.017. For this case, the higher density gel (10%) was solidified first in x > 0, 

followed by the lower density gel (5%). Because the 5% gel takes longer to solidify than 10% gel, 

the initial profile at t = 4 hr is significantly different from other cases. The two-component model still 

accurately predicts the pattern and the Qfrac value (Fig. S1B). Compared to the result for the BPBG12%,4% 

case in Fig. 2, q-value is decreased, and the change is greater than the R6GG12%,4% case, meaning the 

lattice size has greater impact on fractionation than the dye size. In addition, the initial amount of dye 

was doubled in the 4% gel region (x > 0) of the BPBG12%,4% case in Fig. 3C. The corresponding q-value 

of the group is q = 0.254 ± 0.044. Due to the additional dye, the initial distribution appears fractioned 

in the opposite direction. However, the diffusion process reverses this pattern starting from the 

interface, eventually leading to a result consistent with the previous outcomes. The two-component 

diffusion model accurately generates this reversal (Fig. S1C).  

 

The two-component diffusion flux is given by the two coefficients K(x) and M(x), and the numerical 

estimates using this two-component model were confirmed to be in perfect agreement with the 

experimental classification pattern for three more cases. These findings serve as evidence that the 

fractionation phenomenon is driven solely by diffusion. 

 

 

 
Fig. 4 Lattice size effect on random walk parameters. (A) The plot comparing the experimental ratios of 

diffusivity D (black), l (blue) and l/τ (red) against the lattice size ratio R in log-log scale. The power law 

relationships between these ratios and R are depicted, with exponents being 1.9835  0.102 for D, 1.4899  

0.0664 for l, and 0.49598  0.0364 for l/τ. Note when l and l/τ are multiplied, we recover the exponent value 

for D ratio as expected. (B) Comparison of the experimental l ratio (blue) vs. R with theoretical prediction by 

Kim (blue), Fick (green), Wereide (purple) and Chapman (orange), log-log scale. (C) Comparison of the 



experimental τ ratio (red) vs. R with Kim (red), Fick (green), Wereide (purple) and Chapman (orange) models 

(log-log scale). 

 

Two-component random walk and lattice size effect. 

Since the fractionation depends on the ratio of M across the interface, the following analysis is given 

in terms of such ratios. We take a lattice model for this analysis. Let L be the average edge length of 

lattice composed of the acrylamide gel. Since the length L is inversely proportional to the cube root 

of the gel density, for the BPBG12%,4% group, the ratio of the two length sizes in three dimensions is, 

R12%,4% = L 4%/ L 12% = √12/43  = 1.442. Similarly, R10%,5% = 1.26. The experimentally obtained ratios 

for Da%/Db%, la%/lb% and (l/)a%/(l/)b% for the two groups with respect to R is plotted in Fig. 4A. In 

the two-component model, Da%/Db% is shown to be in ~R2 relationship, la%/lb% ~ R3/2 and (l/)a%/(l/)b% 

~ R1/2. We can use the last two relationships to obtain τa%/τb% ~ R shown in Fig. 4C. 

 

In detail, for the BPBG12%,4% group, l4%/l12% = 1.764 and τ4%/τ12% = 1.453 on average meaning the 

particles in 4% gel has about seventy-six percent longer walk length and forty-five percent longer 

sojourn time. Because the pore size of denser gel is smaller, the dye particles collide more frequently 

resulting in the walk length and sojourn time becoming shorter. We can make a similar analysis using 

υ and μ where υ4%/υ12% = 1.214 and μ4%/μ12% = 0.688 on average (Fig. S2). The first ratio implies that 

the mean speed υ of dye particles in the 4% acrylamide gel is about twenty-one percent faster than 

the other. The second ratio says the turning frequency (or collision frequency) μ is inversely 

proportional to the length scale of the acrylamide lattice and about thirty-one percent less. This further 

highlights that the dye particle collision with acrylamide structure is the deciding factor affecting the 

random walk environment of our system. 

For comparison with other diffusion models (Fig. 4B, C): Chapman model gives, la%/lb% ~ const. and 

τa%/τb% ~ R-2; Wereide’s model gives la%/lb% ~ R, and τa%/τb% ~ const.; Fick model gives la%/lb% ~ R2 

and τa%/τb% ~ R2. Wereide and Chapman's models underestimate R dependency on random walk 

parameters, and Fick's model overestimates it. This agrees with our discussion above, where we 

mentioned that if l(x) or (x) is constant or has the same dependence (i.e., l(x)/(x) is constant), the 

two-component diffusion model reduces into one of the single-component diffusion models. In other 

words, Wereide’s model applies to systems where heterogeneity affects only the walk length, while 

Chapman’s model applies to systems where heterogeneity affects only the sojourn time. Fick’s model 

applies when both walk length and sojourn time have the same dependence on the system’s 

heterogeneity, with the homogeneous system being the obvious case for it. Interestingly, this also 

indicates that there may be a system where D is position-dependent, but as long as l(x) and (x) have 

the same position dependence, diffusion in such a system will follow Fick’s model. Consistent with 

our expectation, we find the exponent corresponding to all of our experiments is 0 < q < 0.5, and l(x) 

and (x) depend on lattice size ratio R by the power of 3/2 and 1, respectively. 

 

We initially hypothesized that l4%/l12%, the change in walk length from a 4% to a 12% gel, would be 

comparable to the change in lattice size R = 1.442, while the sojourn time remained largely unchanged. 

However, the fitted value for l4%/l12% is 1.764. This difference may be explained by considering the 

effect of permeability on the walk length. For the acrylamide lattice of the lattice size L and the 

molecule size r ~ 0.287 nm, the permeability (p) is the area not obstructed by acrylamide divided by 

the lattice face area. Therefore, the permeability ratio between 4% and 12% gel is theoretically 

estimated to be p4%/p12% = 1.184. When the diffusion flux J for each gel percentage is multiplied by 

the corresponding permeability factor, this result is in line with the experimental permeability ratio 

p4%/p12% = 1.223 with l4%/l12% reduced from 1.764 to 1.442, the same as R. Furthermore, the change 

in sojourn time τ4%/τ12% decreases from 1.453 to 1.189 with the permeability considered.  



 

 

CONCLUSION 

 

We have investigated the fractionation of diffusing particles in a spatially controlled heterogeneous 

environment. The common intuition that random particle dispersal eventually homogenizes the 

distribution of particles holds true only in a homogeneous environment. Indeed, we have 

experimentally shown that the random dispersal of dye particles creates a fractionation phenomenon 

in a simple solid-solid interface of two types of acrylamide gels. This fractionation dynamics cannot 

be explained by conventional one-component diffusion models but are successfully described by the 

two-component diffusion model. The two components of the diffusion model can be expressed using 

random walk parameters such as the walk length l and the sojourn time τ. This model states that the 

equilibrium is achieved not when the mass density u is constant, but when (l/τ)u is constant. Since l/τ 

is the microscopic particle speed, we may say that the fractionation phenomenon is based on the 

fundamental physics principle that a steady state is achieved when the particle mass flux is balanced 

across the fractionation interface. 

 

This paper highlights the nature of random dispersal in the presence of heterogeneity: fractionation is 

the macroscopic manifestation of the position-dependent coefficient M(x), or equivalently, position-

dependent random walk parameters such as walk length l(x) and sojourn time τ(x). The Ludwig-Soret 

effect is one of the most well-known examples of fractionation, with over 160 years of history. A 

typical approach to explaining this phenomenon involves adding an advection term toward or against 

the temperature gradient 𝛻𝑇. However, if diffusion coefficients depend on temperature (e.g., M = 

M(T)) and the temperature is spatially heterogeneous, then diffusion coefficients and random walk 

parameters become position-dependent. In such a case, the two-component diffusion flux produces a 

thermal advection term, which is 𝐽𝐾 = −𝐾𝛻(𝑀𝑢) = −𝐷𝛻𝑢 − 𝐷
𝑀′(𝑇)

𝑀(𝑇)
𝑢𝛻𝑇.  Based on the 

observations in this paper, we conjecture that the thermal advection term also naturally arises from 

the two-component diffusion model and that no additional advection dynamics are present. We 

further conjecture that the exponent could be closer to q = 1 (Chapman’s diffusion law) since the near 

incompressibility of liquid gives an almost uniform lattice size (i.e. l(x) constant), but the temperature 

difference makes τ(x) vary as its internal energy increases with temperature, and it takes less time 

statistically between two jumps. The next step is to apply our system to a scenario similar to thermal 

diffusion phenomenon where dye particles are exposed to uniform lattice size (constant gel density) 

but with thermal gradient. This will involve quantitatively measuring and determining whether the 

two-component diffusion law alone can explain the thermal diffusion phenomenon. 

 

 

MATERIALS AND METHODS 

 

Polyacrylamide gels with heterogeneous lattice interface 

Clear gel solutions are prepared by diluting Acrylamide/bis-acrylamide (37.5:1) 40% solution with 

triple distilled water to desired percentages (e.g., 12, 10, 5, and 4%). For colored gel solutions, two 

kinds of dyes are used in the experiment, Bromophenol Blue (BPB) and Rhodamine 6G (R6G). We 

have chosen them since they have long color fastness suitable for long observations. BPB samples 

are made by adding BPB to the diluted Acrylamide/Bis-acrylamide solution to the final dye 

concentration of 50 μg/ml. R6G samples are prepared similarly with the final dye concentration of 20 

μg/ml. 

 



We performed in total ten experiments, and each consists of four test subjects in gel casts: one 

heterogeneous gel combination, two homogeneous ones, and one reference one. The heterogeneous 

gel combination is assembled in gel cast. The gel cast is made of two parallel glass plates of 

dimensions 80 mm by 90 mm with a thin gap of 1 mm. Fresh 10% Ammonium Persulfate Solution 

(APS) and N,N,N’,N’-Tetramethyl- ethylenediamine (TEMED) are added to BPB or R6G containing 

gel solution, which is then poured into the gel cast half full. To achieve a flat border between the 

types of gels, isopropyl alcohol is added on top and the gel is left to solidify. Then, we remove the 

isopropyl alcohol from the cast and rinse it several times with triple distilled water. The remaining 

half of the cast is filled with another colored gel with a different acrylamide percentage. The 

homogeneous gel combinations are assembled similarly but with the same acrylamide/bis-acrylamide 

percentage on both sides, with only one half with dye. Whether the colored gel is poured first or last 

affected the initial condition but did not matter in the measurement of homogeneous diffusivity. The 

reference gel combination is assembled by mixing the two gel solutions used in making the 

heterogeneous gel sample. The gel cast is filled with the mixture and polymerized as a whole. Once 

the gel solidified completely for each gel combination, the sample is sealed around the perimeter to 

inhibit the evaporation of solution from the gel. 

 

Dye standard curve measurement 

The standard curve for the dye molecules is measured to determine the optimal concentration of dye 

to be used during the experiment. A series of gels are made with increasing concentrations of BPB or 

R6G, and the absorbance of each gel is determined using a Luminograph. The range of dye 

concentration with linear correlation to the absorbance measured is selected as the optimal 

concentration. 

 

Heterogeneous and homogeneous fractionation measurement 

Diffusion measurements are performed over the sixty-four-hour period. We set the moment when the 

top part of the gel is poured as 0 hours. From then onwards, we took a photo of the test subject with 

the Luminograph at 1, 4, 9, 16, 25, 36, 49, and 64-hour marks, square of integers from one to eight, 

to observe the diffusion of dye particles. Since the diffusivity has the unit of m2/s, measuring at these 

time intervals will yield uniform spatial step size. Samples are kept dark and moist to minimize 

exposure to light and prevent the gel from drying out. 

 

Qfrac calculation 

In order to quantify fractionation, we defined ‘fractionation quotient’ which measures the difference 

between the amount of dye on either side of the interface normalized by the initial net dye distribution 

at 4 hours. It is defined as Qfrac = 
|∫ 𝑢(𝑡,𝑥) 𝑑𝑥

 
{𝑥<0} −∫ 𝑢(𝑡,𝑥) 𝑑𝑥

 
{𝑥>0} |

|∫ 𝑢4(𝑥)𝑑𝑥
 

{𝑥<0} −∫ 𝑢4(𝑥)𝑑𝑥
 

{𝑥>0} |
. This way, we were able to visualize 

the dynamics of fractionation over time, and compare different diffusion models. 

 

Numerical methods 

All simulations are performed in MATLAB using the ‘pdepe’ function, which is a built-in function 

that solves ordinary differential equations for each time step based on a variable-order, variable-step 

algorithm. The experimental data at 4hr are taken as initial data because the gel at 1hr is not yet 

hardened enough and requires extra time to be stabilized. The boundary condition is the no-flux 

boundary condition which is equivalent to the Neumann boundary condition. The domain of 

simulation is -20 < x < 20 which is the same as experimental dimension. (see SI: Parameter 

determination) 

 



Global minimum of least square error 

When we perform the numerical simulation, all parameters are obtained by the least square error. The 

least-square error between data and simulation is calculated at each time, from 9 hours to 64 hours. 

For all cases, one global minimum was obtained. It means that the experimental data are well 

explained by the diffusion equation and the unique minimizer can be used as the representative value 

for each parameter. 

 

Numerical estimation for homogeneous diffusion 

First, the diffusivity of each concentration is measured from two homogeneous gels respectively. To 

simulate the diffusion phenomena, the homogeneous diffusion equation is used which is ut = Da% uxx, 

where Da% denotes the diffusivity of BPB dye in the a% polyacrylamide gel. It is attained by 

minimizing the least square error. The snapshots of both experiment data and numerical simulation 

have a single intersection point at the middle of each front. This is a special feature of diffusion 

phenomena and indicates that the experiment is represented well by the diffusion equation. 

 

Numerical estimation for heterogeneous diffusion 

Similarly, the heterogeneous diffusion equation used in the numerical estimation is ut = 

[K(x)(M(x)u)x]x = [D1-q(x)(Dq(x)u)x]x, where the exponent q is a control variable. For single component 

diffusion models, q values of 0, 0.5 and 1 were used for Fick, Wereide and Chapman respectively. 

For our two-component diffusion model, the optimal q is attained by minimizing the least square error 

between data and simulation for each experiment group. For D(x), although we assume jump 

discontinuity of the diffusivity at x = 0, there is an intermediate region between the acrylamide gels, 

where it smoothly connects the two regions. Due to this transition layer at the interface, we use an 

approximation technique. Thus, the diffusivity used in the simulation is an inverse tangent function, 

more precisely D(x) = A + B arctan(3x) to account for the continuous transition layer. Among the 

domain -20 < x < 20, the arctan function can recover 89.51% of the jump discontinuity at -2 < x < 2. 

This D(x), combined with the initial experimental data at 4 hours, is used to numerically estimate 

fractionation for both single component diffusion models (Fick, Wereide, and Chapman) and our two-

component diffusion model. 

 

Data extraction process from raw data 

Step 1. The pictures of gel samples are taken by a Luminograph as raw data (SI raw data 1~10: 

Interdiffusion row shows the heterogeneous experiment). Step 2. To remove the refraction effect of 

the lens, a background image is used, and the light intensity of each pixel is obtained by subtracting 

the background intensity from the data intensity. After that, we arrange all images by rigid rotation, 

using ‘imregister’ function in MATLAB. Step 3. From the obtained light intensity, 600  500 pixels 

are chosen near the middle of the images. To remove noise, ‘trimmean’ function in MATLAB is used 

as a smoothing function. Step 4. Take the average value of each row. Then, a vector of 600 

components of the light intensity is obtained, and each element represents 1/300 inch (or 300 dpi). 

Step 5. To convert the light intensity to concentration, we need to follow the following three processes: 

1) The average light intensity of each image and the maximal intensity of reference gel are used to 

determine the standard curve between light intensity and transmittance. 2) Using the relationship 

between transmittance and absorbance, the absorbance vector is obtained. 3) Using Beer-Lambert 

law, the light intensity vector is transformed to the concentration vector. Putting all steps together, 

the relation between light intensity and concentration is Concentration = 50 μg/mL × 
log M−log(Light intensity)

log M−log A
 where M is the maximum light intensity and A is the average light intensity. 

Then, 600 components vector of concentration is obtained, and it is compared with the simulation in 

the following steps. Step 6. From homogeneous gel, perform a simulation with the initial value equal 



to 4 hours data. The diffusivity Da% is a manipulated variable and it is determined by minimizing the 

least square error. Step 7. From heterogeneous gel, perform a simulation with the initial value equal 

to 4 hours data. Since the diffusivity is determined in the previous step, the only manipulated variable 

is q. It is also determined by minimizing the least square error. 
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