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Abstract

Random movement of microscopic particles in heterogeneous environments leads to fractionation phenomena, with
the Soret effect being one of the most representative examples. This raises a fundamental question: what characteristics
of random movement give rise to such fractionation phenomena? We investigate whether the persistence of a random-
walk system has such a property and show that fractionation occurs only when the persistence is anisotropic. This is
shown by investigating the convergence of a heterogeneous persistence random-walk system to a resulting anisotropic
diffusion equation. Numerical simulations of the diffusion equation are compared with a Monte Carlo method and
solutions to the recursive relations.
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1. Introduction

Many random-walk systems are designed to understand how the behavior of individual microscopic particles
affects the diffusivity. To achieve this, individual movement has been analyzed by breaking it down into various com-
ponents, including particle speed, turning frequency, sojourn time, walk length, viscosity, anisotropy, persistence,
permeability, etc. These components are the features of various random-walk systems, which are designed to study
their specific impacts on diffusivity. The parameters for these components, which are mathematical quantities defin-
ing their characteristics in the model, are taken as constants—meaning they do not vary with position— under the
assumption that the environment is spatially homogeneous. Then, the diffusion equation satisfied by the random walk
system is

∂u
∂t
= ∇ · (D∇u), (1)

where ∂u
∂t is the partial derivative of the mass density u with respect to the time variable t, ∇u is the gradient of u with

respect to space variable x ∈ Rn, and ∇· is for the divergence. The coefficient D is a constant diffusivity, which is a
scalar in an isotropic diffusion or a matrix in an anisotropic diffusion. The steady state of this problem is constant with
respect to x, and the solution of (1) converges to the steady state as t → ∞.

For a long time, the diffusion process has been considered as a homogenization process of the initial distur-
bance. However, this is a property of a homogeneous environment. When the environment is spatially heterogeneous,
fractionation phenomena are observed, where a previously uniform distribution transitions into a non-uniform state.
In 1856, Ludwig [1] discovered that salt particles, under diffusion, were distributed unevenly in water with an un-
even temperature. Later, Soret[2] discovered the separation of two liquid mixtures under a temperature gradient, and
Darken[3] observed the uneven distribution of carbon particles in a non-uniform metal rod. Similar phenomena are
widespread, and fractionation is a common phenomenon that occurs due to diffusion in non-homogeneous environ-
ments. However, the diffusion equation (1) cannot explain this fractionation phenomenon.
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It has been unclear for a long time whether fractionation phenomena occur due to diffusion or whether other mass
transfer processes are involved. Recently, Kim et al. [4] showed that experimentally measured dynamical patterns of
a fractionation phenomenon match completely to the predicted patterns by the two-component diffusion law,

∂u
∂t
= ∇ ·

(
K∇(Mu)

)
, D = KM, (2)

where K is called the conductivity, M the motility, and the diffusivity D is the product of the two. In other words, two
coefficients are needed to explain the diffusion phenomenon in a heterogeneous environment, and by doing so, the
fractionation phenomena can be fully predicted by diffusion alone without the need for additional advection dynamics.
If the environment is homogeneous, the coefficients are constant, and (1) and (2) become equivalent. However, if M
is not constant, we obtain a non-constant steady state, which is the cause of a fractionation phenomenon.

Diffusion laws so far have been one-coefficient laws, which are determined solely by the diffusivity D. For ex-
ample, Equation (2) is referred to as Fick’s diffusion law when K = D and M = 1, which gives (1) and is the most
widely known case. Equation (2) is called the Fokker-Planck, Chapman [5], or Ito type when K = 1 and M = D. If
K = M =

√
D, (2) is called Wereide or Stratonovich type. These diffusion laws require the diffusivity D only and

hence, traditional random walk models are designed to estimate D assuming all the parameters of the system to be
constant. Note that models with constant parameters are enough to decide the diffusivity, which is the random-walk
models used so far. However, if one wants to see how the two parameters, K and M, are decided, the parameters should
be assumed to vary in space. Then, their contribution to K and M are separated. The authors and their collaborators
have studied different roles of random walk components, walk length[6], velocity[7, 8], sojourn time[9], and jumping
rate[10] in deciding K and M. We will see later that the heterogeneous persistence also has its unique way of deciding
K and M.

The purpose of this paper is to understand how the two coefficients K and M are decided by a PRW system,
which explains how persistence gives a fractionation phenomenon. In this paper, we construct a PRW system with
spatial heterogeneity and directional anisotropy. The theory of random-walk systems has evolved in various directions
since its introduction by Einstein [11] and Pearson [12] in 1905. The correlated or persistent random walk model,
which is influenced by the movement of the previous step, was introduced by R. Fürth [13] and Taylor [14], and the
term ”persistence” has been used since the work of Patlak [15]. These models are widely used to describe particle
movements in various media in physics and are frequently employed in ecology to explain animal movement paths, as
reviewed in Codling’s (2008) paper[16]. Persistent random walks converge to solutions of the Telegrapher’s equation
through a hyperbolic limit [17, 18, 19, 20, 21]. However, the focus of this paper is on the convergence to diffusion
equations through the diffusion limit. The influence of persistence on diffusivity is well known [22, 23]. Lenci (2007)
addresses anisotropic PRW, where persistence varies depending on the direction, from a probabilistic perspective [24].
Lutscher and Hillen [25] introduced heterogeneous PRW.

To obtain a spatially heterogeneous and directionally anisotropic PRW in the simplest way, we consider a two-
dimensional lattice system where particles move in one of four directions:

V := {v1 = (1, 0), v2 = (0, 1), v3 = (−1, 0), v4 = (0,−1)},

and the persistence at position x in the direction vℓ ∈ V is 0 ≤ µℓ(x) < 1 (see Figure 1). The persistence µℓ is the
probability of keeping the previous movement direction vℓ for the next step. More specifically, if the previous direction
was vℓ, the probability of continuing in the same direction vℓ from the current position x is µℓ(x) + 1−µℓ(x)

4 , while the
probability of moving in a different direction v j for j , i is 1−µℓ

4 . Thus, if µℓ = 0 for all i, the particles move with
probability 1

4 in all four directions, regardless of their previous movement, and persistence disappears. If µℓ(x) = c0 is
constant for all directions, the persistence becomes isotropic and homogeneous. In this case, it is known well that the
diffusivity is given by

D =
1 + c0

1 − c0
D0, (3)

where D0 is the diffusivity in the absence of persistence. [22]
We assume µ1 = µ3 and µ2 = µ4, which are necessary conditions to produce a diffusion phenomenon. Using the

PRW, we derive the two-component diffusion law

∂u
∂t
= D0∇ ·

(
K∇

(
Mu

))
, (4)
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where the conductivity K and the motility M are

K =

 1+µ1
1−µ1

0
0 1+µ2

1−µ2

 , M =

 2−2µ2
2−µ1−µ2

0
0 2−2µ1

2−µ1−µ2

 . (5)

In this anisotropic diffusion case, Mu is a matrix, where its gradient vector ∇(Mu) is defined in the Appendix. See
Lemma 1 for its basic properties. If µ1 = µ2, the persistence in both x and y directions are identical, and there is no
direction dependence in the persistence. Hence, the problem becomes isotropic. In this case, the motility M becomes
the identity matrix I2, where In denotes n × n identity matrix. The conductivity K becomes a scalar matrix 1+µ1

1−µ1
I2.

Hence, (4) is written as
∂u
∂t
= ∇ ·

(1 + µ1

1 − µ1
D0∇u

)
. (6)

We may conclude that the spatial heterogeneity in persistence affects only the conductivity K in the isotropic persis-
tence case, whereas it influences both K and M in the anisotropic case. The diffusivity in (6) is the same as the one
in (3). If µ1 , µ2, the problem becomes anisotropic and the motility M is a non-constant matrix. In other words, the
motility matrix M represents the anisotropy of PRW. If ϕ is a steady state, then it satisfies

∂x

( 2 − 2µ2

2 − µ1 − µ2
ϕ
)
= 0, ∂y

( 2 − 2µ1

2 − µ1 − µ2
ϕ
)
= 0. (7)

In conclusion, the spatial heterogeneity in persistence can make a fractionation phenomenon only when it is anisotropic.
The paper is organized as follows. In Section 2, a random walk system with anisotropic persistence is constructed.

We make a recursive relation satisfied by the particle density function. In Section 3, the anisotropic diffusion equation
(4) is derived formally using Taylor expansion. We show the validity of the derived equation in two ways. First, in
Section 4, the convergence of discrete solutions of the recursive relation is proved mathematically. Then, we provide
Monte-Carlo simulations that show the convergence individual-based model to a nonconstant steady-state satisfying
(4). A discussion is given in Section 6, and notations used in the paper are given in the Appendices.

2. Random walk with heterogeneous persistence

In this section, we construct a PRW in the simplest form that is spatially heterogeneous and directionally anisotropic.
Details are as follows. We take a bounded domain in the two space dimensions,

Ω = [0, 1] × [0, 1] ⊂ R2,

where the periodic boundary condition is taken. The domain is divided into N×N lattice cells. Each cell has horizontal
and vertical edges of the length,

∆x = ∆y = ϵ,

where ϵ = 1
N for an integer N > 0. The lattice cells are denoted by Ci j for 1 ≤ i, j ≤ N, and their centers by

xi j = (xi, y j) = ((i − 0.5)ϵ, ( j − 0.5)ϵ), i, j ∈ {1, · · · ,N}.

Then, cells are of area ∆Ci j = ϵ
2 and specifically given by

Ci j = {(x, y) ∈ R2 : |x − xi| <
ϵ

2
and |y − y j|) <

ϵ

2
}.

We may extend the indices to the whole integer set Z, by taking xi′ j′ = xi j if i′ − i and j′ − j are multiples of N. This
notation imposes periodic boundary conditions.

Particles walk at the moment tk := kτ for each natural number k ∈ N with a constant time interval ∆t = τ. We
assume each particle walks to one of the four neighbor cells instantaneously at the moment tk. The four possible
walking directions are denoted as

V := {v1 = (1, 0), v2 = (0, 1), v3 = (−1, 0), v4 = (0,−1)}.
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Figure 1: Lattice diagram for the random walk. Particles in a cell may move to one of the four adjacent cells.

The particle population in cell Ci j is divided into four sub-groups using their next walking direction. Let Uv
k (xi j) be

the number of particles that have arrived at cell Ci j at time tk and will move in direction v ∈ V at the next time step
tk+1. To construct the model explicitly, we assume all particles are located at the center xi j and that they immediately
decide their new direction upon arrival at this spot. Let µv(xi j) be the persistence at the position xi j in direction v and
µℓ denote µvℓ for ℓ ∈ {1, 2, 3, 4}. Then, these population sub-groups satisfy a recursive relation,

Uv
k+1(xi j) = µv(xi j)Uv

k (xi j − ϵv) +
∑
v′∈V

1
4
(
1 − µv′ (xi j)

)
Uv′

k (xi j − ϵv′). (8)

This recursive relation is isotropic if the persistence µℓ(x) is identical for all ℓ. The relation is homogeneous if µℓ(x)
are independent of x.

Since the particle number Uv
k (xi j) approaches zero as ϵ → 0, we work with mass density given by

uv
k(xi j) := ρ

Uv
k (xi j)
ϵ2
,

where ρ denotes the molar mass of the particle. Then, (8) is rewritten as

uv
k+1(xi j) = µv(xi j)uv

k(xi j − ϵv) +
∑
v′∈V

1
4

(
1 − µv′ (xi j)

)
uv′

k (xi j − ϵv′). (9)

We similarly denote uvℓ by uℓ. Since the mesh size is identical to each other, we obtain the same equation as (8). The
effect of using the mass density is in the initialization step,

uℓ0(xi j) =
1

4ϵ2

∫
Ci j

u0(x) dx, ℓ ∈ {1, 2, 3, 4}. (10)

comment (7) the upper script ℓ is missing on the right hand side. - 이 식은 주어진 u0를 4개의 방향에 대한 particle
density가똑같이나누어가진다는뜻인데설명을추가하거나아니면 uℓ0(x)가주어지고 uℓ0(xi j) = 1

ϵ2

∫
Ci j

uℓ0(x) dx라고
쓰는것이더좋을수도?

The (total) mass density at time tk and cell Ci j is denoted as uk(xi j) and given by

uk(xi j) =
4∑
ℓ=1

uℓk(xi j).

4



In summary, we take three hypotheses on the persistence µv(x):

(H1) V = {v1 = (1, 0), v2 = (0, 1), v3 = (−1, 0), v4 = (0,−1)}.
(H2) 0 ≤ µℓ(x) < 1 for ℓ ∈ {1, 2, 3, 4} and x ∈ Ω.
(H3) µ1 = µ3 and µ2 = µ4.

Persistence µv(xi j) is a probability and thus is less than 1 as in (H2). If it is zero, then there is no persistence in
the direction. Note that the summation in (8) includes v. If µv = 0, the probability of taking the direction v is 1/4.
Hypothesis (H3) is to make the process random and is needed to obtain the diffusion limit. The two directions v1 and
v3 are of the opposite direction parallel to the x-axis. If the two are different, the obtained phenomenon is not diffusion,
and the diffusion limit will blow up. If the four persistences are all identical, we will obtain an isotropic model. Hence,
the hypothesis (H2) together with µ1 , µ2 will give an anisotropic phenomenon.

3. Heterogeneous Diffusion Equation

In this section, we derive the diffusion equation satisfied by the discrete solution uv
k(xi j) of the recursive relation (9)

after taking the limit as ϵ → 0. To achieve this, we first interpolate the sequence of discrete solutions with a continuous
function in both space and time. Then, we demonstrate that this continuous function satisfies the mass conservation
property, and its limit as ϵ → 0 satisfies (4).

3.1. Interpolation
We construct the interpolated solution u as follows. The discrete function sequences uv

k(xi j) obtained from the
recursive relations (9) and (10) are for the four movement directions v ∈ V . We construct a space-time function
uv(x, t) in two steps. First, we set the fractional density as

uv(x, tk) = uv
k(xi j), x ∈ Ci j,

which gives piecewise constant functions in space. Then, for tk < t < tk+1, we take the linear interpolation in time,
i.e., for t = (1 − α)tk + αtk+1,

uv(x, t) = (1 − α)uv(x, tk) + αuv(x, tk+1). (11)

Then, for tk < t < tk+1,

∂uv(x, t)
∂t

=
uv(x, tk+1) − uv(x, tk)

∆t
. (12)

The full density is given by
u(x, t) =

∑
v∈V

uv(x, t).

We observe that u is nonnegative and preserves the initial mass, i.e.,∫
Ω

u(x, t)dx =
∫
Ω

u0(x)dx, t ≥ 0.

This can be easily proved by showing
∑N

i, j=1 uk+1(xi j) =
∑N

i, j=1 uk(xi j) using the recursive relation (9).

3.2. Derivation
We now derive the diffusion equation. We assume uv and µv are smooth enough so we can apply Taylor’s theorem.

In order to obtain the diffusion limit, we set the constant time step as τ = ϵ2

4D0
. This will give diffusivity D0 when

persistence is absent. For tk < t < tk+1,

∂u
∂t

(xi j, t) =
uk+1(xi j) − uk(xi j)

∆t
.
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Taylor’s theorem gives

uv
k(xi j − ϵv) = uv(xi j, tk) − ϵv · ∇uv(xi j, tk) +

ϵ2

2
∇ ·

(
(v ⊗ v)∇uv(xi j, tk)

)
+ o(ϵ2) as ϵ → 0.

Comment (8) The Taylor expansion with respect to ϵ includes the term o(ϵ2) in the mathematical expressions, includ-
ing Eq. (13) on page 6. Please verify the accuracy of this expression. If it is correct, please specify the terms that are
neglected and whether they are eligible for neglect. - remainder term을써주고이걸 o(ϵ2)라고써줄수있다고언급?

Here, the symbol ⊗ denotes the tensor product, where v ⊗ v is defined as vvT . Then note that ∇ ·
(
(v1 ⊗ v1)∇u) is

equal to ∂
2u
∂x2 . By substituting this into the recursive relation (9) and summing it over v ∈ V , we obtain

uk+1(xi j) − uk(xi j) = −ϵ
∑
v∈V

v · ∇uv(xi j, tk) +
ϵ2

2

∑
v∈V
∇ ·

(
(v ⊗ v)∇uv(xi j, tk)

)
+ o(ϵ2). (13)

For the first term, we need to calculate u1 − u3 and u2 − u4. From the recursive relation (9) and Taylor’s theorem of
first order,

u1
k(xi j) − u3

k(xi j) = u1
k+1(xi j) − u3

k+1(xi j) + o(ϵ)

= µ1(xi j)
(
u1

k(xi−1, j) − u3
k(xi+1, j)

)
+ o(ϵ)

= µ1(xi j)
(
(u1

k − u3
k)(xi j) − ϵ

∂

∂x
(u1

k + u3
k)(xi j)

)
+ o(ϵ).

By subtracting µ1(u1
k − u3

k)(xi j) from both sides, we obtain

u1
k(xi j) − u3

k(xi j) = −ϵ
µ1(xi j)

1 − µ1(xi j)
∂

∂x
(u1 + u3)(xi j, tk) + o(ϵ).

By the same calculation for u2 − u4 and putting them into (13), we obtain

uk+1(xi j) − uk(xi j) =
ϵ2

2

∑
v∈V
∇ ·

(
1 + µv(xi j)
1 − µv(xi j)

(v ⊗ v)∇uv(xi j, tk)
)
+ o(ϵ2). (14)

The recursive relation (9) and the smoothness of uv give

uv(xi j, tk) = uv
k+1(xi j) + o(1) =

µvuv +
∑
v′∈V

1
4
(
1 − µv′

)
uv′

 (xi j, tk) + o(1).

By subtracting µvuv from both sides, we can observe that the difference in the left side,
(
(1 − µv)uv)(xi j, tk), is order

o(1). In other words, the number of particles moving in the direction v is approximately proportional to 1/(1 − µv).
Hence, we have

uv(xi j, tk) =
1/(1 − µv(xi j))∑

v′∈V
1/(1 − µv′ (xi j))

u(xi j, tk) + o(1).

Putting this into the above, we finally obtain

∂u
∂t
= 2D0

∑
v∈V
∇ ·

1 + µv

1 − µv
(v ⊗ v)∇

(
1/(1 − µv)∑

v′∈V
1/(1 − µv′ )

u
) + o(1), (15)

at x = xi j, t = tk as ϵ → 0. After taking ϵ → 0 limit of (15), we formally obtain a heterogeneous diffusion equation:
∂u
∂t
= 2D0

∑
v∈V
∇ ·

(
1 + µv

1 − µv
(v ⊗ v)∇

( 1/(1 − µv)∑
v′∈V

1/(1 − µv′ )
u
))

in Ω × (0,T )

u(x, 0) = u0(x) on Ω.

(16)
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Finally, if Lemma 1(4) in Appendix is used, we can rewrite (16) as

∂u
∂t

(x, t) = D0∇ ·
(
K(x)∇

(
M(x)u(x, t)

))
,

where

K(x) =

 1+µ1(x)
1−µ1(x) 0

0 1+µ2(x)
1−µ2(x)

 , M(x) =

 2−2µ2(x)
2−µ1(x)−µ2(x) 0

0 2−2µ1(x)
2−µ1(x)−µ2(x)

 .
Remark. For a isotropic PRW case, µv(x) is independent of the direction v, and we may denote µ(x) = µv(x). Then,
the diffusion equation becomes

∂u
∂t (x, t) = 1

2 D0
∑

v∈V
∇ ·

(
1+µ(x)
1−µ(x) (v ⊗ v)∇u(x, t)

)
in Ω × (0,T )

u(x, t) = u0(x) on Ω × {t = 0}.

In this case, there is no fractionation phenomenon, and the steady state of the solution is constant.

4. Numerical Simulation

In this section, we test the property of heterogeneous anisotropic PRW numerically. First, we test the behavior
of persistent random walk for four cases using the recursive relation (9). We will observe asymptotic convergence to
constant or non-constant steady states starting from an initial value concentrated at the center of the domain. Then, we
compare the behavior of the recursive relation with Monte Carlo simulation and the solution of the diffusion equation
(4)–(5). These three give the same fractionation phenomenon, which confirms the anisotropic diffusion equation gives
the phenomenon correctly.

4.1. Four scenarios of persistent random walk

We test fractionation phenomena by numerically computing the recursive relation (9). We selected four scenarios
that illustrate the differences between isotropic and anisotropic persistence, and between heterogeneous and homoge-
neous persistence. The space domain is Ω = [−1, 1] × [−1, 1] and divided two sub-domains Ω1 = {(x, y) ∈ Ω : x < 0}
and Ω2 = {(x, y) ∈ Ω : x > 0}. The persistence parameters µ1 and µ2 are constant in each sub-domain as given in Table
1. Note that the parameters are constant in the y variable and discontinuous in the x variable for each fixed y. For the

Case 1 Case 2 Case 3 Case 4
x < 0 x > 0 x < 0 x > 0 x < 0 x > 0 x < 0 x > 0

µ1 0.6 0.6 0.2 0.8 0.2 0.2 0.2 0.8
µ2 0.6 0.6 0.2 0.8 0.2 0.8 0.2 0.2

Table 1: Persistence of the four tested cases

numerical simulation, the space domain Ω is discretized into 40 × 40 cells with space mesh size ∆x = 0.05. We take
the time step ∆t = 0.025. In this case, if µv = 0 for all v ∈ V , the diffusivity is

D0 =
|∆x|2

4∆t
= 0.025.

The initial value is 400 in the central four cells and 0 in others, which makes the average of the initial value to be 1.
We assume the periodic boundary condition.

After taking a diffusion limit (∆x,∆t)→ (0, 0) with D0 unchanged, the limit satisfies the diffusion equation (4)–(5):

∂u
∂t
= D0∇ · (K∇(Mu)), K =

[
k11 0
0 k22

]
, M =

[
m11 0
0 m22

]
, (17)
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where the conductivity K and the motility M in (5) are

k11 =
1 + µ1(x)
1 − µ1(x)

, k22 =
1 + µ2(x)
1 − µ2(x)

,

m11 =
2 − 2µ2(x)

2 − µ1(x) − µ2(x)
, and m22 =

2 − 2µ1(x)
2 − µ1(x) − µ2(x)

.

Using kℓ’s and mℓ’s, (17) is written as

∂u
∂t
= D0

(
(k11(m11u)x)x + (k22(m22u)y)y

)
. (18)

We compare the solution of the recursive relation with the diffusion equation. We also do a Monte Carlo simulation
for comparison.

Case 1: Spatially homogeneous and directionally isotropic persistence

The persistence coefficient in the first case is µ = 0.6 in all directions and at all locations. Then,

k11 = k22 =
1 + µ
1 − µ

= 4 and m11 = m22 = 1.

The diffusion equation (17) becomes an isotropic diffusion with diffusivity D = 1+µ
1−µD0. Three snapshots of the recur-

sive relation (9) are given in Figure 2. The effect of persistence is clearly observed in the early stage (k = 8). However,
it is eventually forgotten, and the solution converges to a constant steady state.

Figure 2: Three snapshots of Case 1 at k = 8, 20, and 2000.

Case 2: Spatially heterogeneous and directionally isotropic persistence

The persistence coefficients of the second case are µ1 = µ2 = 0.2 in Ω1, and µ1 = µ2 = 0.8 in Ω2. Then, we have

k11 = k22 =

1.5 if x < 0,
9.0 if x > 0.

, m11 = m22 = 1.

In this case, the motility M is a constant, and the conductivity K is a variable. The corresponding diffusion equation is
Fick’s law diffusion. Three snapshots of the recursive relation (9) are given in Figure 3. We can observe that the initial
propagation pattern is different in the two subdomains. However, the solution eventually converges to a constant state.
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Figure 3: Three snapshots of Case 2 at k = 8, 20, and 2000.

Case 3: Spatially heterogeneous and directionally anisotropic persistence

In the third case, the persistence coefficients are µ1 = µ2 = 0.2 in Ω1, while in Ω2, they are µ1 = 0.2 and
µ2 = 0.8. Persistence is isotropic in Ω1. However, in Ω2, persistence along the y-axis is significantly greater than in
other directions. This scenario clearly illustrates the impact of heterogeneous persistence.

The conductivity and motility are

k11 =

1.5,
1.5,

k22 =

1.5,
9.0,

m11 =

1.0,
0.4,

m22 =

1.0, x < 0,
1.6, x > 0,

This is a case when both K and M are non-constant matrices. Note that if (m11u)x = 0 and (m22u)y = 0, then u is
a steady-state solution of (18). Since m22 is independent of the y variable, (m22u)y = 0 if u is independent of the y
variable. Therefore, since m11 is constant in Ω1 and Ω2 and jumps from 0.5 to 0.2 across x = 0,

u(x, y) =

u−, x < 0,
u+, x > 0,

(19)

is a steady-state solution when
u−
u+
=

0.4
1.0
= 0.4.

Three snapshots of the recursive relation (9) are shown in Figure 4. The pictures show an anisotropic evolution

Figure 4: Three snapshots of Case 3 at k = 8, 20, and 2000.

in Ω2. Particles in Ω2 diffuse fast in the y direction and slow in the x direction. On the other hand, the particles in
Ω1 diffuse equally in both directions. This makes the final steady state heterogeneous. We observe that the solution
converges to a piecewise constant state where u− = 0.5714 and u+ = 1.4286. This jump satisfies the ratio u−

u+
= 0.4.
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Case 4: Heterogeneous anisotropic persistence #2

We consider another case of heterogeneous anisotropy, which shows aggregation in the other region. The persis-
tence coefficients of the fourth case are µ1 = µ2 = 0.2 in Ω1 and µ1 = 0.8 and µ2 = 0.2 in Ω2. Hence, the persistence
is isotropic in Ω1 and anisotropic in Ω2. The conductivity and the motility are

k11 =

1.5,
1.5,

k22 =

9.0,
1.5,

m11 =

1.0,
1.6,

m22 =

1.0, x < 0,
0.4, x > 0,

In this case m11 jumps from 0.5 to 0.8 across x = 0, and u(x, y) given by (19) is a steady-state solution if u−
u+
= 1.6.

Three snapshots of the recursive relation (9) are given in Figure 5. Particles in Ω2 diffuse rapidly in the x direction

Figure 5: Three snapshots of Case 4 at k = 8, 20, and 2000.

and slow in the y direction. The particles in Ω1 diffuse equally in both directions. This makes particles stay more in
Ω1 and the final steady state heterogeneous. We can observe that the solution converges to a piecewise constant state
where u− = 1.2308 and u+ = 0.7692. This jump satisfies the ratio u−

u+
= 1.6.

4.2. Simulations of the recursive relation, Monte Carlo, and PDE

We compare the solutions of the recursive relation (9), diffusion equation (17), and Monte Carlo method. In these
comparisons, we will numerically compute the fractionation phenomenon corresponding to the scenario of Case 3.
The three simulations start with the uniform distribution and show the convergence to a non-constant steady state.

Two snapshots of simulations based on the recursive relation (9) are presented in Figure 6a. The initial value is set
to a constant 1. The left two images show two-dimensional representations of the evolution, which primarily exhibit a
one-dimensional phenomenon. The right two images illustrate cross-sections with a fixed y value. As time progresses,
the fractionation phenomenon becomes evident. These results clearly demonstrate that anisotropic persistence can
lead to fractionation. It is important to note that periodic boundary conditions are applied, resulting in two interfaces
located at x = 0 and x = ±1. The final equilibrium state matches the one shown in Figure 4.

In Figure 6b, two snapshots of a Monte Carlo simulation are given that correspond to the previous ones. In this
simulation, the same spatial and temporal mesh is used as the one used in the recursion model. Initially, the total
of 50 × 1600 particles are uniformly distributed in each cell. Hence, the average is 50. Particles move to one of the
four neighboring cells at each time step using the same parameters in Case 3. We can see how it converges to a non-
constant equilibrium state. The left two show the two-dimensional evolution which is simply the version of Figure 6a
with stochastic nature. The right two are the average of each column (not a cross-section).

The two snapshots in Figure 6care numerical solutions of the PDE model (17). Note that the PDE model is
obtained from the recursion model after taking a diffusion limit as (∆x,∆t) → (0, 0). Therefore, we may consider the
case where the mesh size approaches an infinitesimally small value. On the other hand, the previous two simulations
are with fixed mesh size ∆x = 0.05. Due to this difference, we observe that the initial stage is a little bit different. The
peaks at the interface in the early stage (t = 0.5) are sharper in comparison with the previous two cases. However, the
fractionation phenomenon of the PDE model is of the same equilibrium state.
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(a)

(b)

(c)

Figure 6: Snapshots of the recursive relation (9), Monte Carlo method, and PDE solution for Case 3 at t = 0.5, 50.

5. Discussion

Diffusion is a mass transfer phenomenon driven by random microscopic movements and involves various dynamic
components, such as mean free path, collision time, jumping rate, temperature, permeability, and persistence. How-
ever, for homogeneous diffusion phenomena, the detailed dynamics of these components are not critical since their use
is to determine the diffusivity. Measuring the diffusivity D is sufficient, which allows us to use the diffusion equation
(1).

In contrast, diffusion in a heterogeneous environment differs significantly from that in a homogeneous one. One
key difference is that in a homogeneous environment, the diffusion-induced equilibrium state is constant, whereas in
a heterogeneous environment, it is not. There are so many examples as discussed in Introduction. This arises because
the diffusion equation (1) is invalid when the diffusivity D depends on the spatial variable. In such cases, rendering
equation (1) meaningless. Instead, the two-component diffusion law,

∂u
∂t
= ∇ ·

(
K∇(Mu)

)
, D = KM,

can be used for a heterogeneous environment. When the conductivity K and motility M are constant, this equation re-
duces to (1). However, if M is non-constant, steady-state solutions become non-constant. To effectively work with this
diffusion model in heterogeneous environments, it is essential to understand how D is split into K and M. Analyzing
the dynamics of each component contributing to the diffusion phenomenon is crucial in such cases, as it reveals how
these components influence K and M.

In this paper, we investigate how heterogeneous persistence contributes to conductivity and motility. If persistence
is isotropic, heterogeneity in persistence affects K, while M remains the identity matrix. On the other hand, if persis-
tence is anisotropic, both K and M become non-constant matrices, leading to non-constant steady-state solutions. In
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this study, we propose a recursive relation for a persistent random walk (PRW), formally derive the diffusion equation
from the PRW, and validate these findings numerically. The numerical simulations of the PDE, PRW, and Monte Carlo
method are shown to agree with one another.

Through this research, we confirm that a persistent random walk exhibits intriguing properties in heterogeneous
and anisotropic environments. A particularly unexpected and interesting finding is that isotropic heterogeneity is
reflected in K, while anisotropic heterogeneity appears in M.
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Appendix A. Gradient vector for a matrix field.

Anisotropic diffusion theory requires a proper definition for the gradient vector of a matrix field U : Rn → Rn×n.
Let ui j be the component of U at the ith row and jth column. We define the gradient vector of this matrix U as a
column vector,

∇U =


∑n

j=1 ∂ ju1 j
...∑n

j=1 ∂ jun j

 ∈ Rn, (A.1)

which takes its ith element as the divergence of the ith row of U, i.e.

the ith component of column vector ∇U is
n∑

j=1

∂ jui j.

This definition makes the differentiation of anisotropic quantities compatible with existing conventions and notation
as follows.

Lemma 1. Let In be the identity matrix, C be a constant matrix, M be a differentiable matrix, v be a constant unit
vector, and u be a differentiable scalar function. Then, (1) ∇(Mu) = (∇M)u+M∇u, (2) ∇u = ∇(Inu), (3) ∇(Cu) = C∇u,
and (4) v ⊗ v∇u = v ⊗ v∇(v ⊗ vu).

Proof. The vector ∇(Mu) is a column vector, and the ith component is

n∑
j=1

∂ j(mi ju) =
n∑

j=1

∂ j(mi j)u +
n∑

j=1

mi j∂ ju,

where the product rule is used. Therefore, (1) holds. Equalities in (2) and (3) are from (1). Since v ⊗ v is a constant
matrix, we have

(v ⊗ v)∇(v ⊗ vu) = (v ⊗ v)(v ⊗ v)∇u.

Since v is a unit vector, we have
(v ⊗ v)(v ⊗ v) = v(vtv)vt = vvt = v ⊗ v,

which gives (4) and completes the lemma.
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