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Abstract

In this article we propose an Oleinik-type estimate for sign-changing solutions to a

convection–diffusion equation

ut þ ðjujg=gÞx ¼ muxx; uðx; 0Þ ¼ u0ðxÞ; u; xAR; 1ogp2; m; t40:

Since the Oleinik entropy inequality holds for nonnegative solutions or inviscid case ðm ¼ 0Þ
only, the theoretical progress for the case was limited. In this paper we show that its solution

satisfies an Oleinik-type estimate,

t
2
guxpC; 1ogp2; t40;

where C ¼ Cðu0; gÞ40: Using this estimate, the convergence to an N-wave is proved for sign

changing solutions and the theoretical gap in asymptotic convergence of the corresponding

problem is filled.

r 2003 Elsevier Inc. All rights reserved.

1. Introduction

We investigate the competition between the convection and the diffusion which
frequently appears in many physical phenomena. Since such a co-relation plays an
important role in the evolution of solutions of the corresponding mathematical

ARTICLE IN PRESS

$This work was supported in part by Korea Science & Engineering Foundation (grant R11-2002-103).
�Fax: +416-348-9385.

E-mail address: ykim@fields.utoronto.ca.

0022-0396/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jde.2003.10.014



models, a survey of their interaction in a simpler model may provide a good insight
of those models. In this paper we consider a Cauchy problem of a scalar convection–
diffusion equation

ut þ @x f ðuÞ ¼ muxx; uðx; 0Þ ¼ u0ðxÞ; m; t40; x; uAR; ð1Þ

where the initial value is integrable u0AL1ðRÞ and the convection is given by the
convex power law

f ðuÞ ¼ 1

g
jujg; g41: ð2Þ

The convexity of the convection can be easily verified, i.e., f 00ðuÞ ¼ ðg� 1Þjujg�2X0
for all uAR:
Benilan and Crandall [2] have studied regularizing effects of convection and

diffusion together in a single framework based on the homogeneity. However, the
long time regularizing effect generated by the diffusion is different from the one by
the convection and, therefore, it is required to understand the difference to obtain a
better asymptotics. There are two kinds of sources to generate the competitions
between them. The first one is due to the difference in the similarity structure
between the diffusion equation ðf ¼ 0Þ and the convection one ðm ¼ 0Þ: This kind of
competition is now well understood thanks to recent results to be mentioned below.
A convenient way to see this phenomenon is to transform the problem using

similarity variables:

s ¼ lnðtÞ; x ¼ x=
ffiffi
tg

p
; wðx; sÞ ¼

ffiffi
tg

p
uðx; tÞ: ð3Þ

We can easily check that problem (1), (2) is transformed to

ws þ
1

g
ðjwjg � xwÞx ¼ meðg�2Þs=2wxx; x; s;wAR; m40: ð4Þ

For g42; the coefficient in the diffusion term increases exponentially as s-N:
Hence it is expected that the effect of the diffusion dominates the one of the
convection in this case. In fact the asymptotic structure of the solution is same as the
one of the heat equation and is obtained by a technique based on the diffusion (see
[9]). If g ¼ 2; the equation is called the Burgers equation and is the border case. In
this case the coefficient in the diffusion term is constant and the effects of the
diffusion and the convection are balanced. The asymptotic structure of this case is a
diffusion wave which is an intermediate stage between the heat kernel and the N-
wave (see [16,17]).
Note that the N-wave of the convection equation ðm ¼ 0Þ under the convex power

law (2) is given by

Np;qðx; tÞ ¼ signðxÞ
ffiffiffiffiffiffiffiffiffiffi
jx=tjg�1

p
; �ð gp

g�1Þ
g�1
g ox=toð gq

g�1Þ
g�1
g ;

0 otherwise;

8<
: ð5Þ
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where
R
N

0 Np;qðx; tÞ dx ¼ q and
R 0

�N
Np;qðx; tÞ dx ¼ �p: If p ¼ 0; the N-wave is a

positive function.
For go2; the coefficient in the diffusion term decreases to zero exponentially as

s-N: Hence it is natural to expect that the convection dominates the whole
evolution. In fact, Escobedo et al. [7] show that a positive solution converges to a
positive N-wave which is the asymptotic structure of the convection equation. This
convergence is obtained by a technique based on the Oleinik estimate. This result is
extended to multidimensional space and to various convection functions (see [4,6,8]).
For a sign changing solution with 1ogo2 there is no result on the asymptotic
convergence so far.
The other kind of competition between the convection and the diffusion appears

across a point of a sign change, which is of our main interest in this paper. The role of

the convection is usually interpreted in terms of the wave speed f 0ðuÞ ¼ signðuÞjujg�1:
Since the wave speed f 0ðuÞ for the positive value u40 is opposite to the one for the
negative value uo0; the positive and the negative humps of the solution may collide
together or get separated away from each other. On the other hand the flux generated
by the diffusion depends on the slope @xu only, and it makes a positive and a negative
humps interact as long as @xua0 across a zero point. Note that the Oleinik estimate
does not hold across a sign-change because of this kind of competition.
For a convex-concave convection such as

f ðuÞ ¼ signðuÞjujg=g; g41;

the second kind of competition is not observed since the wave speed f 0ðuÞ ¼ jujg�1 is
always positive. For this type of convection, the asymptotic convergence for sign
changing solutions has been shown in [7], which is identical to the one of positive
solutions. For detailed asymptotic structure we refer readers to [5,14,19] for inviscid
conservation laws and [4] for convection–diffusion equations.
The only asymptotic convergence for the convection–diffusion equation of the

type (1) that still remains open is of sign changing solutions under the convex power
law (2) with 1ogo2: In [7], it is shown that positive solutions satisfy the Oleinik
estimate and that, using this estimate, they converge to positive N-waves. This
technique is not directly applicable to sign changing solutions since the estimate does
not hold anymore (see Remark 5). To overcome this difficulty we introduce a weak
form of the Oleinik estimate that is satisfied by the solution of the convection–
diffusion equation with 1ogp2:
The generalization of the Oleinik estimate has been considered for several cases.

We refer to Hoff [13] for multidimensional problems, Sinestrari [21] for conservation
laws with source terms, Jenssen and Sinestrari [14] for a nonconvex convection and
Bressan and LeFloch [3] for genuinely nonlinear systems.
It is well known that the solution of the inviscid problem ðm ¼ 0Þ satisfies the

Oleinik estimate:

@xf 0ðuÞð
 ðg� 1Þjujg�2uxÞp1=t; g41; t40: ð6Þ

ARTICLE IN PRESS
Y.J. Kim / J. Differential Equations 199 (2004) 269–289 271



In Section 3 we show that the solution of the convection–diffusion equation satisfies

t
2
g uxpC; 1ogp2; t40; ð7Þ

where the constant C40 depends on the initial value u0 and g (see Theorem 7). This
estimate is a weak form of the Oleinik estimate for the solution of the convection–
diffusion equation. For the comparison with the original Oleinik estimate (6), we
may rewrite estimate (7) as

C�1ð
ffiffi
tg

p
Þ2�g

uxp1=t; 1ogp2; t40: ð8Þ

Since maxx juðx; tÞj ¼ Oð1=
ffiffi
tg

p
Þ (see [15]), these two estimates, (6) and (8), are almost

equivalent for a large time tb1: On the other hand, since ð
ffiffi
tg

p
Þ2�g-0 as t-0; we

may say (8) is weaker than (6) for small t40: Note that, for the Burgers equation
ðg ¼ 2Þ we show that these two are identical with C ¼ 1: Using this Oleinik-type
estimate, we show our main result:

Theorem 1. Let uðx; tÞ be the solution of the convection–diffusion equation (1), (2) with

1ogo2: Then there exists a constant 0p %pp� infx
R x
�N

u0ðxÞ dx such that

jjuð�; tÞ � N %p; %pþMð�; tÞjjL1ðRÞ-0 as t-N; ð9Þ

where M ¼
R

u0ðxÞ dx and N %p; %pþMðx; tÞ is the N-wave given by (5).

This papers is organized as follows. In Section 2, we introduce a technique
to obtain the uniform estimates of similarity solutions to the inviscid problem
which is based on the Oleinik estimate. This technique is modified in Section 3 to
obtain the corresponding uniform estimates of similarity solutions of the
convection–diffusion equation. The weak form of the Oleinik estimate (7) is
obtained as one of the results of this process. In Section 4 we develop a technique
that connects the solutions in similarity variables and in original ones by introducing
an artificial time variable. Finally, using this technique and the uniform estimates in
Section 3, the asymptotic convergence of the sign changing solution (Theorem 1) is
proved.

2. The Oleinik estimate for inviscid problems

It is well-known that, if there is no diffusion, the nonlinearity in the convection
equation,

ut þ @x f ðuÞ ¼ 0; uðx; 0Þ ¼ u0ðxÞ; m; t40; x; uAR; ð10Þ

introduces a singularity to the solution even with a smooth initial value. There-
fore, weak solutions are considered in this paper with an entropy admissibility
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condition that is

uðx�; tÞXuðxþ; tÞ; xAR; t40: ð11Þ

Let uðx; tÞ be the solution to the conservation law (2), (10) satisfying the entropy
condition (11). It is also well known that the nonlinearity of the convection gives
extra regularizing effects to the solution, which is reflected in the Oleinik estimate,

@xf 0ðuÞð
 ðg� 1Þjujg�2uxÞp1=t; g41; t40 ð6Þ:

This estimate implies that the upper bound of f 00ðuÞux converges to zero having order
Oð1=tÞ as t-N: On the other hand its lower bound may break down in a finite time,
and this is the mechanism of the shock appearance and makes the entropy condition
(11) valid.
The Oleinik estimate has played a key role in the development of the theory of

shock waves. We refer to Oleinik [20] for the uniqueness theorem of entropy
solutions, Glimm and Lax [12] and Liu and Pierre [19] for the large time convergence
to N-waves, and Escobedo et al. [7] for convection dominant convection–diffusion
equations.
The similarity profile g :R-R of the convection equation (10) is defined by the

relation f 0ðgðxÞÞ ¼ x; xAR: Under the power law (2), it is given as

gðxÞ ¼ signðxÞ
ffiffiffiffiffiffi
jxjg�1

p
; xAR: ð12Þ

Roughly speaking, the equality of the Oleinik estimate holds for a solution given by
uðx; tÞ ¼ gðx=tÞ: In the asymptotic convergence the similarity profile at the zero state
is important, which is

lim
x-0

g0ðxÞ ¼
0; 1ogo2;

1; g ¼ 2;

N; g42:

8><
>: ð13Þ

Consider the similarity variables in (3). Then the rescaled function wðx; sÞ is a weak
solution to the transformed inviscid problem

ws þ
1

g
ðjwjg � xwÞx ¼ 0;

x; s;wAR; g41;

wðx; 0Þ ¼ uðx; 1Þ;

ð14Þ

and satisfies the same entropy condition

wðx�; sÞXwðxþ; sÞ; xAR: ð15Þ

Note that wðx; 0Þ is not the original initial value u0ðxÞ after the change of variables.
The new time variable s ¼ ln t has values in R and s ¼ 0 corresponds to t ¼ 1:
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The steady state of the inviscid problem (14), (15) is an N-wave which is a member
of the two-parameter family of single variable functions

Np;qðxÞ ¼ gðxÞ; �ð gp
g�1Þ

g�1
g oxoð gq

g�1Þ
g�1
g ;

0 otherwise;

8<
: ð16Þ

where positive parameters p and q measure the area (or mass) of the negative and the

positive humps of the steady state, respectively. If the total mass M ¼
R

Np;qðxÞ dxð

q � pÞ is prescribed, there is an one-parameter family Np;pþM corresponding to the

mass M: This N-wave in similarity variables is simply a rescaled one of the classical
N-wave in (5). Furthermore, after the transformation, the Oleinik estimate is also
transformed to

@x f 0ðwÞ ¼ ðsignðwÞjwjg�1Þxp1: ð17Þ

Since f 0ðgðxÞÞ ¼ x; we can easily see that the N-wave is the special solution that the
equality in the transformed Oleinik estimate holds. We note here that the time
variable has been disappeared after the change of variables. It simplifies the
computations considerably and helps us to focus on the main issue of the
phenomena. This is the reason we insist to use the similarity variables in the
computation. We can convert the results in the similarity variables to the original
ones whenever we want.

Lemma 2. Suppose that a function wðx; sÞ satisfies the Oleinik estimate (17) and that

wðz; sÞ ¼ gðz � x0Þ for a point zAR: Then,

wðx; sÞXgðx� x0Þ for xoz;

wðx; sÞpgðx� x0Þ for x4z: ð18Þ

Furthermore, if 1ogo2 and wðx0; sÞ ¼ 0; then wxðx0; sÞp0:

Proof. We can easily check that @x f 0ð %wÞ ¼ 1 for the function %wðxÞ ¼ gðx� x0Þ: Since
@xf

0ðwÞp@x f 0ð %wÞ and f 0ðwðz; sÞÞ ¼ f 0ð %wðz; sÞÞ; we have

f 0ðwðx; sÞÞXf 0ð %wðx; sÞÞ for xoz;

f 0ðwðx; sÞÞpf 0ð %wðx; sÞÞ for x4z:

The convexity of the convection, f 00ðuÞ; implies that f 0ðuÞ is an increasing function
and, hence, (18) is obtained. Since g0ð0Þ ¼ 0 for 1ogo2; the estimate (18) implies
that wxðx0; sÞp0: &

Remark 3. Let wðx; sÞ be the solution of (14) that satisfies the entropy condition (15).
Then, since the solution w satisfies the (transformed) Oleinik estimate (17), we may
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apply Lemma 2. If the estimates are transformed to the original variables, we may
conclude that, if uðz; tÞ ¼ gððz � x0Þ=tÞ for zAR;

uðx; tÞXgððx � x0Þ=tÞ for xoz;

uðx; tÞpgððx � x0Þ=tÞ for x4z;

and that, if 1ogo2 and uðx0; tÞ ¼ 0; @xuðx0; tÞp0:

Next we introduce two functions of integrals of the similarity solution wðx; sÞ that
are

W�ðx; sÞ ¼
Z x

�N

wðz; sÞ dz ð
 Wðx; sÞ Þ;

Wþðx; sÞ ¼
Z

N

x
wðz; sÞ dz ¼ M0 � Wðx; sÞ: ð19Þ

Then W satisfies a Hamilton–Jacobi-type equation

Ws þ
1

g
ðsignðWxÞ jWxjg�1 � xÞWx ¼ 0; ð20Þ

and two quantities,

p ¼ � inf
x

Wðx; sÞ ¼ � inf
x

Z x

�N

uðy; esÞ dy;

q ¼ sup
x

Wþðx; sÞ ¼ sup
x

Z
N

x

uðy; esÞ dy; ð21Þ

are the invariant constants of the problem (see [18]). In the following lemma we show
that the similarity solution wðx; sÞ is uniformly bounded. In the proof of the lemma
we introduce a technique based on the similarity profile gðxÞ and the Oleinik
estimate. This technique is developed in the next section to show the uniform
estimate of the solution to (1).

Lemma 4. Let wðx; sÞ be the entropy solution of (14) and Wðx; sÞ be its integral given

by (19). Then W and w are uniformly bounded by

�ApWðx; sÞpB; ð22Þ

jwðx; sÞjp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðA þ BÞ
g� 1

g

s
; ð23Þ

where A ¼ �infx Wðx; 0Þ and B ¼ supx Wðx; 0ÞX0:
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Proof. Note that the constant A is one of two invariant constants in (21) (i.e.,
A ¼ p), but B is not the other one in general. Estimate (22) simply follows from the
maximum principle for Hamilton–Jacobi equations. Now we show the uniform
estimate for wðx; sÞ: Let w0 ¼ wðz; sÞ for a given point zAR: To show the upper

bound of wðx; sÞ we consider w0X0: Let x0 ¼ z � w
g�1
0 : Then wðz; sÞ ¼ gðz � x0Þ and

(18) implies that

0p
Z z

x0

wðx; sÞ � gðx� x0Þ dx ¼
Z z

x0

wðx; sÞ dx� g� 1

g
w
g
0:

So w0 is bounded by

w0p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

g� 1

Z z

x0

wðx; sÞ dxg

s
: ð24Þ

For any a; bAR; we have

Z b

a

wðx; sÞ dx ¼
Z b

�N

wðx; sÞ dx�
Z a

�N

wðx; sÞ dxp sup
x

Wðx; sÞ � inf
x

Wðx; sÞ:

Since the right-hand side is A þ B; we obtain the upper bound for wðx; sÞ; i.e.,

wðx; sÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðA þ BÞ
g� 1

g

s
:

Let w0 ¼ wðz; sÞo0 and x0 ¼ z þ jw0jg�1: Then wðz; sÞ ¼ gðz � x0Þ and (18) implies
that

0X

Z x0

z

wðx; sÞ � gðx� x0Þ dx ¼
Z x0

z

wðx; sÞ dxþ g� 1

g
jw0jg:

So w0 is uniformly bounded below by

w0X�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g
g� 1

Z x0

z

wðx; sÞ dx
g

s
X�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðA þ BÞ
g� 1

g

s
:

Since the choice of zAR is arbitrary, the uniform estimate (23) holds. &

The uniform estimate of the transformed solution wðx; sÞ is transformed to the
original variables

juðx; tÞjp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðA þ BÞ
g� 1

g

s
t
�1g: ð25Þ
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The decay rate Oðt�1=gÞ is exact. Considering the N-wave like solutions, we can see
that the coefficient part is also optimal.
The main tool to obtain the asymptotic convergence for the inviscid problem is the

method of characteristics. Since this method is not applicable under the presence of
diffusion, we do not pursue the convergence in this paper. We refer readers to
[12,15,18] for the asymptotic convergence of inviscid cases.

3. An Oleinik-type estimate for viscous problems

Now we consider the solution wðx; s; mÞ (or simply wðx; sÞ) to the transformed
convection–diffusion equation,

ws þ
1

g
jwjg � 1

g
xw


 �
x
¼ meðg�2Þs=2 wxx;

wðx; 0Þ ¼ uðx; 1Þ; ð26Þ

where x; s;wAR; m40 and 1ogp2:

Remark 5. In general a sign changing solution to the convection–diffusion equation
(26) with 1ogo2 does not satisfy the Oleinik estimate (17). Suppose that wðx; sÞ is
the solution of the problem with a special initial value wðx; 0Þ ¼ x: Differentiate
Eq. (26) with respect to x variable. Then, after setting zðx; sÞ ¼ wxðx; sÞ; we obtain

meðg�2Þs=2 zxx �
1

g
ðg signðwÞjwjg�1 � xÞzx �

1

g
ðgðg� 1Þjwjg�2z � 2Þz � zs ¼ 0

with its initial value zðx; 0Þ ¼ 1: Clearly, there exists a zero point x0ðsÞAR such that
wðxðsÞ; sÞ ¼ 0: Then, if wð�; sÞ satisfies the Oleinik estimate, then zðx0; sÞ ¼
wxðx0; sÞp0 from Lemma 2, which contradicts to the maximum principle for

parabolic equations (for example, see [11], Theorem 3 in Chapter 2). Hence, the
Oleinik estimate does not hold for sign changing solutions of the convection–
diffusion equation. Without the diffusion the solution would have the similarity
profile like structure which is flat at the sign changing points. But, under the effect of
the diffusion, the solution cannot be so flat.

Since the solution wðx; sÞ does not satisfy the Oleinik estimate (17), we may not
apply the technique in the proof of Lemma 4. In the followings we modify the
technique and obtain uniform estimates of wðx; sÞ and its derivative wxðx; sÞ: As a
result we obtain a weaker form of the Oleinik estimate which is satisfied by the
solutions of the convection–diffusion equation. Recall that (26) arises from the
similarity transformation (3) and is set on R � R: We note that the estimates in this
section are independent of m and s:
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Lemma 6. Let wðx; sÞ be the solution to the Cauchy problem (26). If wðx; sÞ is

uniformly bounded for soSoN; i.e.,

jwðx; sÞjoM; soS; ð27Þ

then

wxp
2

gðg� 1Þ M2�g; soS: ð28Þ

Proof. Differentiate Eq. (26) with respect to x and obtain

zs þ
1

g
ðg signðwÞjwjg�1 � xÞzx þ

z

g
ðgðg� 1Þjwjg�2z � 2Þ ¼ meðg�2Þs=2zxx;

where z ¼ wx: If z has an interior maximum at ðx; sÞ; soS; then zs ¼ zx ¼ 0 and

zxxo0 at the point, and, therefore,

zðgðg� 1Þjwjg�2z � 2Þp0: ð29Þ

Since gp2 and w is bounded by (27), we may conclude that (28) holds at interior
maximum points. If z has its maximum at the final time level s ¼ S; then zsX0;
zx ¼ 0; zxxp0 at the point and (29) holds at the point and we obtain (28) at the
maximum point again. Since

wxðx; ln tÞ ¼
ffiffiffiffi
t2

g
p

uxð
ffiffi
tg

p
x; tÞ; ð30Þ

lims-�N wxðx; sÞ ¼ 0 for a smooth initial value u0 and (28) follows on the whole

domain. If the initial value is not smooth, we may approximate it by smooth
functions in a standard way and conclude (28) by a density argument. &

In the following we show the uniform boundedness of the solution w; which is
assumed in Lemma 6. Consider

W�ðx; sÞ ¼
Z x

�N

wðz; sÞ dz ð
 Wðx; sÞÞ;

Wþðx; sÞ ¼
Z

N

x
wðz; sÞ dz ¼ M0 � Wðx; sÞ: ð31Þ

Then Wðx; sÞ satisfies a viscous Hamilton–Jacobi equation

Ws þ
1

g
ðsignðWxÞ jWxjg�1 � xÞWx ¼ meðg�2Þs=2Wxx: ð32Þ
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In this case the quantities in (21) are functions of the time variable s; i.e.,

pðsÞ ¼ � inf
x

Wðx; sÞ;

qðsÞ ¼ sup
x

Wþðx; sÞ ¼ M0 þ pðsÞ ð33Þ

are not constant anymore.

Theorem 7. Let wðx; sÞ be the solution of (26), W be its integral given by (31) and

A ¼ � inf
x

Z x

�N

u0ðxÞ dx; B ¼ sup
x

Z x

�N

u0ðxÞ dx:

Then W ;w and wx are uniformly bounded by

�ApWðx; sÞpB; ð34Þ

jwðx; sÞjp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðA þ BÞ
gðg� 1Þ

g

s
; ð35Þ

wxðx; sÞp 1

2ðA þ BÞ
4ðA þ BÞ
gðg� 1Þ


 �2
g
: ð36Þ

Proof. Estimate (34) follows from the maximum principle for Hamilton–Jacobi
equations. Suppose that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðA þ BÞ
gðg� 1Þ

g

s
o sup

0osoS;xAR
wðx; sÞ: ð37Þ

Clearly, the supremum M 
 sup wðx; sÞ over a finite time domain 0osoS is finite.
For any 0pM1oM; there exist x1AR and soS such that wðx1; sÞ ¼ M1: Since

wxp 2
gðg�1Þ M2�g from Lemma 6, the function wðx; sÞ � ð 2

gðg�1ÞM
2�gðx� x1Þ þ M1Þ is

decreasing. Let x0 ¼ x1 � gðg�1Þ
2

M1M
g�2: Then, we have

0p
Z x1

x0

wðx; sÞ � 2

gðg� 1Þ M2�gðx� x1Þ þ M1


 �
 �
dx

¼
Z x1

x0

wðx; sÞ dx� gðg� 1ÞM2
1Mg�2

4
:
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Using estimate (34), we obtain

Wðx1; sÞ ¼ Wðx0; sÞ þ
Z x1

x0

wðx; sÞ dx4� A þ gðg� 1ÞM2
1Mg�2

4
ð38Þ

for any M1oM: Finally, from assumption (37), we obtain

Wðx1; sÞX� A þ gðg� 1ÞMg

4
4B;

which violates (34). Since this contradiction is from assumption (37), we may

conclude that wðx; sÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðA þ BÞ=gðg� 1Þg

p
for any xAR and soS: Furthermore,

since the upper bound is independent from S40; it is the upper bound for all soN:

If inf wðx; sÞo�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðA þ BÞ=gðg� 1Þg

p
is assumed, then similar arguments lead to a

same kind of contradiction and, hence, (35) holds. Estimate (36) comes from (28)
and (35). &

Remark 8. Compare the uniform estimate (35) with the one for the inviscid problem
(23). For the Burgers equation, g ¼ 2; both of the upper bounds are identical. For
1ogo2; our upper bound for the viscous problem is bigger than the one for the
inviscid problem. This is not for the actual decay speed, but for the technical
difficulty of the viscous case. In fact, the asymptotic limit in the Theorem 1 shows
that the solution of the viscous problem decays faster in the sense that the asymptotic
limit for the viscous problem is smaller than the one for the inviscid problem.

Remark 9. The uniform estimate (36) for the upper bound of wxðx; sÞ can be

written as

t
2
g uxpC 
 1

2ðA þ BÞ
4ðA þ BÞ
gðg� 1Þ


 �2
g
: ð39Þ

This estimate is the counter part of the Oleinik estimate for the solution of
convection–diffusion equation (1), (2) with 1ogp2: If g ¼ 2; the equation is called
the Burgers equation, and we can easily check that the constant in the estimate is
C ¼ 1: Hence, it is identical to the Oleinik estimate. For go2; estimate (39) can be
considered as a weaker form of the Oleinik estimate which holds for the solutions to
the convection–diffusion equations.

4. Long time behavior of the convection–diffusion equation

In this section, we prove our main result that the solution of the convection–
diffusion equation (26) with 1ogo2 converges to an N-wave asymptotically, which
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is a steady state of the inviscid problem (14). First we show the existence of a
convergent subsequence and the basic structures of its limit.

Lemma 10. Let wðx; sÞ be the solution of the convection–diffusion equation (26) with

1ogo2: Then there exist a sequence sk and a function %wðxÞ such that wðx; skÞ- %wðxÞ
as sk-N for any xAR: Furthermore, infx Wðx; skÞ-� %p as sk-N for a nonnegative

constant %pX0; and Z
%wðzÞ dz ¼ lim

sk-N

Z
wðz; skÞ dz ¼ M; ð40Þ

inf
x

Z x

�N

%wðzÞ dz ¼ lim
sk-N

inf
x

Z x

�N

wðz; skÞ dz ¼ � %p; ð41Þ

where M ¼
R

u0ðxÞ dx (¼
R

wðx; sÞ dx for all sAR). The convergence is uniform on any

closed interval on which %w is continuous.

Proof. Since wxðx; sÞ is uniformly bounded from the above as in (36), wðx; sÞ � Cx is

a decreasing function with C ¼ 1
2ðAþBÞð

4ðAþBÞ
gðg�1Þ Þ

2=g: Furthermore, since jwðx; sÞ � Cxj is
uniformly bounded on a closed interval ½�N;N� for any NARþ; the Helly’s selection
theorem implies that there exist a sequence sk and a limit function %wðxÞ such that
wðx; skÞ- %wðxÞ for xA½�N;N� as sk-N: By taking a subsequence of sk using
classical diagonal arguments, if needed, we obtain a subsequence sk and a limit
function %wðxÞ such that

wðx; skÞ- %wðxÞ as sk-N

for any xAR:
The maximum principle for the Hamilton–Jacobi equation (32) implies that the

infimum of Wðx; sÞ (i.e., infx
R x
�N

wðz; sÞ dz) increases as s-N: Since the infimum is

bounded above by the zero value, there exists %pX0 such that

infx
R x
�N

wðx; sÞ dx-� %p as s-N:

Now we show a claim which is the main part of the proof

Claim. For any given e40; there exist k; s040 such that

�eo
Z
xo�k

wðx; sÞ dxoe; sos0: ð42Þ

We show this claim constructing a solution to the heat equation as a super
solution. Consider the solution cðx; tÞ of the heat equation

ct ¼ mcxx; cðx; 0Þ ¼ u0ðxÞ;
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which has the same initial value as the one of problem (1). Let hðx; sÞ ¼
ffiffi
tg

p
cðx; tÞ be

the similarity transformation given by the variables in (3) and Hðx; sÞ be its integral
Hðx; sÞ ¼

R x
�N

hðz; sÞ dz: Then, from the explicit formula for the solution of the heat

equation, hðx; sÞ is given explicitly by

hðx; sÞ ¼ 1ffiffiffiffiffiffiffiffi
4pm

p
Z

N

�N

ffiffi
tg

pffiffi
tg

p e
ð
ffiffi
tg

pffiffi
t2

p ðx�zÞÞ2=4m ffiffi
tg

p
u0ð

ffiffi
tg

p
zÞ dz; s ¼ ln t:

We can easily check that, for go2; hðx; sÞ-MdðxÞ as s-N; hðx; 0Þ ¼ wðx; 0Þ;
Hðx; sÞ converges to the heavy side function with the weight M and that Hðx; sÞ is a
solution of

meðg�2Þs=2 Hxx þ
1

g
xHx � Hs ¼ 0; Hðx; 0Þ ¼

Z x

�N

hðx; 0Þ dx: ð43Þ

Subtracting (43) from (32), we may check that Uðx; sÞ 
 Wðx; sÞ � Hðx; sÞ
satisfies

meðg�2Þs=2 Uxx þ
1

g
xUx � Us ¼

1

g
jWxjgX0:

Since Uðx; 0Þ ¼ 0; the maximum principle implies that Wðx; sÞpHðx; sÞ: The upper
bound of (42) is now clear since Hðx; sÞ-0 as s-N for any xo0:

Let c ¼ ð4ðAþBÞ
gðg�1Þ Þ

g�1
g : Then the uniform estimate for wðx; sÞ in Theorem 7 implies

that jWxjg�1pc: The Hamilton–Jacobi equation (32) for Wðx; sÞ is rewritten as

Wsðx� c; sÞ þ 1

g
ðsignðWxðx� c; sÞÞjWxðx� c; sÞjg�1

� ðx� cÞÞWxðx� c; sÞ ¼ meðg�2Þs=2Wxxðx� c; sÞ:

Consider a translation Wcðx; sÞ ¼ Wðx� c; sÞ and a domain D ¼ fðx; sÞ : wðx; sÞo0;
s40g: Then Wc satisfies

meðg�2Þs=2ðWcÞxx þ
1

g
xðWcÞx � ðWcÞs

¼ 1

g
ðsignðWxðx� c; sÞÞÞjWxðx� c; sÞjg�1 þ cÞWxðx� c; sÞp0

for all ðx� c; sÞAD: So Uc ¼ Wc � H satisfies

meðg�2Þs=2ðUcÞxx þ
1

g
xðUcÞx � ðUcÞsp0:

The maximum principle implies that Wcðx; sÞXHðx; sÞ for all ðx� c; sÞAD: For any
given x040 and e40; there exists s040 such that Hðx; sÞ4� e for all s4s0; xo�
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x0: So we have Wðx� c; sÞX� e for all s4s0; xo� x0 and ðx� c; sÞAD: Since
Wðx; sÞ has its infimum in the domain wðx; sÞp0; we may conclude that Wðx; sÞX�
e for all s4s0; xo� ðx0 þ cÞ: Therefore, the lower bound in (42) holds with k ¼
c þ x0: The proof for the claim is now complete.

In a similar way we may show j
R
x4k

wðx; sÞdxjoe and, hence,

Z
jxj4k

wðx; sÞ dx

�����
�����o2e; for all s4s0:

Applying the Lebesgue’s convergence theorem and the Fatou’s lemma, we obtain

Z
jxjok

%wðxÞ dx ¼ lim
sk-N

Z
jxjok

wðx; skÞ dx ¼ M � lim
sk-N

Z
jxj4k

wðx; skÞ dx;

Z
jxj4k

%wðxÞ dx

�����
�����p lim

sk-N

Z
jxj4k

wðx; skÞ dx

�����
�����p2e:

From these two relations and the trivial one
R
%wðxÞ dx ¼

R
jxjok %wðxÞ dxþR

jxj4k %wðxÞ dx; we obtain

Z
%wðxÞ dx� M

����
����o4e for any e40:

Hence the equality in (40) holds.
Eq. (40) implies that the limiting process and the integration are inter-changeable

and (41) is clear from it. Note that the Helly’s selection theorem also implies that the
convergence of the subsequence is uniform on any closed interval if the limit %w is
continuous on it. &

The next step is to show that %wðxÞ is an N-wave. Then (40) and (41) decide the
limit %wðxÞ independently from the choice of the subsequence sk; and this implies the
asymptotic convergence of the solution wð�; sÞ to the N-wave. To complete this
mission we need the regularity of wsðx; skÞ-0 as sk-N: Obtaining such a regularity
is one of main issues in various asymptotic analysis. In the follows we introduce an
extra variable and consider an one parameter family of equations. Then we show the
corresponding limits are connected via the new variable satisfying certain relation.
The basic idea of this technique has been introduced in [7], and we present it using
similarity variables.
Let uðx; tÞ be the solution of the convection–diffusion equation (1). Consider a

transformed function

vðx; s; tÞ ¼ es=guðes=gx; estÞ; sAR; tARþ: ð44Þ
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We can easily check that

vt ¼ esþs=gut;

vs ¼
1

g
ðxvÞx þ tesþs=gut;

vxx ¼ e3s=guxx;

@xðjvjgÞ ¼ esþs=g@xðjujgÞ:

Now we may rewrite the convection–diffusion equation in two different ways. For a
fixed sAR; (1) is written as

vt þ
1

g
ðjvjgÞx ¼ meðg�2Þs=gvxx; vðx; 0Þ ¼ es=gu0ðes=gx; 0Þ; ð45Þ

and, for a fixed t40; it is written as

vs þ
1

g
ðtjvjg � xvÞx ¼ tmeðg�2Þs=gvxx; vðx; 0Þ ¼ uðx; tÞ: ð46Þ

We may easily check that wðx; sÞ ¼ vðx; s; 1Þ; and similarity Equations (26) and (46)
are identical for t ¼ 1: It is clear that the only possible steady state for (45) is the
trivial solution v ¼ 0: On the other hand, steady states for the transformed problem
(46) are N-waves given by

Np;qðx; tÞ ¼ gðx=tÞ; �ð gp
g�1Þ

ðg�1Þ
g ox=toð gq

g�1Þ
ðg�1Þ

g ;

0 otherwise;

8<
: ð47Þ

where the similarity profile gðxÞ is given by (12). The key observation is that
Np;qðx; tÞ is a solution of the inviscid ðm ¼ 0Þ problem corresponding to (45) with

Np;qðx; tÞ-ðq � pÞdðxÞ as t-0: In fact it is identical to the original N-wave (5) of the

inviscid problem.
The solution vðx; s; tÞ satisfies the corresponding Oleinik-type estimate. Setting

z ¼ vxðx; s; tÞ with a fixed t40; we obtain

zðgðg� 1Þtjvjg�2z � 2Þp0;

which corresponds to (29). So, under the assumption jvjpM; we obtain

vxp 2
gðg�1Þt M2�g: If it is assumed that vðx; s; tÞ4

ffiffiffiffiffiffiffiffiffiffiffiffi
4ðAþBÞ
gðg�1Þt

g
q

; then we may derive a

similar contradiction as the one in the proof of Theorem 7. In the following lemma
we write down the estimates.

Lemma 11. Let uðx; tÞ be the solution of the convection–diffusion equation (1) with

1ogp2 and vðx; s; tÞ be its transformation given by (44), which is the solution of (45)
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and (46). Then vðx; s; tÞ and vxðx; s; tÞ are bounded by

jvðx; s; tÞjp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðA þ BÞ
gðg� 1Þt

g

s
; ð48Þ

vxðx; s; tÞp 1

2ðA þ BÞ
4ðA þ BÞ
gðg� 1Þt


 �2
g
: ð49Þ

For a fixed t40; the estimates in Lemma 11 are uniform with respect to variables
x and s: Since wðx; sÞ ¼ vðx; s; 1Þ; we are interested in the domain of tp1 and the
lemma gives the uniform estimate over tA½t0; t1� for t040; which is used in the
following lemma.

Lemma 12. Let uðx; tÞ be the solution of (1) with 1ogp2 and vðx; s; tÞ be its

transformation given by (44). Then there exist a sequence sk and a function %vðx; tÞ such

that vðx; sk; tÞ-%vðx; tÞ as sk-N for any xAR and t40: Furthermore, %vðx; tÞ is the

entropy solution of the inviscid problem (10) with its initial value %vðx; 0Þ ¼ MdðxÞ;
M ¼

R
u0ðxÞ dx:

Proof. Since vðx; s; tÞ is uniformly bounded by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðAþBÞ
gðg�1Þt0

g
q

and vxðx; s; tÞ is uniformly

bounded from the above by C ¼ 1
2ðAþBÞð

4ðAþBÞ
gðg�1Þt0Þ

2
g for tXt040; wðx; sÞ � Cx is a

decreasing function with respect to the x variable and uniformly bounded over any
bounded interval ½�N;N�: Hence, the Helly’s selection theorem implies that we may
take a sequence sk and a limit function %vðx; tÞ such that vðx; sk; tÞ-%vðx; tÞ for any
ðx; tÞA½�N;N� � ½t0; t1� for given t040;N40: By taking a subsequence of sk using
classical diagonal arguments, if needed, we may assume that vðx; sk; tÞ-%vðx; tÞ as
s-N for any xAR and t40:
Multiply a uniformly bounded test function fðxÞ to (45) and integrate it over

R � ðt0; t1Þ to obtainZ
ðvðx; s; t1Þ � vðx; s; t0ÞÞfðxÞ dx�

Z Z t1

t0

1

g
ðjvjgÞf0ðxÞ dt dx

¼
Z Z t1

t0
meðg�2Þs=gvf00ðxÞ dt dx: ð50Þ

Taking s-N limit through the subsequence sk; we obtainZ
ð%vðx; t1Þ � %vðx; t0ÞÞfðxÞ dx�

Z Z t1

t0

1

g
ðj%vðx; tÞjgÞf0ðxÞ dt dx ¼ 0: ð51Þ

So %v is a weak solution of the inviscid problem (10). The uniform estimate (49) for
any fixed t40 implies that the limit %vðx; tÞ satisfies the entropy condition.
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Now we verify the initial value of %v and complete the proof. The transformation

(44) shows that
R

vðx; s; 0ÞfðxÞ dx-Mfð0Þ as s-N: Using this relation, we may

repeat the same procedure as the above one with t0 ¼ 0 and obtainZ
%vðx; t1ÞfðxÞ dx� Mfð0Þ

����
���� ¼

Z Z t1

0

1

g
ðj%vjgÞf0ðxÞ dt dx

p
1

g
jjf0ðxÞjj

N

Z t1

0

jj%vð�; tÞjj1 jj%vð�; tÞjj
g�1
N

dt: ð52Þ

Since jj%vð�; tÞjj1pjju0jj1 and jj%vð�; tÞjjN is uniformly bounded by (48), we obtain

Z
%vðx; t1ÞfðxÞ dx� Mfð0Þ

����
����pC

Z t1

0

t
1�g
g dt ¼ gCt

1
g
1 ð53Þ

for a constant C40: Since the right-hand side of (53) converges to zero as t1-0; we
may conclude that the corresponding initial value for the solution %vðx; tÞ is
MdðxÞ: &

Now we prove our main result together with the pointwise convergence in
similarity variables as a corollary of previous results.

Theorem 1. Let uðx; tÞ be the solution of the convection–diffusion equation (1), (2) with

1ogo2 and wðx; sÞ be its similarity transformation given by (3). Then there exists a

constant 0p %pp� infx
R x
�N

u0ðxÞ dx such that

wðx; sÞ-N %p; %pþMðxÞ as s-N; ð54Þ

jjuð�; tÞ � N %p; %pþMð�; tÞjjL1-0 as t-N; ð55Þ

where M ¼
R

u0ðxÞ dx; and N %p; %pþMðx; tÞ and N %p; %pþMðxÞ are N-waves given by (5)

and (16), respectively.

Proof. We may take the sequence sk in Lemma 12 as a subsequence of the one in
Lemma 10. The uniqueness of the entropy solution to the inviscid problem under
relations (40) and (41) implies that %vðx; tÞ ¼ N %p; %pþMðx; tÞ (see [19] for the

uniqueness). Since the limit %wðxÞ in Lemma 10 is given independently from the
choice of the sequence as %wðxÞ ¼ %vðx; 1Þ ¼ N %p; %pþMðx; 1Þ ¼ N %p; %pþMðxÞ; wðx; sÞ
converges to the N-wave pointwise as s-N:
Using the estimates in the proof of Lemma 10, we obtain

lim
s-N

Z
jwðx; sÞ � N %p; %pþMðxÞj dx ¼

Z
lim

s-N

jwðx; sÞ � N %p; %pþMðxÞj dx ¼ 0:

(The main part of the proof of Lemma 10 is to show that the limit process and the

integration is interchangeable.) Since the L1 norm is invariant under the change of
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variable f ðxÞ-af ðaxÞ; a40; we have

lim
t-N

Z
juðx; tÞ � N %p; %pþMðx; tÞj dx ¼ lim

s-N

Z
jwðx; sÞ � N %p; %pþMðxÞj dx ¼ 0;

i.e., the L1 convergence in (55) is obtained. &

Remark 13. Consider a solution that emanates from an N-wave like initial value,
i.e., wðx; 0Þp0 for xox0 and wðx; 0ÞX0 for x4x0 with wxðx0; 0Þa0: Let x ¼ gðsÞ be
the zero-curve that emanates from the point gð0Þ ¼ x0; i.e., wðgðsÞ; sÞ ¼ 0: From the
implicit function theorem, the curve gðsÞ is defined on a maximal interval
½0;SÞ;S40: Roughly speaking, the number of zeroes is non-increasing and, for
the N-wave like initial value as above, it cannot happen that w and wx vanish at the

same point ð%x; %sÞ (see Angenent [1], Theorem B for the precise statement). This
implies that either S ¼ N or (if S is finite) gðsÞ-7N as s-S: In either case the
solution retains its N-wave like form in the interval ½0;SÞ:
The infimum pðsÞ of (33) is given by

pðsÞ ¼ �WðgðsÞ; sÞ: ð56Þ

Let p0 ¼ pð0Þ;M ¼
R

wðz; 0Þ dz: In this case we can easily check that the constants in
Theorem 7 are A ¼ p0;B ¼ M and, therefore, the Oleinik-type estimate (36) implies

that wxpC with C ¼ 1
2ðp0þMÞð

4ðp0þMÞ
gðg�1Þ Þ

2=g: From the fact that wðgðsÞ; sÞ ¼ 0; the

derivative of pðsÞ is estimated by

�p0ðsÞ ¼ WsðgðsÞ; sÞ ¼ meðg�2Þs=gwxðgðsÞ; sÞpmeðg�2Þs=gC: ð57Þ

Since
R
N

0
meðg�2Þs=gC ds ¼ mC g

g�2; we may estimate %p in Theorem 1 by

%p4p0 � m
1

2ðp0 þ MÞ
4ðp0 þ MÞ
gðg� 1Þ


 �2
g g
g� 2

: ð58Þ

So for small m40 we always have %p40: Since the slope of an N-wave at the sign-
changing point is zero, i.e., N 0

p;qð0Þ ¼ 0; it is clear that wxðgðsÞ; sÞ-0 as s-N: From

these reasons the estimate in (57) may not be an optimal one. It seems like that %p40
for any m40; p040:
A related structure of the solution has been already observed for the case of zero

mass solutions in [10]. It is not still clear that

lim
t-N

Z
uþðx; tÞ dx ¼ lim

t-�N

Z
u�ðx; tÞ dx40; u7 ¼ maxð7u; 0Þ

for any nontrivial initial value. However, it is shown that, at least, there exists such
an initial value (see [10], Theorem 1.1).
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