Solutions for Homework 1

MAS501 Analysis for Engineers, Spring 2011

1. A real number r is said to be algebraic if r is a root of a polynomial with rational coefficients. If r is not algebraic, r is said to be transcendental. Show that the set of all transcendental numbers is uncountable. (It is known that e and π are transcendental.)
Answer: First we claim that the set of all polynomials with rational coefficients is countable.
Proof of Claim. (배영오 씨 답안 기반) Let P_{n} be the set of all polynomials of degree n with rational coefficients:

$$
P_{n}=\left\{c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}: c_{n} \in \mathbf{Q} \backslash\{0\} \text { and } c_{0}, c_{1}, \cdots, c_{n-1} \in \mathbf{Q}\right\} .
$$

Then $\left|P_{n}\right|=\left|\mathbf{Q} \backslash\{0\} \times \mathbf{Q}^{n-1}\right|$. Because a Cartesian product of a finite number of countable sets $\mathbf{Q} \backslash\{0\} \times \mathbf{Q}^{n-1}$ is countable, the set P_{n} is also countable. Now note that the set of all polynomials with rational coefficients P can be represented as $P=\bigcup_{n=1}^{\infty} P_{n}$, which is a countable union of countable sets. Hence the set P is countable.

Proof. (여병철 씨 답안 기반) Let A be the set of all algebraic numbers. We know that the set of all polynomials with rational coefficients is countable. Also, since each such polynomial has a finite number of roots, the set A is countable. But the real line \mathbf{R} is uncountable. Hence the set of all transcendental numbers, which is $\mathbf{R} \backslash A$ by definition, must be uncountable.
2. Let $\left(\Omega_{1}, d_{1}\right)$ and $\left(\Omega_{2}, d_{2}\right)$ be metric spaces.
(a) Prove that $\left(\Omega_{1} \times \Omega_{2}, d\right)$ is a metric space, where d is defined by the formula

$$
d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)
$$

The space $\left(\Omega_{1} \times \Omega_{2}, d\right)$ is called the product metric space.
Answer: We check three condtions a metric should satisfy.
(positivity) $d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right) \geq 0$. And the equality holds only when $d_{1}\left(x_{1}, y_{1}\right)=d_{2}\left(x_{2}, y_{2}\right)=0$, i.e., when $\left(x_{1}, x_{2}\right)=\left(y_{1}, y_{2}\right)$.
(symmetry)

$$
\begin{aligned}
d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right] & =d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)=d_{1}\left(y_{1}, x_{1}\right)+d_{2}\left(y_{2}, x_{2}\right) \\
& =d\left[\left(y_{1}, y_{2}\right),\left(x_{1}, x_{2}\right)\right]
\end{aligned}
$$

(triangle inequality) Let $z_{1} \in \Omega_{1}$ and $z_{2} \in \Omega_{2}$. Then we have

$$
\begin{aligned}
d\left[\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right] & =d_{1}\left(x_{1}, z_{1}\right)+d_{2}\left(x_{2}, z_{2}\right) \\
& \leq d_{1}\left(x_{1}, y_{1}\right)+d_{1}\left(y_{1}, z_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)+d_{2}\left(y_{2}, z_{2}\right) \\
& =d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)+d_{1}\left(y_{1}, z_{1}\right)+d_{2}\left(y_{2}, z_{2}\right) \\
& =d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]+d\left[\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right] .
\end{aligned}
$$

(b) Let $\mathbf{R} \times \mathbf{R}$ be the product metric space constructed from the Euclidean space \mathbf{R}. Then obviously the metric of $\mathbf{R} \times \mathbf{R}$ is different from the metric of Euclidean space \mathbf{R}^{2}. Although, we can prove that any open set of one metric space is also an open set of the other metric space. (This means their topology are same; they have same "nearness".) Prove it.

Proof. (김준우 씨 답안 기반) Let $d_{\mathbf{R} \times \mathbf{R}}$ be the product metric of the product metric space $\mathbf{R} \times \mathbf{R}$. Also let $d_{\mathbf{R}^{2}}$ be the usual metric of the Euclidean space \mathbf{R}^{2}. Then by definition, we have

$$
\begin{aligned}
d_{\mathbf{R} \times \mathbf{R}}\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right] & =\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|, \\
d_{\mathbf{R}^{2}}\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right] & =\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}
\end{aligned}
$$

for any $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbf{R}$. Because

$$
\begin{aligned}
\left(\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|\right)^{2} & =\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+2\left|x_{1}-y_{1}\right|\left|x_{2}-y_{2}\right| \\
& \geq\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2},
\end{aligned}
$$

we have

$$
d_{\mathbf{R} \times \mathbf{R}}[\mathbf{x}, \mathbf{y}] \geq d_{\mathbf{R}^{2}}[\mathbf{x}, \mathbf{y}]
$$

where $\mathbf{x}=\left(x_{1}, x_{2}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}\right)$. Now observe that for any $a, b \in \mathbf{R}$ it holds that

$$
0 \leq(a-b)^{2}=2\left(a^{2}+b^{2}\right)-(a+b)^{2}
$$

hence

$$
|a+b| \leq \sqrt{2} \sqrt{a^{2}+b^{2}}
$$

Now put $a=\left|x_{1}-y_{1}\right|$ and $b=\left|x_{2}-y_{2}\right|$ then we have

$$
d_{\mathbf{R} \times \mathbf{R}}[\mathbf{x}, \mathbf{y}] \leq \sqrt{2} d_{\mathbf{R}^{2}}[\mathbf{x}, \mathbf{y}]
$$

In summary, we've just showed that for any $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{2}$,

$$
d_{\mathbf{R}^{2}}[\mathbf{x}, \mathbf{y}] \leq d_{\mathbf{R} \times \mathbf{R}}[\mathbf{x}, \mathbf{y}] \leq \sqrt{2} d_{\mathbf{R}^{2}}[\mathbf{x}, \mathbf{y}] .
$$

Using these inequalities, we can easily verify that for any positive real number r, it holds that

$$
\begin{aligned}
\left\{\mathbf{y} \in \mathbf{R}^{2}: d_{\mathbf{R}^{2}}[\mathbf{x}, \mathbf{y}]<r\right\} & \subset\left\{\mathbf{y} \in \mathbf{R}^{2}: d_{\mathbf{R} \times \mathbf{R}}[\mathbf{x}, \mathbf{y}]<\sqrt{2} r\right\} \\
& \subset\left\{\mathbf{y} \in \mathbf{R}^{2}: d_{\mathbf{R}^{2}}[\mathbf{x}, \mathbf{y}]<\sqrt{2} r\right\}
\end{aligned}
$$

This relation means that every open ball of the Euclidean space \mathbf{R}^{2} centered at some point contains an open ball of the product metric space $\mathbf{R} \times \mathbf{R}$ centered at the point and vice versa. Now let \mathcal{O} be an open set in the Euclidean space \mathbf{R}^{2}. Then by definition, for every $\mathbf{x} \in \mathcal{O}$, there is an open ball of \mathbf{R}^{2} centered at \mathbf{x} that is entirely contained in \mathcal{O}. But we just proved that every open ball of \mathbf{R}^{2} centered at \mathbf{x} contains an open ball of $\mathbf{R} \times \mathbf{R}$ centered at \mathbf{x}. So for every $\mathbf{x} \in \mathcal{O}$ we can find an open ball of $\mathbf{R} \times \mathbf{R}$ centerd at \mathbf{x} that is entirely contained in \mathcal{O}. This means that the set \mathcal{O} is an open set in $\mathbf{R} \times \mathbf{R}$. Hence we can conclude that any open set of the Euclidean space \mathbf{R}^{2} is an open set of the product metric space $\mathbf{R} \times \mathbf{R}$ and vice versa. (The proof of converse is similar.)

