
Solutions for Homework 1

MAS501 Analysis for Engineers, Spring 2011

1. A real number r is said to be algebraic if r is a root of a polynomial with rational coefficients. If r

is not algebraic, r is said to be transcendental. Show that the set of all transcendental numbers is

uncountable. (It is known that e and π are transcendental.)

Answer: First we claim that the set of all polynomials with rational coefficients is countable.

Proof of Claim. (배영오씨답안기반) Let Pn be the set of all polynomials of degree n with rational

coefficients:

Pn =
{
c0 + c1x+ c2x

2 + · · ·+ cnx
n : cn ∈ Q \ {0} and c0, c1, · · · , cn−1 ∈ Q

}
.

Then
∣∣Pn

∣∣ =
∣∣Q \ {0} ×Qn−1

∣∣. Because a Cartesian product of a finite number of countable sets

Q \ {0}×Qn−1 is countable, the set Pn is also countable. Now note that the set of all polynomials

with rational coefficients P can be represented as P =
⋃∞

n=1 Pn, which is a countable union of

countable sets. Hence the set P is countable.

Proof. (여병철 씨 답안 기반) Let A be the set of all algebraic numbers. We know that the set of

all polynomials with rational coefficients is countable. Also, since each such polynomial has a finite

number of roots, the set A is countable. But the real line R is uncountable. Hence the set of all

transcendental numbers, which is R \A by definition, must be uncountable.

2. Let (Ω1, d1) and (Ω2, d2) be metric spaces.

(a) Prove that (Ω1 × Ω2, d) is a metric space, where d is defined by the formula

d
[
(x1, x2), (y1, y2)

]
= d1(x1, y1) + d2(x2, y2).

The space (Ω1 × Ω2, d) is called the product metric space.

Answer: We check three condtions a metric should satisfy.

(positivity) d
[
(x1, x2), (y1, y2)

]
= d1(x1, y1) + d2(x2, y2) ≥ 0. And the equality holds only

when d1(x1, y1) = d2(x2, y2) = 0, i.e., when (x1, x2) = (y1, y2).

(symmetry)

d
[
(x1, x2), (y1, y2)

]
= d1(x1, y1) + d2(x2, y2) = d1(y1, x1) + d2(y2, x2)

= d
[
(y1, y2), (x1, x2)

]
.

(triangle inequality) Let z1 ∈ Ω1 and z2 ∈ Ω2. Then we have

d
[
(x1, x2), (z1, z2)

]
= d1(x1, z1) + d2(x2, z2)

≤ d1(x1, y1) + d1(y1, z1) + d2(x2, y2) + d2(y2, z2)

= d1(x1, y1) + d2(x2, y2) + d1(y1, z1) + d2(y2, z2)

= d
[
(x1, x2), (y1, y2)

]
+ d
[
(y1, y2), (z1, z2)

]
.

(b) Let R × R be the product metric space constructed from the Euclidean space R. Then

obviously the metric of R×R is different from the metric of Euclidean space R2. Although,

we can prove that any open set of one metric space is also an open set of the other metric

space. (This means their topology are same; they have same “nearness”.) Prove it.
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Proof. (김준우 씨 답안 기반) Let dR×R be the product metric of the product metric space

R ×R. Also let dR2 be the usual metric of the Euclidean space R2. Then by definition, we

have

dR×R
[
(x1, x2), (y1, y2)

]
= |x1 − y1|+ |x2 − y2|,

dR2

[
(x1, x2), (y1, y2)

]
=
√

(x1 − y1)2 + (x2 − y2)2

for any x1, x2, y1, y2 ∈ R. Because

(|x1 − y1|+ |x2 − y2|)2 = (x1 − y1)2 + (x2 − y2)2 + 2|x1 − y1| |x2 − y2|
≥ (x1 − y1)2 + (x2 − y2)2,

we have

dR×R[x,y] ≥ dR2 [x,y]

where x = (x1, x2) and y = (y1, y2). Now observe that for any a, b ∈ R it holds that

0 ≤ (a− b)2 = 2(a2 + b2)− (a+ b)2

hence

|a+ b| ≤
√

2
√
a2 + b2.

Now put a = |x1 − y1| and b = |x2 − y2| then we have

dR×R[x,y] ≤
√

2 dR2 [x,y].

In summary, we’ve just showed that for any x,y ∈ R2,

dR2 [x,y] ≤ dR×R[x,y] ≤
√

2 dR2 [x,y].

Using these inequalities, we can easily verify that for any positive real number r, it holds that

{y ∈ R2 : dR2 [x,y] < r} ⊂ {y ∈ R2 : dR×R[x,y] <
√

2 r}

⊂ {y ∈ R2 : dR2 [x,y] <
√

2 r}

This relation means that every open ball of the Euclidean space R2 centered at some point

contains an open ball of the product metric space R×R centered at the point and vice versa.

Now let O be an open set in the Euclidean space R2. Then by definition, for every x ∈ O,

there is an open ball of R2 centered at x that is entirely contained in O. But we just proved

that every open ball of R2 centered at x contains an open ball of R×R centered at x. So for

every x ∈ O we can find an open ball of R×R centerd at x that is entirely contained in O.

This means that the set O is an open set in R×R. Hence we can conclude that any open set

of the Euclidean space R2 is an open set of the product metric space R×R and vice versa.

(The proof of converse is similar.)
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