Homework 1

MAS501 Analysis for Engineers, Spring 2011

1. A real number r is said to be algebraic if r is a root of a polynomial with rational coefficients. If r is not algebraic, r is said to be transcendental. Show that the set of all transcendental numbers is uncountable. (It is known that e and π are transcendental.)

Hint: Use the fact that the set of all polynomials with rational coefficients is countable. You don't need to write down the proof of this fact; just try to understand why it is true.
2. Let $\left(\Omega_{1}, d_{1}\right)$ and $\left(\Omega_{2}, d_{2}\right)$ be metric spaces.
(a) Prove that $\left(\Omega_{1} \times \Omega_{2}, d\right)$ is a metric space, where d is defined by the formula

$$
d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)
$$

The space $\left(\Omega_{1} \times \Omega_{2}, d\right)$ is called the product metric space.
(b) Let $\mathbf{R} \times \mathbf{R}$ be the product metric space constructed from the Euclidean space \mathbf{R}. Then obviously the metric of $\mathbf{R} \times \mathbf{R}$ is different from the metric of Euclidean space \mathbf{R}^{2}. Although, we can prove that any open set of one metric space is also an open set of the other metric space. (This means their topology are same; they have same "nearness".) Prove it.

