Solutions for Homework 2

MAS501 Analysis for Engineers, Spring 2011

1. (Discrete metric) Let Ω be a set.
(a) Prove that a function $d: \Omega \times \Omega \rightarrow \mathbf{R}$ defined by

$$
d(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

is a metric on Ω. The metric d is called the discrete metric for Ω.
Proof. (주재율 씨 답안 기반) Positivity and symmetry is obvious. Only nontrivial thing is to check triangle inequality. Assume the triangle inequality does not hold; then there are some points $x, y, z \in \Omega$ such that

$$
d(x, z)>d(x, y)+d(y, z)
$$

If $d(x, z)=0$, then the strict inequality does not make sense so we have $d(x, z)=1$. Again by the strict inequality we have the right hand side $d(x, y)+d(y, z)$ should be zero. So $d(x, y)=$ $d(y, z)=0$, i.e., $x=y=z$. But then $d(x, z)=0$ and this is a contradiction.
(b) Let (Ω, d) be a metric space with discrete metric. Find all the isolated points of Ω. Now can you see why the metric is called discrete?

Answer. (김동재 씨 답안 기반) By definition of the discrete metric, we have for any $x \in \Omega$,

$$
B_{1 / 2}(x)=\{y \in \Omega: d(x, y)<1 / 2\}=\{x\}
$$

And this is an open set which is not containing any other element in Ω except x. Therefore, all points in Ω are isolated points.
(윤성환 씨의 코멘트) It is reasonable that the metric d is called discrete because the corresponding metric space (Ω, d) makes all the points in Ω isolated.
2. (Set operations and compactness)
(a) Let K_{1}, \cdots, K_{n} be a finite collection of compact subsets of a metric space Ω. Prove that $\bigcup_{i=1}^{n} K_{i}$ is compact. Show (by example) that this result does not generalize to infinite unions.

Proof. (장혜령 씨 답안 기반) Let J be an index set and $\left\{G_{j}\right\}_{j \in J}$ be an open covering of $\bigcup_{i=1}^{n} K_{i}$. Then the open covering $\left\{G_{j}\right\}_{j \in J}$ also covers all of K_{1}, \cdots, K_{n}. Hence for each K_{i}, we can find a finite subcovering $\left\{H_{k}^{(i)}\right\}_{k=1}^{n_{i}} \subset\left\{G_{j}\right\}$ of K_{i}. Then obviously $\bigcup_{i=1}^{n}\left(\left\{H_{k}^{(i)}\right\}_{k=1}^{n_{i}}\right) \subset$ $\left\{G_{j}\right\}$ is finite and

$$
\bigcup_{i=1}^{n} K_{i} \subset \bigcup_{i=1}^{n} \bigcup_{k=1}^{n_{i}} H_{k}^{(i)}
$$

This implies that $\bigcup_{i=1}^{n}\left(\left\{H_{k}^{(i)}\right\}_{k=1}^{n_{i}}\right)$ is a finite subcovering. Therefore $\bigcup_{i=1}^{n} K_{i}$ is compact.
Examples. (이효정 씨의 반례) Consider sets of single element $\{i\}$ for each $i \in \mathbf{N}$. Then these sets are compact in the Euclidean space R. But we have

$$
\bigcup_{i=1}^{\infty}\{i\}=\mathbf{N}
$$

Because \mathbf{N} is not bounded, it is not compact by the Heine-Borel theorem.
(김도훈 씨의 반례) Let $K_{i}:=\left[0,1-\frac{1}{i}\right]$. Then all K_{i} 's are compact in the Euclidean space R. But we have

$$
\bigcup_{i=1}^{\infty} K_{i}=[0,1)
$$

Because this set is not closed, it is not compact by the Heine-Borel theorem.
(b) Let I be an index set and $\left\{K_{i}: i \in I\right\}$ be a collection of compact subsets of a metric space Ω. Prove that $\bigcap_{i \in I} K_{i}$ is compact.

Proof. (장혜령 씨 답안 기반) Define $K:=\bigcap_{i \in I} K_{i}$. Since each K_{i} is compact, it is closed and bounded. Then the set K, an arbitrary intersections of closed sets, is also closed so K^{c} is open. Now let $\left\{G_{j}\right\}_{j \in J}$ be an open covering of K, i.e., $K \subset \bigcup_{j \in J} G_{j}$. Hence it holds that

$$
\Omega=K \cup K^{c} \subset \bigcup_{j \in J} G_{j} \cup K^{c}
$$

So $\bigcup_{j \in J} G_{j} \cup K^{c}=\Omega$. Now fix any index $i_{0} \in I$. Then obviously

$$
K_{i_{0}} \subset \Omega=\bigcup_{j \in J} G_{j} \cup K^{c}
$$

that is, $\left\{G_{j}\right\}_{j \in J} \cup\left\{K^{c}\right\}$ is an open covering of $K_{i_{0}}$. Because $K_{i_{0}}$ is compact, we can find a finite collection of sets $\left\{H_{k}\right\}_{k=1}^{n} \subset\left\{G_{j}\right\}_{j \in J}$ such that

$$
K_{i_{0}} \subset \bigcup_{k=1}^{n} H_{k} \cup K^{c}
$$

Hence it holds that

$$
K=K \cap K \subset K_{i_{0}} \cap K \subset\left(\bigcup_{k=1}^{n} H_{k} \cup K^{c}\right) \cap K=\bigcup_{k=1}^{n} H_{k}
$$

This implies that $\left\{H_{k}\right\}_{k=1}^{n}$ is a finite subcovering of K. Therefore the set K is compact.
(c) Let K be a compact subset of Euclidean space \mathbf{R} and let $y \in \mathbf{R}$. Prove that the set $\{x+y$: $x \in K\}$ is compact.

Proof. (이효정 씨 답안 기반) Define $T:=\{x+y: x \in K\}$. (Note that intuitively this set is a translation of the set K.) We will show that the set T is closed and bounded.
(T is closed) Let $\left\{t_{n}\right\} \subset T$ be a sequence of real numbers such that $t_{n} \rightarrow t$ as $n \rightarrow \infty$. Since each t_{n} is an element of T, it can be written as $t_{n}=x_{n}+y$ for some $x_{n} \in K$. Thus it holds that

$$
K \ni x_{n}=t_{n}-y \rightarrow t-y \quad \text { as } n \rightarrow \infty .
$$

Because the compact set K is closed, we can conclude that $t-y \in K$. Therefore

$$
t=(t-y)+y \in T
$$

We just proved that the limit is also in T, so that the set T is closed.
(T is bounded) Since the compact set K is bounded, it holds that $K \subset B_{r}(x)$ for some $r>0$ and $x \in K$. Then we can easily see that $T \subset B_{r}(x+y)$. Thus T is bounded.
By the Heine-Borel theorem, the set T is compact.

