Homework 2

MAS501 Analysis for Engineers, Spring 2011

- 1. (Discrete metric) Let Ω be a set.
 - (a) Prove that a function $d: \Omega \times \Omega \to \mathbf{R}$ defined by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

is a metric on Ω . The metric d is called the *discrete metric* for Ω .

- (b) Let (Ω, d) be a metric space with discrete metric. Find all the isolated points of Ω . Now can you see why the metric is called *discrete*?
- 2. (Set operations and compactness)
 - (a) Let K_1, \dots, K_n be a finite collection of compact subsets of a metric space Ω . Prove that $\bigcup_{i=1}^{n} K_i$ is compact. Show (by example) that this result does not generalize to infinite unions.
 - (b) Let I be an index set and $\{K_i : i \in I\}$ be a collection of compact subsets of a metric space Ω . Prove that $\bigcap_{i \in I} K_i$ is compact.
 - (c) Let K be a compact subset of Euclidean space **R** and let $y \in \mathbf{R}$. Prove that the set $\{x + y : x \in K\}$ is compact.