Solutions for Homework 3

MAS501 Analysis for Engineers, Spring 2011

1. Let A and B be nonempty sets of real numbers and assume $\sup A$ and $\sup B$ are finite. Prove that

$$
\sup (A+B)=\sup A+\sup B
$$

where

$$
A+B=\{a+b: a \in A, b \in B\}
$$

What can we say when either of $\sup A$ or $\sup B$ is not finite?
Proof. (이호 씨 답안 기반) For every $a \in A$, we have $a \leq \sup A$. Also for every $b \in B$, it holds that $b \leq \sup B$. Hence $a+b \leq \sup A+\sup B$ for all $a \in A$ and $b \in B$ so that $\sup A+\sup B$ is an upper bound of $A+B$. Therefore we have

$$
\sup (A+B) \leq \sup A+\sup B
$$

On the other hand, by theorem 2.4.3, there are two sequences $\left\{a_{n}\right\} \subset A$ and $\left\{b_{n}\right\} \subset B$ such that

$$
\begin{aligned}
& \sup A-\frac{1}{n}<a_{n} \leq \sup A \\
& \sup B-\frac{1}{n}<b_{n} \leq \sup B
\end{aligned}
$$

Because $a_{n}+b_{n} \in A+B$ we have

$$
\sup A+\sup B-\frac{2}{n}<a_{n}+b_{n} \leq \sup (A+B)
$$

Now taking the limit $n \rightarrow \infty$ yields

$$
\sup A+\sup B \leq \sup (A+B)
$$

and the proof is complete.
Even if either of $\sup A$ or $\sup B$ is not finite, the equality still holds. Note that the supremum of a nonempty set cannot be $-\infty$. Hence without loss of generality, we may assume that sup $A=\infty$. Then there is a sequence $\left\{a_{n}\right\} \subset A$ such that $a_{n} \rightarrow \infty$. Now let b be a real number in the set B. Then $a_{n}+b \rightarrow \infty$ and so $\sup (A+B)=\infty$. Therefore the equliaty holds;

$$
\sup (A+B)=\infty=\sup A+\sup B
$$

2. (Product metric space and Cauchy sequence) Let Ω_{1} and Ω_{2} be metric spaces and $\Omega_{1} \times \Omega_{2}$ be the product metric space. (For the definition of product metric space, refer to Homework \#1.)
(a) Prove that if a sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ is Cauchy in $\Omega_{1} \times \Omega_{2}$, then the sequence $\left\{x_{n}\right\}$ is Cauchy in Ω_{1} and the sequence $\left\{y_{n}\right\}$ is Cauchy in Ω_{2}. Is the converse true?

Proof. (홍비 씨 답안 기반) Because the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ is Cauchy in $\Omega_{1} \times \Omega_{2}$, by definition, it holds that

$$
d_{\Omega_{1} \times \Omega_{2}}\left[\left(x_{n}, y_{n}\right),\left(x_{m}, y_{m}\right)\right]=d_{\Omega_{1}}\left(x_{n}, x_{m}\right)+d_{\Omega_{2}}\left(y_{n}, y_{m}\right) \rightarrow 0 \quad \text { as } n, m \rightarrow \infty .
$$

Hence by positivity of the metric, we have $d_{\Omega_{1}}\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$ and $d_{\Omega_{2}}\left(y_{n}, y_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$. And this implies that the sequence $\left\{x_{n}\right\}$ is Cauchy in Ω_{1} and the sequence $\left\{y_{n}\right\}$ is Cauchy in Ω_{2}.

The converse is also true. Assume $\left\{x_{n}\right\}$ is a Cauchy sequence in Ω_{1} and $\left\{y_{n}\right\}$ is a Cauchy sequence in Ω_{2}. Then by definition, $d_{\Omega_{1}}\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$ and $d_{\Omega_{2}}\left(y_{n}, y_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$. Therefore it holds that

$$
d_{\Omega_{1} \times \Omega_{2}}\left[\left(x_{n}, y_{n}\right),\left(x_{m}, y_{m}\right)\right]=d_{\Omega_{1}}\left(x_{n}, x_{m}\right)+d_{\Omega_{2}}\left(y_{n}, y_{m}\right) \rightarrow 0 \quad \text { as } n, m \rightarrow \infty .
$$

This implies that the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ is Cauchy in $\Omega_{1} \times \Omega_{2}$.
(b) Prove that if Ω_{1} and Ω_{2} are complete, then the product metric space $\Omega_{1} \times \Omega_{2}$ is also complete. Is the converse true?

Proof. (옥정슬 씨 답안 기반) Let $\left\{\left(x_{n}, y_{n}\right)\right\}$ be a Cauchy sequence in $\Omega_{1} \times \Omega_{2}$. Then by (a), $\left\{x_{n}\right\}$ is a Cauchy sequence in Ω_{1} and $\left\{y_{n}\right\}$ is a Cauchy sequence in Ω_{2}. Because Ω_{1} and Ω_{2} are complete, there are two elements $x \in \Omega_{1}$ and $y \in \Omega_{2}$ such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$. Then it holds that

$$
d_{\Omega_{1} \times \Omega_{2}}\left[\left(x_{n}, y_{n}\right),(x, y)\right]=d_{\Omega_{1}}\left(x_{n}, x\right)+d_{\Omega_{2}}\left(y_{n}, y\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty,
$$

that is, $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$. This means that every Cauchy sequence in $\Omega_{1} \times \Omega_{2}$ is convergent so $\Omega_{1} \times \Omega_{2}$ is complete.

The converse is also true. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in Ω_{1} and $\left\{y_{n}\right\}$ be a Cauchy sequence in Ω_{2}. Then by (a), the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ is also Cauchy in $\Omega_{1} \times \Omega_{2}$. Because $\Omega_{1} \times \Omega_{2}$ is complete, there is an element $(x, y) \in \Omega_{1} \times \Omega_{2}$ such that $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ as $n \rightarrow \infty$. Then we have

$$
d_{\Omega_{1}}\left(x_{n}, x\right) \leq d_{\Omega_{1} \times \Omega_{2}}\left[\left(x_{n}, y_{n}\right),(x, y)\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty,
$$

that is, $x_{n} \rightarrow x$ as $n \rightarrow \infty$. This means that every Cauchy sequence in Ω_{1} is convergent so Ω_{1} is complete. By the same reasoning, we have $y_{n} \rightarrow y$ as $n \rightarrow \infty$ and so we can conclude that Ω_{2} is also complete.

