Homework 3

MAS501 Analysis for Engineers, Spring 2011

1. Let A and B be nonempty sets of real numbers and assume $\sup A$ and $\sup B$ are finite. Prove that

 $\sup(A+B) = \sup A + \sup B,$

where

$$A + B = \{a + b : a \in A, b \in B\}.$$

What can we say when either of $\sup A$ or $\sup B$ is *not* finite?

- 2. (Product metric space and Cauchy sequence) Let Ω_1 and Ω_2 be metric spaces and $\Omega_1 \times \Omega_2$ be the product metric space. (For the definition of product metric space, refer to Homework #1.)
 - (a) Prove that if a sequence $\{(x_n, y_n)\}$ is Cauchy in $\Omega_1 \times \Omega_2$, then the sequence $\{x_n\}$ is Cauchy in Ω_1 and the sequence $\{y_n\}$ is Cauchy in Ω_2 . Is the converse true?
 - (b) Prove that if Ω_1 and Ω_2 are complete, then the product metric space $\Omega_1 \times \Omega_2$ is also complete. Is the converse true?