Homework 3

MAS501 Analysis for Engineers, Spring 2011

1. Let A and B be nonempty sets of real numbers and assume $\sup A$ and $\sup B$ are finite. Prove that

$$
\sup (A+B)=\sup A+\sup B
$$

where

$$
A+B=\{a+b: a \in A, b \in B\}
$$

What can we say when either of $\sup A$ or $\sup B$ is not finite?
2. (Product metric space and Cauchy sequence) Let Ω_{1} and Ω_{2} be metric spaces and $\Omega_{1} \times \Omega_{2}$ be the product metric space. (For the definition of product metric space, refer to Homework \#1.)
(a) Prove that if a sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ is Cauchy in $\Omega_{1} \times \Omega_{2}$, then the sequence $\left\{x_{n}\right\}$ is Cauchy in Ω_{1} and the sequence $\left\{y_{n}\right\}$ is Cauchy in Ω_{2}. Is the converse true?
(b) Prove that if Ω_{1} and Ω_{2} are complete, then the product metric space $\Omega_{1} \times \Omega_{2}$ is also complete. Is the converse true?

