Homework 4

MAS501 Analysis for Engineers, Spring 2011

1. Let $\{a_n\}$ be a sequence of real numbers such that

$$\lim_{n \to \infty} a_n = L,$$

where L is a real number. Show that the sequence of their arithmetic means also converges to L, that is,

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = L.$$

Hints:

- (a) Let $b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$. Then it suffices to show that $\limsup b_n = \liminf b_n = L$.
- (b) $\limsup b_n = L$ is equivalent to $L \epsilon \leq \limsup b_n \leq L + \epsilon$ for every $\epsilon > 0$.
- (c) For any $\epsilon > 0$, eventually it holds that $L \epsilon < a_n < L + \epsilon$ (by the hypothesis).
- 2. Prove that if a series $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} a_n^2$ converges. *Hint:* Note that $a_n^2 \leq |a_n|$ eventually. (Why?)
- 3. Suppose that f is continuous at every point of [a, b] and f(x) = 0 if x is rational. Prove that f(x) = 0 for every x in [a, b].

Hint: You may use the fact that the set of rational numbers \mathbf{Q} is dense in the Euclidean space \mathbf{R} .