Homework 4

MAS501 Analysis for Engineers, Spring 2011

1. Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

where L is a real number. Show that the sequence of their arithmetic means also converges to L, that is,

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=L
$$

Hints:
(a) Let $b_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}$. Then it suffices to show that $\limsup b_{n}=\lim \inf b_{n}=L$.
(b) $\lim \sup b_{n}=L$ is equivalent to $L-\epsilon \leq \lim \sup b_{n} \leq L+\epsilon$ for every $\epsilon>0$.
(c) For any $\epsilon>0$, eventually it holds that $L-\epsilon<a_{n}<L+\epsilon$ (by the hypothesis).
2. Prove that if a series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely, then $\sum_{n=1}^{\infty} a_{n}^{2}$ converges.

Hint: Note that $a_{n}^{2} \leq\left|a_{n}\right|$ eventually. (Why?)
3. Suppose that f is continuous at every point of $[a, b]$ and $f(x)=0$ if x is rational. Prove that $f(x)=0$ for every x in $[a, b]$.
Hint : You may use the fact that the set of rational numbers \mathbf{Q} is dense in the Euclidean space \mathbf{R}.

